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Abstract
This paper deals with an elliptic system of the form –�u = λθ1a(x)v + f (λ, x, v) in �,
–�v = λθ2a(x)u + g(λ, x,u) in �, u = 0 = v on ∂�, where λ ∈ R is a parameter and
� ⊂ R

N (N ≥ 1) is a bounded domain with C2,ξ -boundary ∂�, ξ ∈ (0, 1) (a bounded
open interval if N = 1). Here a(x) ∈ L∞(�) with a(x) > 0 a.e. in � and θ1,θ2 > 0 are
constants. The nonlinear perturbations f ,g :R× � ×R → R are Carathéodory
functions that are sublinear at infinity. We provide sufficient conditions for
determining the λ-direction to which a continuum of positive and negative solutions
emanates from infinity at the first eigenvalue of the associated linear problem.
Furthermore, as a consequence of main results, we also provide sufficient condition
for the solvability of a class of asymptotically linear system near and at resonance
satisfying Landesman-Lazer type conditions.
MSC: 35J60
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1 Introduction
We consider an elliptic system of the form

–�u = λθa(x)v + f (λ,x, v) in �,
–�v = λθa(x)u + g(λ,x,u) in �,
u =  = v on ∂�,

⎫
⎪⎬

⎪⎭
(.)

where� ⊂R
N (N ≥ ) is a bounded domain with C,ξ -boundary ∂�, ξ ∈ (, ) (a bounded

open interval if N = ). We will assume that λ ∈ R is a parameter, θ, θ >  are con-
stants, a(x) >  a.e. in � is an L∞(�) function. The nonlinear perturbations f , g :
R × � × R → R satisfy the following assumptions uniformly on compact intervals
of λ:
(H) f and g are Carathéodory functions;
(H) there exist h ∈ Lr(�), r >N with h(x)≥  for a.e. x ∈ �, and a constant b≥  such

that

∣
∣f (λ,x, s)

∣
∣,

∣
∣g(λ,x, s)

∣
∣ ≤ h(x) + b|s| for all s ∈R;
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(H) f and g are sublinear at infinity, that is, for a.e. x ∈ �

lim|s|→∞
f (λ,x, s)

s
=  and lim|s|→∞

g(λ,x, s)
s

= .

Therefore, the system (.) is asymptotically linear at infinity.
In this paper, we are interested in studying positive solutions of (.) via bifurcation

theory. For this, we define the underlying space

E :=
(
W ,

 (�)∩W ,r(�)
) × (

W ,
 (�)∩W ,r(�)

)

for r > N , endowed with the norm ‖(w,w)‖E := ‖w‖W,r(�) + ‖w‖W,r (�). We say that
(λ, (u, v)) ∈ R × E is a solution of (.) if (λ, (u, v)) solves (.) in the strong sense, that is,
u, v ∈ W ,r(�) and (λ, (u, v)) satisfies (.) almost everywhere in �. Further, if u >  (< )
and v >  (< ) almost everywhere in � then we say that (λ, (u, v)) is a positive (negative)
solution of (.).
We say that λ∞ ∈R is a bifurcation point from infinity if the solution set

T :=
{(

λ, (u, v)
) ∈R× E :

(
λ, (u, v)

)
solves (.)

}

contains a sequence {(λn, (un, vn))} such that

λn → λ∞ and
∥
∥(un, vn)

∥
∥
E → ∞.

By a continuum of solutions of (.) we mean C ⊂ T which is closed and connected.
A continuum C bifurcates from infinity at λ∞ ∈R if there exists a sequence of solutions

{(λn, (un, vn))}∞n= ⊂ C such that λn → λ∞ and ‖(un, vn)‖E → +∞ as n→ ∞.
Let μ be the principal eigenvalue of

–�φ = λa(x)φ in �,
φ =  on ∂�,

}

(.)

and φ be the corresponding eigenfunction. Without loss of generality, we normalize the
eigenfunction such that φ >  in � and


√

θθ

∫

�

a(x)φ
 dx = . (.)

Define ν := μ√
θθ

. We will show, in Appendix , that ν is a simple eigenvalue of the linear
operator associated with the linear part of (.), that is, of

–�w = λθa(x)w in �,
–�w = λθa(x)w in �,
w =  = w on ∂�.

⎫
⎪⎬

⎪⎭
(.)

It is the only eigenvalue such that both components of its eigenfunction, (
√

θφ,
√

θφ),
are positive (or negative) in �. Further, for each |k| ∈ N, νk denotes the eigenvalue of (.).
For a detailed discussion of the eigenvalue problem (.), see Appendix .
Now we state our main results.

http://www.boundaryvalueproblems.com/content/2014/1/242
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Theorem . Let (H)-(H) hold. Then there exist ε,K >  such that any solution
(λ, (u, v)) ∈ T with ν – ε ≤ λ ≤ ν + ε and ‖(u, v)‖E > K satisfy u >  and v >  or u < 
and v < , and νk /∈ [ν + ε,ν – ε] for any |k| ∈ N with k �= .Moreover, there are continua
D+

ν ,D
–
ν ⊂ T bifurcating from infinity at ν containing positive and negative solutions,

respectively.

Theorem . establishes the existence of positive and negative solutions of (.) near ν.
In the next two theorems we determine the λ-direction to which the continua from The-
orem . bifurcate. For this we impose additional conditions on the perturbations f and g
below.
For α ≥ , define

A±
α := lim inf

(λ,s)→(ν,±∞)

[√
θf (λ,x, s) +

√
θg(λ,x, s)

]
sα

and

A±
α := lim sup

(λ,s)→(ν,±∞)

[√
θf (λ,x, s) +

√
θg(λ,x, s)

]
sα .

Suppose there exist  ≤ αi <  – 
r and nonnegative functions Bi ∈ Lr(�) for i = , . . . , 

such that

(H+) f (λ,x, s)( + s)α , g(λ,x, s)( + s)α ≥ –B(x) ∀s≥ ,

(H–) – f (λ,x, s)|s – |α , –g(λ,x, s)|s – |α ≥ –B(x) ∀s≤ ,

(H+) f (λ,x, s)( + s)α , g(λ,x, s)( + s)α ≤ B(x) ∀s≥ ,

(H–) – f (λ,x, s)|s – |α , –g(λ,x, s)|s – |α ≤ B(x) ∀s≤ .

Now let ε, K , D+
ν , D

–
ν be as in Theorem .. Then we prove the following results.

Theorem . Suppose the hypotheses of Theorem . hold. If (H+) ((H–)) holds and

∫

�

A+
α (x)φ

–α
 (x) dx > 

(∫

�

A–
α (x)φ

–α
 (x) dx < 

)

, (.)

then
(I) there is no positive (negative) solution (λ, (u, v)) ∈ T satisfying ν ≤ λ ≤ ν + ε and

‖(u, v)‖E > K , and
(II) the continuum D+

ν (D
–
ν ) ⊂ T , consisting of positive (negative) solutions, bifurcates

from infinity at ν to the left.

Theorem . Suppose the hypotheses of Theorem . hold. If (H+) ((H–)) holds and

∫

�

A+
α (x)φ

–α
 (x) dx < 

(∫

�

A–
α (x)φ

–α
 (x) dx > 

)

, (.)

then

http://www.boundaryvalueproblems.com/content/2014/1/242
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(I) there is no positive (negative) solution (λ, (u, v)) ∈ T satisfying ν – ε ≤ λ ≤ ν and
‖(u, v)‖E > K , and

(II) the continuum D+
ν (D

–
ν ) ⊂ T , consisting of positive (negative) solutions, bifurcates

from infinity at ν to the right.

This paper is motivated by the results obtained for the scalar case in [, Theorem  and
Theorem ] and in [, Theorem ]. The goal of the present paper is to extend the above
results to systems for positive and negative solutions. We prove our results by heavily
utilizing a version of Lyapunov-Schmidt reduction method applied to a bifurcation from
infinity.
We do not require any sign conditions on the nonlinear perturbations f and g near the

origin. Thus Theorem . and Theorem . apply to both positone and semipositone type
right-hand sides of (.) for positive solutions. See [] and [], where an asymptotically
linear system is considered but nonlinearities are singular at the origin. The existence of
a positive solution to the left of ν is established in [] using Schauder fixed point theory
and to the left of ν but away from ν is established in [] using the sub and supersolution
methods. In [, ], the authors consider a more general system, which includes system
such as (.) as a special case. Their result, with additional assumptions on nonlinearities,
shows that (.) has a positive solution in the right neighborhood of ν using critical point
theory. These papers provide the existence of solutions, but do not provide information on
the connectivity of the solution set. Therefore Theorem . and Theorem . complement
these existence results.
As a by-product of the theorems above, we have the following existence results for (.)

at and near resonance.

Theorem . Suppose the hypotheses of Theorem . hold. If (H+) and (H–) hold, and

∫

�

A–
α (x)φ

–α
 (x) dx <  <

∫

�

A+
α (x)φ

–α
 (x) dx, (.)

then (.) has
(a) at least two solutions (one positive and one negative) for λ ∈ [ν – ε,ν), and
(b) at least one solution for λ ∈ [ν,ν + ε].

Theorem . Suppose the hypotheses of Theorem . hold. If (H+) and (H–) hold, and

∫

�

A+
α (x)φ

–α
 (x) dx <  <

∫

�

A–
α (x)φ

–α
 (x) dx, (.)

then (.) has
(a) at least one solution for λ ∈ [ν – ε,ν], and
(b) at least two solutions (one positive and one negative) for λ ∈ (ν,ν + ε].

Theorem . and Theorem . generalize results for the scalar case in [, Theorem ]
and [, Theorem ] to systems at the principal eigenvalue ν. Our results also complement
[, Theorem.]. Also see [–] and [], where existence resultswere discussed at and/or
near resonance.We prove our results as a direct consequence of ourmain theorems.More
precisely, Theorem . implies Theorem . and Theorem . implies Theorem ..

http://www.boundaryvalueproblems.com/content/2014/1/242
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Finally, we consider a straightforward extension of Landesman-Lazer type conditions
initiated in the celebrated paper [] by Landesman and Lazer to a system. In particular,
we provide the solvability of the following system at resonance,

–�u = νθa(x)v + f̃ (v) + h(x) in �,
–�v = νθa(x)u + g̃(u) + h(x) in �,
u =  = v on ∂�.

⎫
⎪⎬

⎪⎭
(.)

We assume a(x), θ, θ as before. Let f̃ , g̃ :R → R be continuous functions and hi ∈ Lr(�)
with r >N satisfying

f̃±∞ = lim
s→±∞ f̃ (s) ∈R, g̃±∞ = lim

s→±∞ g̃(s) ∈R.

Then we prove the following existence results, as corollaries of Theorem . and Theo-
rem ., respectively.

Corollary . Suppose

∫

�

(
√

θ f̃–∞ +
√

θg̃–∞)φ dx

< –
∫

�

(
√

θh +
√

θh)φ dx <
∫

�

(
√

θ f̃+∞ +
√

θg̃+∞)φ dx. (.)

Then (.) has a solution.

Corollary . Suppose

∫

�

(
√

θ f̃–∞ +
√

θg̃–∞)φ dx

> –
∫

�

(
√

θh +
√

θh)φ dx >
∫

�

(
√

θ f̃+∞ +
√

θg̃+∞)φ dx. (.)

Then (.) has a solution.

Similar results were obtained in [, Theorem .]. The author uses continuation of so-
lution with respect to a parameter using the implicit function theorem and hence requires
the autonomous part of the nonlinear perturbations to be C smooth.

Remark . In Figure , any solution in both dark and light gray regions will either be
positive or negative by Theorem .. There is no positive or negative solution in the dark
gray regions due to Theorem .. Solutions in the light gray region on D+

ν are positive and
on D–

ν are negative. Dashed points are a sequence of solutions approaching the solution
of the resonant problem at ν from the right (see proof of Theorem .). The vertical axis
is given by

t– =
∫

�

a(x)(u, v) · (√θφ,
√

θφ) dx,

http://www.boundaryvalueproblems.com/content/2014/1/242
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Figure 1 Results from Theorems 1.1-1.2 and Theorem 1.4. See Remark 1.8 for details.

in order to distinguish positive and negative solutions in the neighborhood of ν. Here the
symbol ‘·’ denotes the usual scalar product in R

. To understand the diagram it is helpful
to observe that |t–| ≈ ‖(u, v)‖E for solutions with λ close to ν. See (.) for a precise
statement. Values of t– corresponding to the value K from Theorem . are denoted by
‘K ’ and ‘–K ’.

In Section , we set up the functional framework for our problem to apply the abstract
bifurcation theory discussed in Appendix . In Section , a variant of Krasnosel’skii’s nec-
essary condition for a bifurcation from infinity is discussed. In Section , we prove Theo-
rems .-.. In Section , we prove Theorems .-., and Corollaries .-.. In Section ,
we provide several examples of f and g that satisfy the hypotheses of Theorems .-. and
Corollaries .-.. In Appendix , we discuss the abstract bifurcation theory (Rabinowitz
and Dancer type) which we use in our analysis. In Appendix , we study the spectral prop-
erties of the eigenvalue problem (.). In Appendix , we provide the proof of (.) claimed
in Section .

2 Functional framework
In this section, we set up functional framework that enables us to treat our problem using
Proposition A. discussed in Appendix .
Due to the growth condition (H) imposed on f and g and the fact that a ∈ L∞(�), all

solutions (u, v) of any elliptic system throughout this paper are understood in the strong
sense, which means (u, v) ∈ E (bootstrap method and [, Theorem .]) and they satisfy
the corresponding pde a.e. in �. Since, for any r > N , W ,r(�) ↪→ C,η(�) for some η ∈
(, ), the boundary conditions are satisfied in the usual sense.
The abstract setting of our problem is

(u, v) = λL(u, v) +H
(
λ, (u, v)

)
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/242
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where L : E → E denotes the mapping

(u, v) �→ (–�)–a(x)(θv, θu)

and H :R× E → E denotes the mapping

(
λ, (u, v)

) �→ (–�)–
(
f (λ,x, v), g(λ,x,u)

)
.

The solution operator (–�)– : Lr(�) → W ,
 (�) ∩ W ,r(�), h �→ w, associated to the

problem

–�w = h in �, w =  on ∂�,

is well defined, obviously linear, continuous, and compact. Thus L is linear, continuous,
and compact. Since f and g are Carathéodory functions satisfying (H), the correspond-
ing Nemytski operator, denoted again by f and g , maps W ,r(�) → Lr(�) continuously
(see [, Theorem .]). Thus by the compactness of (–�)–, we find that H(λ, (u, v)) is
continuous and compact.
Claim: H satisfies

lim
‖(u,v)‖E→+∞

‖H(λ,u, v)‖E
‖(u, v)‖E =  (.)

uniformly for λ in compact intervals. See Appendix  for a proof.
In order to satisfy the assumptions of Proposition A., we use the Kelvin transform

(w,w) :=
(u, v)

‖(u, v)‖E
and defineN :R× E → Lr(�)× Lr(�) by

N
(
λ, (w,w)

)
:=

⎧
⎨

⎩

‖(w,w)‖E(f (λ,x, w
‖(w,w)‖E

), g(λ,x, w
‖(w,w)‖E

)); (w,w) �= (, ),

; (w,w) = (, ).

Clearly N is continuous for (w,w) �= (, ) on compact intervals of λ. The continuity at
(w,w) = (, ) follows from the fact that

∫

�

∣
∣
∣
∣f

(

λ,x,
w

‖(w,w)‖E

)
∥
∥(w,w)

∥
∥
E

∣
∣
∣
∣

r

dx =
∫

�

∣
∣
∣
∣
f (λ,x, v)
‖(u, v)‖E

∣
∣
∣
∣

r

dx → 

as ‖(u, v)‖E → ∞ and hence as ‖(w,w)‖E → . Similarly for g . Due to the compactness
of (–�)– : Lr(�)→W ,r(�)∩W ,

 (�) it follows that H :R× E → E defined as

H
(
λ, (w,w)

)
:=

⎧
⎨

⎩

‖(w,w)‖EH(λ, (w,w)/‖(w,w)‖E); (w,w) �= (, ),

; (w,w) = (, ),

is continuous and compact. Therefore the operators L, H , and H satisfy the hypotheses
of Proposition A..

http://www.boundaryvalueproblems.com/content/2014/1/242
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3 Bifurcation from eigenvalue
The following proposition is a variant of necessary condition for a bifurcation from infinity
due to Krasnosel’skii [, Statement, p.]. This variant provides extra information on the
C,η(�) convergence which is crucial in determining the definite sign (positive or negative)
of solutions bifurcating from infinity.

Proposition . If ν∗ is a bifurcation point from infinity for (.), then ν∗ = νl for some
l : |l| ∈N.Moreover, for any sequence (λn, (un, vn)) ∈R×E with λn → ν∗ and ‖(un, vn)‖E →
+∞ as n → +∞, there exists an eigenfunction (w∗

 ,w∗
) ∈ E satisfying ‖(w∗

 ,w∗
)‖E =  corre-

sponding to the eigenvalue ν∗, and a subsequence (λnk , (unk , vnk )) of (λn, (un, vn)) such that

lim
nk→+∞

(unk , vnk )
‖(unk , vnk )‖E

=
(
w∗
 ,w

∗

)
, (.)

where the convergence is in C,η(�)×C,η(�), for some η ∈ (, ).
In particular, for ν∗ = ν, any sequence (λn, (un, vn)) ∈ R × E with λn → ν and ‖(un,

vn)‖E → +∞ as n → +∞ can be split into two subsequences one of which satisfies

lim
nk→+∞

(unk , vnk )
‖(unk , vnk )‖E

= ± (
√

θφ,
√

θφ)
‖(√θφ,

√
θφ)‖E , (.)

with a ‘+’ sign, the other with a ‘–’ sign (one of the two subsequences may be void).

Proof Let (λn, (un, vn)) ∈ R× E be solutions of (.) such that ‖(un, vn)‖E → +∞ and λn ∈
�, where � ⊂R is a compact interval. Then (w,n,w,n) = (un ,vn)

‖(un ,vn)‖E satisfies

w,n = (–�)–
(

λnθa(x)w,n +
f (λn,x, vn)
‖(un, vn)‖E

)

,

w,n = (–�)–
(

λnθa(x)w,n +
g(λn,x,un)
‖(un, vn)‖E

)

.

Owing to (C.), we find that the terms on the right-hand sides are bounded in Lr(�) (in-
dependent of n). Hence ‖w,n‖W,r (�) and ‖w,n‖W,r(�) are bounded (independent of n)
and so are ‖w,n‖C,η(�) and ‖w,n‖C,η(�), for some η ∈ (, ). Since C,η′ (�) ↪→ C,η(�)
compactly for η′ ∈ (,η), passing to a subsequence, w,n → w∗

 , w,n → w∗
 in C,η′ (�) and

λn → λ∗ ∈ �. Therefore (λ∗, (w∗
 ,w∗

)) satisfies

w∗
 = (–�)–λ∗θa(x)w∗

,

w∗
 = (–�)–λ∗θa(x)w∗

 ,

and hence satisfies (.). Since ‖(w∗
 ,w∗

)‖E = , λ∗ ∈ � must be an eigenvalue of (.) and
(w∗

 ,w∗
) ∈ E a corresponding normalized eigenvector.

For the case ν∗ = ν, the statement follows from the fact that ν is simple. �

4 Proof of main results
Proof of Theorem . Wewill use the Lyapunov-Schmitt reductionmethod combinedwith
a bifurcation from infinity. We split our underlying space E = span{(√θ φ,

√
θφ)} ⊕ E,

http://www.boundaryvalueproblems.com/content/2014/1/242
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where

E :=
{

(z, z) ∈ E :
∫

�

a(x)(z, z) · (
√

θφ,
√

θ φ) dx = 
}

,

and (
√

θ φ
√

θφ) and (
√

θφ,
√

θ φ) are the eigenfunctions of the linear operator L and
its adjoint L∗, respectively, corresponding to the eigenvalue ν (see Appendix  for details).
By Proposition ., for large n, (un, vn) takes the form

(un, vn) = t–n
(√

θφ + u�
n ,

√
θφ + v�

n
)
, (.)

where tn → , tn �= , and (u�
n , v�

n ) ∈ E, that is, they satisfy the ‘orthogonality’ condition

∫

�

a(x)
(√

θu�
n +

√
θv�

n
)
φ dx =  (.)

with u�
n → , v�

n →  in C,η(�) as n→ +∞. It follows from a straightforward calculation,
using (.), that t–n is the projection of (un, vn) to the subspace spanned by (

√
θφ,

√
θφ).

Indeed,
∫

�

a(x)(un, vn) · (
√

θφ,
√

θφ) dx

=
∫

�

a(x)t–n
(√

θφ + u�
n ,

√
θφ + v�

n
) · (√θφ,

√
θφ) dx

= t–n ∈R. (.)

It is important to observe that |tn|– → ∞ if and only if ‖(un, vn)‖E → ∞ as n → ∞. In-
deed, it follows from (.), (.) and (.) that

|tn|–
‖(un, vn)‖E → 

‖(√θφ,
√

θφ)‖E as n→ ∞. (.)

Therefore, since ∂φ
∂�n <  on ∂�, it follows from (.) that un(x) >  (< ) and vn(x) > 

(< ) for n sufficiently large. Thus there exist ε,K >  such that any (λn, (un, vn)) ∈ T with
ν – ε ≤ λn ≤ ν + ε and ‖(un, vn)‖E > K satisfy un >  (< ) and vn >  (< ) in � and
νk /∈ [ν + ε,ν – ε] for any |k| ∈ N with k �=  for large n. This proves the first part of
Theorem ..
By Proposition A., there exist two continua D+

ν ⊂ T and D–
ν ⊂ T emanating, respec-

tively, in the direction of positive and negative multiple of (
√

θ φ,
√

θφ) in E. Then in
view of the C-regularity of solutions and Proposition .,D+

ν (D
–
ν ) is the continuum con-

taining large positive (negative) solutions corresponding to tn >  (tn < ). �

Proof of Theorem . We will first establish part (I) of Theorem . by determining the
λ-direction of the bifurcation of positive solutions from infinity at ν. Let (λn, (un, vn)) ∈ T

be such that λn → ν and ‖(un, vn)‖E → +∞. Then by Proposition ., (un, vn) takes the
form

un = t–n
(√

θφ + u�
n
)
,

vn = t–n
(√

θφ + v�
n
)
,

(.)

http://www.boundaryvalueproblems.com/content/2014/1/242
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where tn > , tn → , ‖u�
n ‖C,η(�) → , and ‖v�

n ‖C,η(�) →  as n → ∞. Therefore un > 
and vn >  for large n.
Multiplying the first equation of (.) by the first component of (

√
θφ,

√
θφ) (eigen-

function corresponding to the adjoint operator L∗), integrating over�, and using (.), we
obtain

–
∫

�

�
[
t–n

(√
θφ + u�

n
)]√

θφ dx

= λnθ
√

θ

∫

�

a(x)t–n
(√

θφ + v�
n
)
φ dx +

√
θ

∫

�

f (λn,x, vn)φ dx.

This yields

μ
√

θθ

∫

�

a(x)φ
 dx +

√
θμ

∫

�

a(x)u�
n φ dx

= μ
√

θθ

∫

�

a(x)φ
 dx +

[

λn –
μ√
θθ

]

θθ

∫

�

a(x)φ
 dx

+ λnθ
√

θ

∫

�

a(x)v�
n φ dx + tn

√
θ

∫

�

f (λn,x, vn)φ dx,

and, using (.), it simplifies to

μ
√

θ

∫

�

a(x)u�
n φ dx

=
[

λn –
μ√
θθ

]√
θθ



+ λnθ
√

θ

∫

�

a(x)v�
n φ dx + tn

√
θ

∫

�

f (λn,x, vn)φ dx. (.)

Similarly, multiplying the second equation of (.) by the second component of (
√

θφ,√
θφ), and integrating over �, we obtain

μ
√

θ

∫

�

a(x)v�
n φ dx

=
[

λn –
μ√
θθ

]√
θθ



+ λnθ
√

θ

∫

�

a(x)u�
n φ dx + tn

√
θ

∫

�

g(λn,x,un)φ dx. (.)

Adding (.) and (.), we have

μ

∫

�

a(x)
(√

θu�
n +

√
θv�

n
)
φ dx

=
[

λn –
μ√
θθ

]
√

θθ + λn
√

θθ

∫

�

a(x)
(√

θu�
n +

√
θv�

n
)
φ dx

+ tn
∫

�

(√
θf (λn,x, vn) +

√
θg(λn,x,un)

)
φ dx.

http://www.boundaryvalueproblems.com/content/2014/1/242
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Using μ√
θθ

= ν and (.), the above equation simplifies to

[ν – λn]
√

θθ = tn
∫

�

(√
θf (λn,x, vn) +

√
θg(λn,x,un)

)
φ dx.

The previous equation gives rise to the following important identity for sufficiently large n:

sgn[ν – λn] = sgn

[∫

�

(√
θf (λn,x, vn) +

√
θg(λn,x,un)

)
φ dx

]

. (.)

Proof of part (I) for positive solutions: Now we proceed to complete the proof of part (I)
of Theorem . by contradiction. Suppose that λn ∈ [ν,ν + ε] for all n sufficiently large.
This implies, by (.), that

[∫

�

(√
θf (λn,x, vn) +

√
θg(λn,x,un)

)
φ dx

]

≤  (.)

for n sufficiently large.
On the other hand, since un >  and vn >  for large n, we have

 + un =  + t–n
(√

θφ + u�
n
)
> ,

 + vn =  + t–n
(√

θφ + v�
n
)
> .

Then since tn →  as n → ∞ and tn > , the following pointwise estimates hold in � as
n→ ∞:

(
tn +

√
θφ + u�

n
)–α

φ → (θ)–α/φ
–α
 < (θ)–α/φ

–α
 ,

(
tn +

√
θφ + v�

n
)–α

φ → (θ)–α/φ
–α
 < (θ)–α/φ

–α
 .

Consequently, using (H+), we get the following pointwise estimate a.e. in � for suffi-
ciently large n:

g(λn,x,un)
(
 + t–n

(√
θφ + u�

n
))α(tn +

√
θφ + u�

n
)–α

φ

= g(λn,x,un)( + un)α
(
tn +

√
θφ + u�

n
)–α

φ

≥ –(θ)–α/Bφ
–α
 . (.)

Similarly, for sufficiently large n

f (λn,x, vn)
(
 + t–n

(√
θφ + v�

n
))α(tn +

√
θφ + v�

n
)–α

φ

≥ –(θ)–α/Bφ
–α
 . (.)

Observe that there exist c, c > , and δ > , such that

cdist(x, ∂�) ≤ φ(x) ≤ cdist(x, ∂�); x ∈ � and dist(x, ∂�) < δ.

Therefore, since B ∈ Lr(�) and  ≤ α <  – 
r , the Hölder inequality asserts Bφ

–α
 ∈

L(�) (see [] for a detailed discussion). The estimates (.) and (.) allow for the use

http://www.boundaryvalueproblems.com/content/2014/1/242
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of Fatou’s lemma below yielding

lim inf
n→+∞

∫

�

(√
θf (λn,x, vn) +

√
θg(λn,x,un)

)
φ dx

= lim inf
n→+∞

∫

�

[√
θf (λn,x, vn)

(
 + t–n

(√
θφ + v�

n
))α( + t–n

(√
θφ + v�

n
))–α

φ

+
√

θg(λn,x,un)
(
 + t–n

(√
θφ + u�

n
))α( + t–n

(√
θφ + u�

n
))–α

φ
]
dx

= lim inf
n→+∞

∫

�

tαn
[√

θf (λn,x, vn)
(
 + t–n

(√
θφ + v�

n
))α(tn +

√
θφ + v�

n
)–α

φ

+
√

θg(λn,x,un)
(
 + t–n

(√
θφ + u�

n
))α(tn +

√
θφ + u�

n
)–α

φ
]
dx

(i)≥
∫

�

lim inf
n→+∞ tαn

[√
θf (λn,x, vn)

(
 + t–n

(√
θφ + v�

n
))α

+
√

θg(λn,x,un)
(
 + t–n

(√
θφ + u�

n
))α]

φ
–α
 dx

≥
∫

�

lim inf
(λ,s)→(ν,+∞)

[√
θf (λ,x, s)( + s)α +

√
θg(λ,x, s)( + s)α

]
φ
–α
 dx

(ii)=
∫

�

lim inf
(λ,s)→(ν,+∞)

[√
θf (λ,x, s)sα +

√
θg(λ,x, s)sα

]
φ
–α
 dx

=
∫

�

A+
αφ

–α
 dx

(iii)
> .

The inequality (i) follows from Fatou’s lemma, (ii) follows since

lim inf
(λ,s)→(ν,+∞)

f (λ,x, s)( + s)α

= lim inf
(λ,s)→(ν,+∞)

f (λ,x, s)sα lim
s→+∞

( + s)α
sα

= lim inf
(λ,s)→(ν,+∞)

f (λ,x, s)sα ,

and the last inequality follows from assumption (.). The inequality (iii) is a contradiction
to (.). Therefore, for tn > , ν –ε ≤ λn < ν for large n by (.). Thismeans that there is no
positive solution for ν < λn ≤ ν + ε for large n and thus part (I) assertion of Theorem .
holds for positive solutions.
Proof of part (II) for positive solutions: Now it follows from Theorem . and part (I)

above that the continuum D+
ν ⊂ T , from Theorem ., bifurcates from infinity at ν to

the left. This concludes the proof of Theorem . for positive solutions.
Proof of Theorem . for negative solutions: The proof for negative solutions can be car-

ried out in a similar fashion by using tn < , defining

– + un = – + t–n
(√

θφ + u�
n
)
< ,

– + vn = – + t–n
(√

θφ + v�
n
)
< ,

and using –|s|α instead of sα in applying Fatou’s lemma using (H–) and reversing the
inequalities appropriately. �

Proof of Theorem . The proof of Theorem . is similar with obvious changes. �

http://www.boundaryvalueproblems.com/content/2014/1/242
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Remark . In [], for the scalar case, the integral is analyzed for definite sign using
‖u‖W,r (�) as a parameter. For the case of systems, we use t– instead of the norm of
‖(u, v)‖E , which allows us to analyze crucial integrals using only the parameter t–.

5 Proofs of Theorems 1.4-1.5 and Corollaries 1.6-1.7
Proof of Theorem . ByTheorem ., it follows that for λ ∈ [ν –ε,ν) there exist a positive
solution on the continua D+

ν and a negative solution on the continua D–
ν . This proves

part (a).
For part (b), first we establish the result for the non-resonant case. For this, define Tλ :

Lr(�)× Lr(�) → E to be the solution operator of

–�u – λθa(x)v = ψ(x) in �,
–�v – λθa(x)u = ψ(x) in �,
u =  = v on ∂�.

⎫
⎪⎬

⎪⎭

For λ �= νk , by the Fredholm alternative, the above system has a unique strong solution for
any (ψ,ψ) ∈ Lr(�) × Lr(�). Therefore Dom(Tλ) = Lr(�) × Lr(�) and Tλ is continuous.
Then it follows from the standard compactness argument that Tλ is compact. Next, de-
fine Nλ : E → Lr(�)× Lr(�) by Nλ(u, v) = (f (λ,x, v), g(λ,x,u)). Then the operator equation
corresponding to (.) is

(u, v) = TλNλ(u, v). (.)

Nowwe show that for each fixed λ �= νk , for any |k| ∈N, there exists a constant c(λ) >  such
that ‖(u, v)‖E ≤ c(λ). Indeed, suppose to the contrary that ‖(un, vn)‖E → ∞ as n → ∞.
Since f and g satisfy (H), it follows from (C.) that

‖Nλ(un, vn)‖Lr (�)×Lr(�)

‖(un, vn)‖E →  as n→ ∞.

Dividing (.) by ‖(un, vn)‖E and taking the E norm yields

 ≤ ‖Tλ‖‖Nλ(un, vn)‖E
‖(un, vn)‖E →  as n→ ∞,

which is absurd. Then by the Schauder fixed point theorem, (.) has a solution for each
λ �= νk for any |k| ∈N and hence for (.). In particular, (.) has at least one solution for all
λ ∈ (ν,ν + ε].
To complete the proof of part (b), it remains to show that (.) has a solution for

λ = ν. Theorem . implies that any solution (λ, (u, v)) of (.) with λ ∈ [ν – ε,ν + ε] and
‖(u, v)‖E > K are either u > , v >  or u < , v <  in �. But part (I) of Theorem . im-
plies that there are no positive or negative solutions (λ, (u, v)) ∈ T with λ ∈ [ν,ν + ε] and
‖(u, v)‖E > K . Therefore all solutions (λ, (u, v)) with λ ∈ [ν,ν +ε] must satisfy the uniform
bound ‖(u, v)‖E ≤ K .
Now let (λn, (un, vn)) be a sequence of solutions of (.) with λn ∈ (ν,ν + ε] such that

λn ↘ ν. Then for each n ∈N, (un, vn) satisfy

un = (–�–)(λnθa(x)vn + f (λn,x, vn)) in �,
vn = (–�–)(λnθa(x)un + g(λn,x,un)) in �,
un =  = vn on ∂�.

⎫
⎪⎬

⎪⎭

http://www.boundaryvalueproblems.com/content/2014/1/242
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Since ‖(un, vn)‖E ≤ K , independent of n, there exists a subsequence, denoted again
by (un, vn), that converges to some (u, v) in C,η(�) × C,η(�) for some η ∈ (, ). Then
f (λn, ·, vn) → f (λ, ·, v) and g(λn, ·,un) → g(λ, ·,u) in Lr(�) (cf. [, Theorem .]). Thus the
right-hand sides of the above system converges in Lr(�). By the same argument as in the
proof of Proposition ., (un, vn)→ (u, v) in E and the limit (u, v) satisfies

u = (–�–)(νθa(x)v + f (λ,x, v)) in �,
v = (–�–)(νθa(x)u + g(λ,x,u)) in �,
u =  = v on ∂�,

⎫
⎪⎬

⎪⎭

that is, it satisfies (.) for λ = ν. This establishes the existence of a solution in the resonant
case. Thus the proof of Theorem . is complete. �

The proof of Theorem . follows similarly with appropriate changes.

Proof of Corollary . We will use Theorem . for α =  = α with f (λ,x, v) = f̃ (v) + h(x)
and g(λ,x,u) = g̃(u) + h(x). Then it is easy to see that hypothesis (.) is satisfied by (.)
with

A+
 =

√
θ

(
f̃+∞ + h(x)

)
+

√
θ

(
g̃+∞ + h(x)

)
and

A–
 =

√
θ

(
f̃–∞ + h(x)

)
+

√
θ

(
g̃–∞ + h(x)

)
.

Therefore, by Theorem ., the system (.) has a solution. �

The proof of Corollary . follows similarly with appropriate changes.

6 Examples
In this section we provide several examples of nonlinear perturbations f and g satisfying
the hypotheses of our theorems. All examples below satisfy the hypotheses of Theorem ..

Example . (Unbounded perturbation: semipositone case) Let  < β ≤ β < .
Then f (λ, s) = λ(|s|β – ) and g(λ, s) = λ(|s|β – ) satisfy

lim inf
(λ,s)→(μ,+∞)

λ
(√

θ|s|β +
√

θ|s|β –
√

θ –
√

θ
)
= +∞ > .

Thus the hypotheses of Theorem . are satisfied for α = .

Example . (Bounded perturbation: semipositone case) Let  < β ≤ β.
Then f (λ, s) = –λ[/( + |s|β ) + ] and g(λ, s) = –λ[/( + |s|β ) + ] satisfy

lim sup
(λ,s)→(μ,+∞)

–λ

( √
θ

 + |s|β +
√

θ

 + |s|β + (
√

θ +
√

θ)
)

= –(
√

θ +
√

θ)μ < .

Thus the hypotheses of Theorem . are satisfied for α = .

Example . (Vanishing perturbation) Let N = ,  < ε ≤ ε < /.
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Then f (s) = /( + |s|/–ε ) and g(s) = /( + |s|/–ε ) satisfy

lim inf
(λ,s)→(μ,+∞)

[ √
θ

 + s/–ε
+

√
θ

 + s/–ε

]

( + s)/–ε ≥ √
θ > .

Thus the hypotheses of Theorem . are satisfied.

Example . (Oscillating perturbation) Let  < β <  and  < γ .
Then f (λ, s) = ( + sin(s))|λs|β and g(λ, s) = cos(λs)/( + |s|γ ) satisfy

lim inf
(λ,s)→(μ,+∞)

[
√

θ
(
 + sin(s)

)|λs|β +
√

θ cos(λs)
 + sγ

]

= +∞ > .

Thus the hypotheses of Theorem . are satisfied for α = .

Example . (Landesman-Lazer type perturbation) Let a(x) ≡ , f̃ (s) = arctan(s), and
g̃(s) = – arctan(s). Then

(i) if θ < θ then (.) has a solution provided h,h ∈ Lr(�) satisfies (.), and
(ii) if θ > θ then (.) has a solution provided h,h ∈ Lr(�) satisfies (.).

Appendix 1: Abstract bifurcation
We shall use results from the abstract bifurcation theory to prove our existence results. In
particular, the theory of a bifurcation from infinity was developed mainly by Rabinowitz
[]. It is well known that the result on a bifurcation from infinity [] is developed from the
theory of a bifurcation from zero []. However, it was pointed out by Dancer [] that the
proofs of Theorem . and Theorem . in [] contain gaps. Moreover, as pointed out
in [], the results from [] for a bifurcation from zero are also wrong in their statement.
Thus the statement and the proof of the result on a bifurcation from infinity [] should
be revisited in the spirit of discussion in [–]. We were not able to find these corrected
statements and proofs for a bifurcation from infinity anywhere in the literature. Thus we
restate and prove a corrected version of [, Theorem .] for the sake of the readers.
In their abstract setting, the bifurcations are studied in the product space R× B where

B is a real Banach space with norm ‖ · ‖B. For (λ, z) ∈ R × B, we consider the norm
‖(λ, z)‖R×B := |λ| + ‖z‖B . In what follows, by connected components of a topological
space we mean the maximal connected subsets (ordered by inclusion) of the given space.
We use the abstract bifurcation theorems concerning the bifurcation of continua of solu-
tions from infinity for the operator equation

z = λLz +H(λ, z). (A.)

Here λ ∈ R is the bifurcation parameter and L : B → B is a linear and compact opera-
tor, H : R × B → B is a continuous and compact operator which satisfies sublinearity
condition at infinity, that is,

lim‖z‖B→+∞
‖H(λ, z)‖B

‖z‖B
=  (A.)

uniformly on compact λ-intervals.
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Chhetri and Girg Boundary Value Problems 2014, 2014:242 Page 16 of 21
http://www.boundaryvalueproblems.com/content/2014/1/242

It was shown by Krasnosel’skii [, p.] that a necessary condition for (μ, +∞) to be a
bifurcation point from infinity is that μ is a characteristic eigenvalue of L.
Define H :R× B → B

H(λ,w) :=

⎧
⎨

⎩

‖w‖BH(λ,w/‖w‖B); w �= ,

; w = .

Assume in addition that
• H :R× B → B is compact,

as continuity follows from (A.). Letμ ∈R be a characteristic value of L of oddmultiplicity.
It was proved in [, Theorem .] that the set

T =
{
(λ, z) ∈ R× B : Eq. (A.) holds

}

possesses an unbounded component (continuum) D ⊂ T which meets (μ,∞) and satis-
fies the dichotomy of [, Theorem .]. In other words, D meets {(λ, ) : λ ∈R}, or meets
(μ̂, +∞) where μ̂∞ �= μ∞ is another characteristic value of odd multiplicity, or D is un-
bounded in the λ-direction.
This abstract result for a bifurcation from infinity can easily be strengthened by using

[, Theorem], which applies to a bifurcation from zero from a characteristic valueμ ∈R

of multiplicity . For ε > , define

Oε(μ) :=
{
(λ, z) ∈R× B :

∥
∥(λ, z)

∥
∥
R×B

= |λ –μ| + /‖z‖B < ε
}
.

We now state the correct result as intended in [, Theorem .] and provide the proof
below.

Proposition A. Let L, H , and H be as above. Let μ be a characteristic value of L of
multiplicity , and let ϑ ∈ B satisfying ϑ �=  and μLϑ = ϑ be fixed. Then there exist K > 
and two continua Dν , ν = ±, of solutions to (A.) such that for all  < ε ≤ K : Dν ∩Oε �= ∅.
Moreover, (λ,u) ∈ Dν ∩ OK implies (λ,u) = (λ, τϑ + ω) with τ ∈ R: ντ > , ω ∈ B, and
|λ –μ| →  and ‖ω‖B/|τ | →  as |τ | → ∞.

Proof Indeed, bifurcations from infinity can be studied via bifurcations from zero using
the Kelvin transform z �→ z/‖z‖B for ‖z‖B �= , which turns solutions large in the norm
to solutions small in the norm and vice versa. For z �=  we set w := z/‖z‖B . Note that
z = w/‖w‖B for w �= , reciprocally, and ‖z‖B = /‖w‖B for w �= . Now dividing (A.) by
‖z‖B �=  we obtain w = λLw + ‖w‖H(λ,w/‖w‖B). Since H is continuous and compact,
the equation

w = λLw + H(λ,w) (A.)

satisfies the assumptions of [, Theorem ], which we describe briefly below for clarity
and completeness of the proof. For this, we borrow the notation from []. Let μ ∈ R be
a characteristic value of L of multiplicity , ϑ ∈ B \ {}, and l ∈ B∗ \ {} satisfy ϑ = μLϑ
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and l = μL∗l (where L∗ is adjoint to L) and l(ϑ) = . For  < y < , define

Ky :=
{
(λ, z) ∈R× B :

∣
∣l(z)

∣
∣ > y‖z‖B

}
,

K±
y :=

{
(λ, z) ∈R× B :±l(z) > y‖z‖B

}
.

In particular,Kν
y , ν = +,–, are convex cones,K+

y = –K+
y , andKν

y = Ky \K–ν
y , where –ν stands

for the sign opposite to ν . Let S denote the closure of all nontrivial solutions of (A.) in
R× B, that is,

S :=
{
(λ,w) ∈ R× B : (λ,w) satisfies (A.) and w �= 

}

and Sμ denote the component of S such that (,μ) ∈ Sμ.
For any  < y < , by [, Lemma .], there exists S >  such that

(
S \ {

(μ, )
}) ∩ ES(μ) ⊂ Ky. (A.)

Then for  < ε ≤ S define

Eε(μ) :=
{
(λ, z) ∈R× B :

∥
∥(λ, z)

∥
∥
R×B

= |λ –μ| + ‖z‖B < ε
}

and for ν = ± define Dν
μ,ε to be the component of {(μ, )} ∪ (S ∩ Eε(μ)∩ Kν

μ) containing
(μ, ). Let C ν

μ,ε be the component of Sμ \D–ν
μ,ε containing (μ, ) (here again –ν = ∓ for

ν = ±). Finally, we define C ν
μ to be the closure of

⋃
≤ε<S C ν

μ,ε in R × B. Then by [,
Theorem ] the following dichotomy holds:

(i) either C +
μ and C –

μ are both unbounded,
(ii) or C +

μ ∩ C –
μ �= {(μ, )}.

Now fix  < y < . Then for all  < ε ≤ S, one has

(
S \ {

(μ, )
}) ∩ Eε(μ) ⊂ Ky,

by (A.). By the respective definitions of C ν
μ where ν = ±, we see that for all  < ε ≤ S,

(
C ν

μ \ {
(μ, )

}) ∩ Eε(μ) ⊂ Kν
y .

Now let us assume that C +
μ and C –

μ are both unbounded. Then they must leave the
bounded sets ES(μ)∩Kν

y through ∂ES(μ)∩Kν
y , and thus the intersectionsC ν

μ ∩∂ES(μ)∩Kν
y

where ν = ± are nonempty. If at least one of C +
μ or C –

μ is bounded, then, by the sec-
ond part of the dichotomy, we have C +

μ ∩ C –
μ �= {(μ, )}. This entails that both continua

C ν
μ must leave ES(μ) ∩ Kν

y through ∂ES(μ) ∩ Kν
y . This shows that in both cases of the

dichotomy C ν
μ ∩ ∂ES(μ) ∩ Kν

y �= ∅. It is worth noting that each component of the set
C ν

μ ∩ ES(μ) ∩ Kν
y has a nonempty intersection with the set ∂ES(μ) ∩ Kν

y but there may
exist components that do not have (μ, ) in their closure. For each ν = ±, there exists a
component of C ν

μ ∩ ES(μ) ∩ Kν
y \ {(μ, )}, denoted by K ν

μ , such that {(μ, )} ∈ K ν
μ and

K ν
μ ∩ ∂ES(μ)∩Kν

y �= ∅. Indeed, it suffices to show the existence of such a component sat-
isfying {(μ, )} ∈ K ν

μ .We prove by contradiction. Suppose there exists r∗ ∈ (,S) such that
all components of C ν

μ ∩ ES(μ) ∩ Kν
y \ {(μ, )} are disjoint from (μ, ) by the ball Er∗ , that
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is, C ν
μ ∩ ES(μ) ∩ Kν

y \ {(μ, )} ∩ Er∗ = ∅. But this is not possible since (μ, ) ∈ C ν
μ ∩ ES and

C ν
μ is a closed connected set.
Now let D±

μ := {(λ, z) ∈ R × B : (λ, z/‖z‖B) ∈ K ±
μ }. Taking K := S we see that D+ ∩

OK (μ) �= ∅ and D– ∩OK (μ) �= ∅. Moreover, it follows from [, Lemma .] that (λ,u) ∈
Dν ∩ OK implies (λ,u) = (λ, τϑ + ω) with τ ∈ R: ντ > , ω ∈ B, and |λ – μ| →  and
‖ω‖B/|τ | →  as |τ | → ∞. Since {(μ, )} ∈ K ±

μ , we find that D± ∩ Oε(μ) �= ∅ for any
ε > . This completes the proof. �

Appendix 2: Eigenvalue problem
Let μj, with j ∈ N denote the jth eigenvalue of

–�φ = λa(x)φ in �; φ =  on ∂�.

With these eigenvalues being ordered,  < μ < μ ≤ · · · ≤ μj– ≤ μj ≤ · · · , let φj ∈
W ,

 (�) denote the eigenfunction corresponding to μj. By the standard regularity argu-
ment, φj ∈ W ,

 (�)∩W ,r(�), for any r >N , and it is a strong solution of (.) with λ = μj.
Now we describe the eigenvalues and eigenfunctions of the linear system

–�w = λθa(x)w in �,
–�w = λθa(x)w in �,
w =  = w on ∂�,

⎫
⎪⎬

⎪⎭
(B.)

associated to problem (.). Note that the eigenvalues of (B.) are the characteristic values
of the linear operator L that appears in (.). We wish to point out that the eigenvalue
problems are well studied in the literature for systems, including a more general case than
(B.).We state and prove the property that is necessary for our analysis. Interested readers
will find the following references helpful for general linear eigenvalue problems: [] for a
system of n equations and [, p.] for a system of two equations; also see the references
therein.

Proposition B. The eigenvalues of (B.) form the following set:

{

–
μj√
θθ

}∞

j=
∪

{
μj√
θθ

}∞

j=
.

If we order these eigenvalues such that νl = – μ–l√
θθ

for –l ∈ N and νl = μl√
θθ

for l ∈ N, then
(–

√
θφ–l,

√
θφ–l) for –l ∈ N and (

√
θφl,

√
θφl) for l ∈ N are the eigenfunctions corre-

sponding to νl , respectively. In particular, ν = μ√
θθ

is the only eigenvalue value such that
both components of its corresponding eigenfunction are positive in �.

Since the operator associated with the linear part of (.) is not self-adjoint, we will be
dealing with the eigenfunction of (B.) as well as of the corresponding adjoint equation.

Remark B. It is well known that the eigenvalues of the adjoint equation corresponding
to (B.) are same as that of (B.) but eigenfunctions are given by (–

√
θφ–l,

√
θφ–l) for

–l ∈ N and (
√

θφl,
√

θφl) for l ∈N.
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Proof Using matrix notation for convenience, the eigenvalue problem (B.) reads as fol-
lows:

–�

[
w

w

]

= λa(x)

[
 θ

θ 

][
w

w

]

in �.

Note that –
√

θθ and
√

θθ,

[
–
√

θ√
θ

]

and

[√
θ√
θ

]

are respective eigenvalues and eigenvectors of the coefficient matrix. Taking into account
the linearity of ‘–�’, we infer that

[
z
z

]

=

[
–
√

θ
√

θ√
θ

√
θ

]– [
w

w

]

satisfies

–�

[
z
z

]

= λa(x)

[
–
√

θθ 


√
θθ

][
z
z

]

in �. (B.)

The equations of this system are not coupled and it is obvious that z �≡  if and only
if –λ

√
θθ = μk and z = φk for some k ∈ N. On the other hand, z �≡  if and only if

λ
√

θθ = μl and z = φl for some l ∈ N. Therefore, z �≡  imply z ≡  and z �≡  imply
z ≡ . Hence, the eigenfunctions of (B.) corresponding to νk = – μk√

θθ
are

[
–
√

θ
√

θ√
θ

√
θ

][
φk



]

=

[
–
√

θ√
θ

]

φk ,

which is (–
√

θφk ,
√

θφk) in the original notation. Analogously, the eigenfunctions of (B.)
corresponding to νk = μk√

θθ
are (

√
θφk ,

√
θφk). Note that φ is the only eigenfunction

of (.) which does not change sign in � and hence can be normalized to be positive
on �. Thus ν = μ√

θθ
is the only eigenvalue of (B.) such that both components of its

eigenfunction (
√

θφ,
√

θφ) are positive in �. �

Appendix 3: Proof of (2.2)
Proof of (.) It is enough to show that

‖f (λ, ·, vn)‖Lr (�)

‖(un, vn)‖E → ,
‖g(λ, ·,un)‖Lr (�)

‖(un, vn)‖E →  (C.)

as n → +∞ uniformly for λ in compact intervals for any sequence (un, vn) ∈ E such that
‖(un, vn)‖E → +∞. We will show the convergence of the first sequence and the proof of
the second is identical. Let � ⊂R be a compact interval. It follows from (H) that

|f (λ,x, vn)|
 + |vn| ≤ h(x) + b|vn|

 + |vn| ≤ h(x) +
b|vn|
 + |vn| ≤ h(x) + b. (C.)
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As in [], for each n ∈N, we define sets

An :=
{
x ∈ � :

∣
∣vn(x)

∣
∣ ≤ ∥

∥(un, vn)
∥
∥/
E

}
, (C.)

Bn :=
{
x ∈ � :

∣
∣vn(x)

∣
∣ >

∥
∥(un, vn)

∥
∥/
E

}
. (C.)

Both sets are measurable and An ∪ Bn = � for any n ∈N. For a.e. x ∈ An, we have

|f (λ,x, vn)|
‖(un, vn)‖E =

|f (x, vn)|
 + |vn| ·  + |vn|

‖(un, vn)‖E . (C.)

On the other hand, by the definition of An

 + |vn|
‖(un, vn)‖E ≤  + ‖(un, vn)‖/E

‖(un, vn)‖E (C.)

for a.e. x ∈ An. Since ‖(un, vn)‖E → +∞ as n→ +∞, there exists n such that ‖(un, vn)‖E ≥
 for all n > n. It follows from (C.) that

 + |vn|
‖(un, vn)‖E ≤ 

‖(un, vn)‖/E
(C.)

for all n > n. Applying (C.), (C.), and (C.) in (C.) yields

|f (λ,x, vn)|
‖(un, vn)‖E ≤ (h(x) + )

‖(un, vn)‖/E
(C.)

a.e. in An and for all n > n. For a.e. x ∈ Bn, we have

∥
∥(un, vn)

∥
∥/
E < |vn| ≤

∥
∥(un, vn)

∥
∥∞ ≤ C

∥
∥(un, vn)

∥
∥
E ,

where C is the constant of the embeddingW ,r(�) ↪→ L∞(�). Then, for λ ∈ �,

|f (λ,x, vn)|
‖(un, vn)‖E ≤ C

|f (λ,x, vn)|
|vn| ≤ C sup

|t|≥‖(un ,vn)‖/E

|f (λ,x, |t|)|
|t| .

Now let χAn and χBn denote the characteristic functions of An and Bn, respectively. Then,
for λ ∈ �,

|f (λ,x, vn)|
‖(un, vn)‖E ≤ (h(x) + )

‖(un, vn)‖/E
χAn +C sup

|t|≥‖(un ,vn)‖/E

|f (λ,x, |t|)|
|t| χBn

≤ max

{
(h(x) + )
‖(un, vn)‖/E

,C sup
|t|≥‖(un ,vn)‖/E

|f (λ,x, |t|)|
|t|

}

→  (C.)

for a.e. x ∈ � since sup|t|≥‖(un ,vn)‖/E

|f (λ,x,|t|)|
|t| →  by (H). Hence by the Lebesgue domi-

nated convergence theorem (� is bounded, integrand dominated by ) one can assert that

lim
n→+∞

∫

�

∣
∣
∣
∣
|f (λ,x, vn)|
‖(un, vn)‖E

∣
∣
∣
∣

r

dx →  (C.)
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uniformly for λ ∈ �. This establishes (C.) and hence the proof of the claim is com-
plete. �
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