
Wang et al. Boundary Value Problems 2014, 2014:243
http://www.boundaryvalueproblems.com/content/2014/1/243

RESEARCH Open Access

Solutions of semiclassical states for perturbed
p-Laplacian equation with critical exponent
Jixiu Wang1*, Li Wang2 and Dandan Zhang1

*Correspondence:
wangjixiu127@aliyun.com
1School of Mathematics and
Computer Science, Hubei University
of Arts and Science, Xiangyang,
441053, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study semiclassical states for perturbed p-Laplacian equations.
Under some given conditions and minimax methods, we show that this problem has
at least one positive solution provided that ε ≤ E ; for anym ∈N, it hasm pairs of
solutions if ε ≤ Em, where E , Em are sufficiently small positive numbers. Moreover,
these solutions uε → 0 inW1,p(RN) as ε → 0.
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1 Introduction andmain results
In this paper, we consider the existence and multiplicity of semiclassical solutions of the
following perturbed p-Laplacian equation:

⎧
⎪⎨

⎪⎩

–εp�pu +V (x)|u|p–u – εp�p(|u|� )|u|�–u
= K(x)|u|�p∗–u + h(x,u), x ∈R

N ,
u→ , as |x| → ∞,

(.)

where ε > , �pu = div(|∇u|p–∇u) is the p-Laplacian operator with  < p < N , � ≥ ,
p∗ = Np

N–p is the Sobolev critical exponent, V (x) is a nonnegative potential, K(x) is bounded
positive coefficient, and h(x,u) is a p-superlinear but subcritical function.
Such types of equations have been derived as models of several physical phenomena

and have been the subject of extensive study in recent years. For example, solutions to
(.) for p = , � =  are related to the solitary wave solutions for quasilinear Schrödinger
equations,

i�∂tψ = –��ψ +W (x)ψ – h̃
(
x, |ψ |)ψ – �

κ�
[
ρ
(|ψ |)]ρ ′(|ψ |)ψ , (.)

where ψ :R×R
N → C,W :RN → R is a given potential, κ , � are real constants and ρ , h̃

are real functions. The quasilinear equation (.) appears more naturally in mathematical
physics and has been derived as models of several physical phenomena corresponding to
various types of ρ(s). In the case ρ(s) = s, (.) models the superfluid film equation in fluid
mechanics by Kurihara []. In the case ρ(s) = ( + s)/, (.) models the self-channeling of
a high-power ultra short laser in matter (see [–]). For more physical motivations and
more references dealing with applications, we can refer to [–] and references therein.
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Taking ψ(t,x) = exp(– iEt
�
)u(x) in (.), E is some real constant. It is clear that ψ(t,x)

solves (.) if and only if u(x) solves the following elliptic equation:

–ε�u +V (x)u – εκ�
[
ρ
(|u|)]ρ ′(|u|)u = g(x,u), x ∈R

N , (.)

with V (x) =W (x) – E, ε = �
 and g(x,u) = h̃(x, |u|)u.

When κ = , the semilinear problem has been studied extensively under various hy-
potheses on the potential and the nonlinearities. See, for example, [–] and the refer-
ences therein.
When ε = , � = , ρ(s) = s, κ = , we can refer to [, –], and so on. Here positive or

sign-changing solutions were obtained by using a constrained minimization argument, or
a Nehari method, or a technique of changing variables. We remark that among the above
three methods, the last one, which was first proposed in [], is most effective for the
power nonlinearity case since this argument can transform the quasilinear problem to a
semilinear one and an Orlicz space framework was used as the working space.
It is worth pointing out that the critical exponent case was mentioned as an open prob-

lem in [], where the authors observed that the number ∗ behaves like a critical ex-
ponent for (.). In [], for N = , the authors treated the case where the nonlinearity
h :R →R has critical exponential growth, that is, h behaves like exp(πs)–  as |s| → ∞.
For N ≥ , when V (x) satisfies radially symmetrical, periodic, and some geometric con-
ditions, Moameni [] obtained the existence of nonnegative solutions for (.) with the
critical growth case; when V (x) satisfied asymptotic and periodic condition. In [, ],
the authors prove the existence of ground state solutions for (.) with ε =  or κ = . In the
present paper, we will consider a class of quasilinear Schrödinger equations with a non-
periodic potential function V (x) in R

N , N ≥ . In fact, we will investigate the existence
of solutions for the critical growth case when the parameter ε goes to zero, i.e., the semi-
classical problems for the critical quasilinear Schrödinger equation (.). It is well known
that in this case the laws of quantummechanics must reduce to those of classical mechan-
ics, and it describes the transition between quantum mechanics and classical mechanics.
As far as we know, there are few papers considering the existence and concentration of
semiclassical states for quasilinear Schrödinger equations. For instance, in [, ], us-
ing a suitable Trudinger-Moser inequality in R

 and a penalization technique, the authors
established the existence of semiclassical solutions for the critical exponent case via the
mountain pass lemma.
However, it seems that there is almost no work on the existence of semiclassical solu-

tions to the quasilinear problem on R
N involving critical nonlinearities and generalized

potentialV (x). Fortunately, Ding and Lin [] have been concerned with the existence and
multiplicity of semiclassical solutions of the following perturbed nonperiodic quasilinear
Schrödinger equation:

{
–ε�u +V (x)u = K(x)|u|∗–u + h(x,u), x ∈R

N ,
u → , as |x| → ∞.

(.)
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Later, Yang and Ding [] extended (.) to the following quasilinear Schrödinger equa-
tion:

{
–ε�u +V (x)u – ε�(|u|)u = K(x)|u|∗–u + h(x,u), x ∈R

N ,
u → , as |x| → ∞.

(.)

Inspired by [], we will extend the existence and multiplicity of solutions for (.) to the
general case for (.) with N > p > , � ≥ . Moreover, the corresponding problem be-
comes more complicated: first, W ,p(RN ) is not a Hilbert space when p 
= ; secondly, the
weak continuity of operator Ai(u) = |∇u|p–∂u/∂xi inW ,p(RN ) is difficulty to establish.
In this paper, we make the following assumptions:

(V) V (x) ∈ C(RN ) and there is b >  such that the set Vb = {x ∈ R
N : V (x) < b} has finite

Lebesgue measure.
(V)  = V () = minV ≤ V (x) <M.
(K) K(x) ∈ C(RN ),  < infK ≤ supK < ∞.
(h) H(x,u) =

∫ u
 h(x, s)ds, h ∈ C(RN ×R,R+), h(x,u) = o(|u|p–) uniformly in x as u→ .

(h) There are c >  and p < q < p∗ such that

∣
∣h(x,u)

∣
∣ ≤ c

(
 + |u|�q–) for all (x,u).

(h) There are c̃ > , p < l, μ < p∗ such that |H(x,u)| ≥ c̃(|u|� + |u|)l and �μH(x,u) ≤
h(x,u)u.

A typical example satisfying (h)-(h) is the function h(x,u) = P(x)(|u|� l– + |u|l–)u
with p < l < p∗ and P(x) being positive and bounded.
Our main results of this paper are as follows.

Theorem . Let (V)-(V), (K), and (h)-(h) hold. Then for any σ >  there is Eσ >  such
that if ε ≤ Eσ then problem (.) has at least one positive solution uε satisfying

(i)

μ – p
p

∫

RN
H(x,uε) +


�N

∫

RN
K(x)|uε|�p∗ ≤ σεN

and
(ii)

μ – p
pμ

∫

RN

[
εp

(
 + (� )p–|uε|p(�–))|∇uε|p +V (x)|uε|p

] ≤ σεN .

Moreover, uε →  in W ,p(RN ) as ε → .

Theorem. Assume that (V)-(V), (K), and (h)-(h) hold, and h(x, –u) = –h(x,u).Then
for anym ∈N and σ >  there is Eσ >  such that if ε ≤ Eσ , problem (.) has at leastm pairs
of solutions uε,i, –uε,i, i = , , . . . ,m, which satisfy the estimates (i) and (ii) in Theorem ..
Moreover, uε →  in W ,p(RN ) as ε → .

These results are new for the p-Laplacian equation and are a generalization of the results
in [].
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Our goal is to prove the existence of semiclassical solutions of (.) by a variational ap-
proach. A function u :RN → R is called a weak solution of (.) if u ∈W ,p(RN )∩L∞

loc(R
N )

and for all ϕ ∈ C∞
 (RN ) we have

∫

RN
εp

(
 + (� )p–|u|p(�–))|∇u|p–∇u∇ϕ

+ (� )p–(� – )εp
∫

RN
|∇u|p|u|p(�–)–uϕ

∫

RN
V (x)|u|p–uϕ =

∫

RN
g(x,u)ϕ,

where G(x,u) =
∫ u
 g(x, s)ds = 

p∗ K(x)|u|p∗ +H(x,u). We point out that we cannot apply
directly a variational method here because of the natural functional corresponding to (.)
given by

Iε(u) =
εp

p

∫

RN

(
 + (� )p–|u|p(�–))|∇u|p + 

p

∫

RN
V |u|p –

∫

RN
G(x,u). (.)

Because the nonhomogeneous term�p(|u|� )|u|�–u prevents us fromworking directly
with the functional Iε , which is not well defined in W ,p(RN ) since, for u ∈ W ,p(RN ) ∩
L∞(RN ),

∫

RN |u|p(�–)|∇u|p = +∞ may hold. The other difficulty is the lack of compact-
ness due to the unboundedness of the domain and the appearance of the Sobolev critical
exponent p∗. To overcome these difficulties we generalize an argument developed by Liu
et al. in [] for p = , � =  (see also []). We make the change of variables v = f –(u),
and reformulate the problem into a new one which has an associated functional that is
well defined and is of class C onW ,p(RN ).
Before we end this section, some notations are in order. We use

∫

RN g(x) to denote the
integral

∫

RN g(x)dx, |u|s denotes the usual Ls(RN ) norm (
∫

RN |u|s dx) s . In the whole paper,
C denotes a generic constant, which may vary from line to line.
The rest of this paper is organized as follows: in Section , we describe the analytic set-

ting where we restate the problems in equivalent form by replacing εp with λ– other than
the usual scaling (see []), due to the non-autonomy of nonlinearities. In Section , we
show that the corresponding energy functional satisfies the (PS) condition at the levels less
than αλ

–N
p with some α >  independent of λ. Thus in Section  we construct minimax

levels less than σλ
–N

p for all λ large enough. We prove our main results in Section .

2 Equivalent variational problems
Let λ = ε–p, then (.) reads

–�pu + λV (x)|u|p–u –�p
(|u|� )|u|�–u

= λK(x)|u|�p∗–u + λh(x,u), x ∈ R
N , (.)

for λ → ∞. And we introduce the space

E =
{

u ∈W ,p(
R

N)
:
∫

RN
V (x)|u|p <∞

}

,

which is a Banach space with norm

‖u‖ =
(∫

RN
|∇u|p +V |u|p

)/p

.

http://www.boundaryvalueproblems.com/content/2014/1/243
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By (V), we know that the embedding E ↪→ W ,p(RN ) is continuous. Note the norm ‖ · ‖
is equivalent to the norm ‖ · ‖λ defined by

‖u‖λ =
(∫

RN
|∇u|p + λV |u|p

)/p

,

for each λ > . It is clear that, for each s ∈ [p,p∗], there exists νs >  (independent of λ)
such that if λ ≥ 

|u|s ≤ νs‖u‖ ≤ νs‖u‖λ for all u ∈ E. (.)

Let S be the best Sobolev constant,

S|u|pp∗ ≤
∫

RN
|∇u|p for all u ∈W ,p(

R
N)

.

We observe that the natural variational functional for (.)

Iλ(u) =

p

∫

RN

(
 + (� )p–|u|p(�–))|∇u|p + λ

p

∫

RN
V |u|p

–
λ

�p∗

∫

RN
K |u|�p∗

– λ

∫

RN
H(x,u)

is not still well defined in the general function space E. To overcome this difficulty we
generalize an argument developed by Liu et al. in [] for p = , � =  (see also [] for
� = ). We make the change of variables v = f –(u), where f is defined by

f ′(t) =


( + (� )p–|f (t)|p(�–))/p
on [,+∞),

f (t) = –f (–t) on (–∞, ].

Thus we collect some properties of f .

Lemma . The function f (t) enjoys the following properties:
() f is uniquely defined C function and invertible.
() |f ′(t)| ≤  for all t ∈R.
() |f (t)| ≤ |t| for all t ∈R.
() f (t)

t →  as t → .
() |f (t)| ≤ (� )


p� |t| 

� for all t ∈ R.
() 

� f (t)≤ tf ′(t) ≤ f (t) for all t ≥ .
() f (t)

t


�
→ a >  as t → +∞.

() There exists a positive constant C such that

∣
∣f (t)

∣
∣ ≥

{
C|t|, |t| ≤ ,
C|t| 

� , |t| ≥ .

() |f (t)f ′(t)| ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/243
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Proof Similar to []. To prove (), it is sufficient to remark that the function

y(s) =


( + (� )p–|s|p(�–))/p

has a bound derivative. The point () is immediate by the definition of f . Inequality () is
a consequence of () and the fact that f (t) is an odd and concave function for t > . Next,
we prove (). As a consequence of the mean value theorem for integrals, we see that

f (t) =
∫ t




( + (� )p–|f (s)|p(�–))/p

ds =
t

( + (� )p–|f (ξ )|p(�–))/p
, ξ ∈ (, t).

Since f () = , we get

lim
t→

f (t)
t

= lim
ξ→


( + (� )p–|f (ξ )|p(�–))/p

= .

To show item (), we integrate f ′(t)( + (� )p–|f (t)|p(�–))/p =  and we obtain

∫ t


f ′(s)

(
 + (� )p–

∣
∣f (s)

∣
∣p(�–))/p ds = t.

Using the change of variables y = f (s), we get

t =
∫ f (t)



(
 + (� )p–|y|p(�–))/p dy≥ (� )–


p
∣
∣f (t)

∣
∣� ,

thus () is proved for t ≥ . For t < , we use the fact f (t) is odd. The first inequality in ()
is equivalent to � t ≥ f (t)( + (� )p–|f (t)|p(�–))/p. To show the inequality, we study
the function G : R+ → R, defined by G(t) = � t – f (t)( + (� )p–|f (t)|p(�–))/p. Since
G() =  and using the definition of f , we obtain, for all t > ,

G′(t) = (� – )
∣
∣f ′(t)

∣
∣p >  if � ≥ ,

and the first inequality in () is proved. The second inequality in () is obtained in a similar
way.
Now by point () it follows that limt→

f (t)

t


�
=  and the inequality () implies that for all

t > 

d
dt

(
f (t)
t 
�

)

= t–(+


� )
[

tf ′(t) –


�
f (t)

]

≥ .

Thus f (t)

t


�
is a nondecreasing function for t >  and this together with estimate () shows

item (). Point () is an immediate consequence of () and (). Point () is obtained from
the definition of f . �

After the change of variables, Iλ(u) can be reduced to the following functional:

Jλ(v) =

p

∫

RN

[|∇v|p + λV (x)
∣
∣f (v)

∣
∣p

]
–

λ

�p∗

∫

RN
K(x)

∣
∣f (v)

∣
∣�p∗

– λ

∫

RN
H

(
x, f (v)

)
,

http://www.boundaryvalueproblems.com/content/2014/1/243
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which is C on the usual Sobolev space W ,p(RN ). Moreover, the critical points of Jλ are
the weak solutions of the following equation:

–�pv = λf ′(v)
[
K(x)

∣
∣f (v)

∣
∣�p∗–f (v) + h

(
x, f (v)

)
–V (x)

∣
∣f (v)

∣
∣p–f (v)

]
in R

N . (.)

Now we can restate Theorem . and Theorem . as follows.

Theorem . Let (V)-(V), (K), and (h)-(h) hold. Then for any σ >  there is �σ > 
such that if λ ≥ �σ then problem (.) has at least one positive solution vλ satisfying

(i)

μ – p
p

∫

RN
H

(
x, f (vλ)

)
+


�N

∫

RN
K(x)

∣
∣f (vλ)

∣
∣�p∗ ≤ σλ

–N
p

and
(ii)

μ – p
pμ

∫

RN

[|∇vλ|p + λV (x)
∣
∣f (vλ)

∣
∣p

] ≤ σλ
–N

p .

Moreover, f (vλ) →  in W ,p(RN ) as λ → ∞.

Theorem . Let (V)-(V), (K), and (h)-(h) hold, and h(x, –u) = –h(x,u). Then for any
m ∈ N and σ >  there is �m

σ >  such that if λ ≥ �m
σ , problem (.) has at least m pairs

of solutions vλ,i, –vλ,i, i = , , . . . ,m, which satisfy the estimates (i) and (ii) in Theorem ..
Moreover, f (vλ,i) →  in W ,p(RN ) as λ → ∞.

Remark . To prove the existence of positive solutions, we may consider in E

J+λ (v) =

p

∫

RN

[|∇v|p +λV (x)
∣
∣f (v)

∣
∣p

]
–

λ

�p∗

∫

RN
K(x)

∣
∣f

(
v+

)∣
∣�p∗

–λ

∫

RN
H

(
x, f

(
v+

))
,

where v± = ±max{±v, }, then J+λ ∈ C(E,R) and critical points of J+λ are positive solutions
for (.).

3 Behaviors of (PS) sequences
Let E be a real Banach space and Jλ : E →R be a function of class C. We say that {vn} ⊂ E
is a (PS)c sequence if Jλ(vn) → c and J ′λ(vn) → . Jλ is said to satisfy the (PS)c condition if
any (PS)c sequence contains a convergent subsequence.
The main result of the section is the following compactness result.

Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Let {vn} be a (PS)c se-
quence for Jλ. Then c ≥  and {vn} is bounded in E.

Proof Let {vn} be a (PS)c sequence for Jλ, we have

Jλ(vn) –

μ
J ′λ(vn)vn = c + o() + εn‖vn‖λ, (.)

where εn →  as n→ ∞.

http://www.boundaryvalueproblems.com/content/2014/1/243
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By (h) and Lemma .(), we deduce

Jλ(vn) –

μ
J ′λ(vn)vn

=

p

∫

RN

[|∇vn|p + λV (x)
∣
∣f (vn)

∣
∣p

]

–

μ

∫

RN

[|∇vn|p + λV (x)
∣
∣f (vn)

∣
∣p–f (vn)f ′(vn)vn

]

+ λ

∫

RN

[

μ
h
(
x, f (vn)

)
f ′(vn)vn –H

(
x, f (vn)

)
]

+ λ

∫

RN

[

μ
K(x)

∣
∣f (vn)

∣
∣�p∗–f (vn)f ′(vn)vn –


�p∗K(x)

∣
∣f (vn)

∣
∣�p∗

]

≥
(

p
–


μ

)∫

RN

[|∇vn|p + λV (x)
∣
∣f (vn)

∣
∣p

]

+ λ

∫

RN

[


�μ
h
(
x, f (vn)

)
f (vn) –H

(
x, f (vn)

)
]

+ λ

(


�μ
–


�p∗

)∫

RN
K(x)

∣
∣f (vn)

∣
∣�p∗

≥
(

p
–


μ

)∫

RN

[|∇vn|p + λV (x)
∣
∣f (vn)

∣
∣p

]
. (.)

Hence combining (.) and (.), for n large enough,
(

p
–


μ

)∫

RN

[|∇vn|p + λV (x)
∣
∣f (vn)

∣
∣p

] ≤ c + o() + εn‖vn‖λ,

which implies that there exists C >  such that
∫

RN

[|∇vn|p + λV (x)
∣
∣f (vn)

∣
∣p

]
< C. (.)

Taking the limit in (.), we can obtain c≥ .
In the following, we need to show {vn} is bounded in E. From (.), we need to prove

that
∫

RN V (x)|vn|p is bounded.
By (V),

∫

{|vn|>}
V (x)|vn|p ≤ M

∫

{|vn|>}
|vn|p∗ ≤ MS–

p∗
p

(∫

RN
|∇vn|p

) p∗
p

and using Lemma .(),
∫

{|vn|≤}
V (x)|vn|p ≤ 

C

∫

{|vn|≤}
V (x)

∣
∣f (vn)

∣
∣p ≤ 

C

∫

RN
V (x)

∣
∣f (vn)

∣
∣p.

These estimates imply that {vn} is bounded in E. �

From Lemma ., we know that every (PS)c sequence is bounded, hence, without loss of
generality, we may assume vn ⇀ v in E and Lp(RN ), vn → v in Lsloc(R

N ) for s ∈ [p,p∗), and
vn(x)→ v(x) a.e. for x ∈ R

N . Obviously, v is a critical point of Jλ.

http://www.boundaryvalueproblems.com/content/2014/1/243
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Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Let s ∈ [p, �p∗) and
{vn} be a bounded (PS)c sequence. Then there is a subsequence {vnj} such that, for each
ε > , there exists rε > 

lim sup
j→∞

∫

Bj\Br

∣
∣f (vnj)

∣
∣s ≤ ε

for all r ≥ rε , where Bk = {x ∈R
N , |x| ≤ k}.

Proof For s ∈ [�p, �p∗). Noting that vn → v in L
s

�
loc as n→ ∞, we have, for each j ∈N,

∫

Bj
|vn| s

� →
∫

Bj
|v| s

� as n→ ∞,

and there exists n̂j ∈N such that

∫

Bj

(|vn| s
� – |v| s

�
)
<

j

as n = n̂j + i, i = , , . . . .

Without loss of generality, we can assume n̂j+ ≥ n̂j. In particular, for nj = n̂j + j, we deduce

∫

Bj

(|vnj| s
� – |v| s

�
)
<

j
.

Observe that there exists an rε such that r ≥ rε , and the following relation is satisfied:
∫

RN \Br
|v| s

� < ε. (.)

We have
∫

Bj\Br
|vnj| s

� =
∫

Bj

(|vnj| s
� – |v| s

�
)
+

∫

Bj\Br
|v| s

� +
∫

Br

(|v| s
� – |vnj| s

�
)

≤ 
j
+

∫

RN \Br
|v| s

� +
∫

Br

(|v| s
� – |vnj| s

�
) ≤ ε as j → ∞.

From Lemma .(), we know

lim sup
j→∞

∫

Bj\Br

∣
∣f (vnj)

∣
∣s ≤ C lim sup

j→∞

∫

Bj\Br
|vnj| s

� ≤ ε

for all r ≥ rε .
For s ∈ [p, �p), we only need Lemma .. �

Remark . From the proof of Lemma ., we can find the same subsequence {vnj} such
that the result of Lemma . holds for both s = p and s = q.

Let η : [,∞) → [, ] be a smooth function satisfying η(t) =  if t ≤ , η(t) =  if t ≥ p.
Define ṽj = η( p|x|j )v(x). Clearly,

‖ṽj – v‖λ →  as j → ∞. (.)

http://www.boundaryvalueproblems.com/content/2014/1/243
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Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Let {vnj} be defined as
in Lemma ., then we have

lim
j→∞

∫

RN

[
h
(
x, f (vnj)

)
f ′(vnj) – h

(
x, f (vnj – ṽj)

)
f ′(vnj – ṽj) – h

(
x, f (ṽj)

)
f ′(ṽj)

]
ϕ = 

uniformly in ϕ ∈ E with ‖ϕ‖λ ≤ .

Proof From (.) and local compactness of the Sobolev embedding, for any r > ,

lim
j→∞

∣
∣
∣
∣

∫

Br

[
h
(
x, f (vnj)

)
f ′(vnj) – h

(
x, f (vnj – ṽj)

)
f ′(vnj – ṽj) – h

(
x, f (ṽj)

)
f ′(ṽj)

]
ϕ

∣
∣
∣
∣ = 

uniformly in ‖ϕ‖λ ≤ .
Let s = p,q. By (.)

|ϕ|s ≤ νs‖ϕ‖λ ≤ νs,

and, for any ε > , it follows from (.) that

lim sup
j→∞

∫

Bj\Br
|ṽj|s ≤

∫

RN \Br
|v|s < ε,

for all r ≥ rε . By (h), (h), and Lemma .(), (), and (), we have, for all v ∈ E,

∣
∣h

(
x, f (v)

)
f ′(v)

∣
∣|ϕ| ≤ c

(∣
∣f (v)

∣
∣p– +

∣
∣f (v)

∣
∣�q–)∣∣f ′(v)

∣
∣|ϕ|

≤ C
(

∣
∣f (v)

∣
∣p– +

|f (v)|�q

|v|
)

|ϕ|

≤ C
(∣
∣f (v)

∣
∣p– + |v|q–)|ϕ|

≤ C
(|v|p– + |v|q–)|ϕ|. (.)

Therefore, using Lemma . and Remark .,

lim sup
j→∞

∣
∣
∣
∣

∫

RN

[
h
(
x, f (vnj)

)
f ′(vnj) – h

(
x, f (ṽj)

)
f ′(ṽj) – h

(
x, f (vnj – ṽj)

)
f ′(vnj – ṽj)

]
ϕ

∣
∣
∣
∣

= lim sup
j→∞

∣
∣
∣
∣

∫

Bj\Br

[
h
(
x, f (vnj)

)
f ′(vnj) – h

(
x, f (ṽj)

)
f ′(ṽj)

– h
(
x, f (vnj – ṽj)

)
f ′(vnj – ṽj)

]
ϕ

∣
∣
∣
∣

≤ C lim sup
j→∞

∫

Bj\Br

(∣
∣f (vnj)

∣
∣p– +

∣
∣f (ṽj)

∣
∣p– +

∣
∣f (vnj – ṽj)

∣
∣p–

)|ϕ|

+C lim sup
j→∞

∫

Bj\Br

(|vnj|q– + |ṽj|q– + |vnj – ṽj|q–
)|ϕ|

≤ C lim sup
j→∞

(∣
∣f (vnj)

∣
∣p–
Lp(Bj\Br ) +

∣
∣f (ṽj)

∣
∣p–
Lp(Bj\Br )

)|ϕ|p

+C lim sup
j→∞

(|vnj|p–Lp(Bj\Br ) + |ṽj|p–Lp(Bj\Br)
)|ϕ|p

http://www.boundaryvalueproblems.com/content/2014/1/243
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+C lim sup
j→∞

(|vnj|q–Lq(Bj\Br ) + |ṽj|q–Lq(Bj\Br)
)|ϕ|q

≤ C
(
ε

p–
p + ε

q–
q

)
,

which implies the conclusion as required. �

Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Let {vnj} be the defined
in Lemma ., then we have, as j → ∞,

(i) Jλ(vnj – ṽj) → c – Jλ(v);
(ii) J ′λ(vnj – ṽj) → .

Proof

Jλ(vnj – ṽj) = Jλ(vnj) – Jλ(ṽj)

–

p

∫

RN

[|∇vnj|p –
∣
∣∇(vnj – ṽj)

∣
∣p – |∇ ṽj|p

]

–
λ

p

∫

RN
V (x)

[∣
∣f (vnj)

∣
∣p –

∣
∣f (vnj – ṽj)

∣
∣p –

∣
∣f (ṽj)

∣
∣p

]

+
λ

�p∗

∫

RN
K(x)

[∣
∣f (vnj)

∣
∣�p∗

–
∣
∣f (vnj – ṽj)

∣
∣�p∗

–
∣
∣f (ṽj)

∣
∣�p∗]

+ λ

∫

RN

[
H

(
x, f (vnj)

)
–H

(
x, f (vnj – ṽj)

)
–H

(
x, f (ṽj)

)]
.

By (h)-(h) and Lemma ., similar to the proof of Lemma ., it is not difficult to check
that

lim
j→∞

∫

RN

[
H

(
x, f (vnj)

)
–H

(
x, f (vnj – ṽj)

)
–H

(
x, f (ṽj)

)]
= .

By (.) and the Brezis-Lieb lemma, we can deduce that

lim
j→∞

∫

RN

[|∇vnj|p –
∣
∣∇(vnj – ṽj)

∣
∣p – |∇ ṽj|p

]
= .

Recalling that, for any fixed ε > , there exists Cε >  such that, for all a,b ∈R,

∣
∣|a + b|s – |a|s∣∣ ≤ ε|a|s +Cε|b|s,  < s < ∞,

therefore,

∣
∣f (vnj)

∣
∣p –

∣
∣f (vnj – ṽj)

∣
∣p ≤ ε

∣
∣f (vnj – ṽj)

∣
∣p +Cε

∣
∣f ′(vnj – θjṽj)ṽj

∣
∣p,  < θj < .

Using Lemma .(), we obtain

�ε
j =

(∣
∣f (vnj)

∣
∣p –

∣
∣f (vnj – ṽj)

∣
∣p –

∣
∣f (ṽj)

∣
∣p – ε

∣
∣f (vnj – ṽj)

∣
∣p

)+

≤ (∣
∣f (ṽj)

∣
∣p +Cε

∣
∣f ′(vnj – θjṽj)ṽj

∣
∣p

)

≤ C|v|p.

http://www.boundaryvalueproblems.com/content/2014/1/243
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Applying the Lebesgue dominated convergence theorem, we know that
∫

RN �ε
j →  as

j → ∞. Since V (x) is bounded and

∣
∣
∣
∣f (vnj)

∣
∣p –

∣
∣f (vnj – ṽj)

∣
∣p –

∣
∣f (ṽj)

∣
∣p

∣
∣ ≤ �ε

j + ε
∣
∣f (vnj – ṽj)

∣
∣p,

we deduce that

lim
j→∞

∫

RN
V (x)

[∣
∣f (vnj)

∣
∣p –

∣
∣f (vnj – ṽj)

∣
∣p –

∣
∣f (ṽj)

∣
∣p

]
= .

Similarly, we can obtain

lim
j→∞

∫

RN
K(x)

[∣
∣f (vnj)

∣
∣�p∗

–
∣
∣f (vnj – ṽj)

∣
∣�p∗

–
∣
∣f (ṽj)

∣
∣�p∗]

= .

These, together with the facts Jλ(vnj) → c and Jλ(ṽj)→ Jλ(v) as j → ∞, give conclusion (i).
To verify conclusion (ii), observe that, for any ϕ ∈ E,

J ′λ(vnj – ṽj)ϕ = J ′λ(vnj)ϕ – J ′λ(ṽj)ϕ

–
∫

RN

[|∇vnj|p–∇vnj –
∣
∣∇(vnj – ṽj)

∣
∣p–∇(vnj – ṽj) – |∇ ṽj|p–∇ ṽj

]∇ϕ

– λ

∫

RN
V (x)

[∣
∣f (vnj)

∣
∣p–f (vnj)f ′(vnj) –

∣
∣f (ṽj)

∣
∣p–f (ṽj)f ′(ṽj)

–
∣
∣f (vnj – ṽj)

∣
∣p–f (vnj – ṽj)f ′(vnj – ṽj)

]
ϕ

+ λ

∫

RN
K(x)

[∣
∣f (vnj)

∣
∣�p∗–f (vnj)f ′(vnj) –

∣
∣f (ṽj)

∣
∣�p∗–f (ṽj)f ′(ṽj)

–
∣
∣f (vnj – ṽj)

∣
∣�p∗–f (vnj – ṽj)f ′(vnj – ṽj)

]
ϕ

+ λ

∫

RN

[
h
(
x, f (vnj)

)
f ′(vnj) – h

(
x, f (ṽj)

)
f ′(ṽj)

– h
(
x, f (vnj – ṽj)

)
f ′(vnj – ṽj)

]
ϕ.

By (.) and Lemma . in [], we can check that

lim
j→∞

(∫

RN

∣
∣|∇vnj|p–∇vnj –

∣
∣∇(vnj – ṽj)

∣
∣p–∇(vnj – ṽj) – |∇ ṽj|p–∇ ṽj

∣
∣

p
p–

) p–
p

= .

Hence we have

lim
j→∞

∫

RN

[|∇vnj|p–∇vnj –
∣
∣∇(vnj – ṽj)

∣
∣p–∇(vnj – ṽj) – |∇ ṽj|p–∇ ṽj

]∇ϕ = .

By Lemma .() and (), we have

∣
∣
∣
∣f (v)

∣
∣�p∗–f (v)f ′(v)

∣
∣ ≤ |f (v)|�p∗

|v| ≤ C|v|p∗–.

http://www.boundaryvalueproblems.com/content/2014/1/243
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Then by the Rellich imbedding theorem and the continuity of the Nemytskii operator, we
obtain

lim
j→∞

∫

RN
K(x)

[∣
∣f (vnj)

∣
∣�p∗–f (vnj)f ′(vnj) –

∣
∣f (ṽj)

∣
∣�p∗–f (ṽj)f ′(ṽj)

–
∣
∣f (vnj – ṽj)

∣
∣�p∗–f (vnj – ṽj)f ′(vnj – ṽj)

]
ϕ = 

uniformly in ‖ϕ‖λ ≤ . Moreover, since V (x) is bounded, using the same arguments as in
Lemma . and (.), we obtain

lim
j→∞

∫

RN
V (x)

[∣
∣f (vnj)

∣
∣p–f (vnj)f ′(vnj) –

∣
∣f (ṽj)

∣
∣p–f (ṽj)f ′(ṽj)

–
∣
∣f (vnj – ṽj)

∣
∣p–f (vnj – ṽj)f ′(vnj – ṽj)

]
ϕ = 

and

lim
j→∞

∫

RN

[
h
(
x, f (vnj)

)
f ′(vnj) – h

(
x, f (ṽj)

)
f ′(ṽj) – h

(
x, f (vnj – ṽj)

)
f ′(vnj – ṽj)

]
ϕ = ,

uniformly in ‖ϕ‖λ ≤ , proving (ii). �

Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Then there exists a
constant α independent of λ such that, for any (PS)c sequence {vn} for Jλ with vn ⇀ v,
either vn → v for a subsequence or

c – Jλ(v)≥ αλ
–N

p .

Proof Taking

vj = vnj – ṽj,

then vnj – v = vj + (ṽj – v), by (.), vnj → v if and only if vj → . Assume that {vn} has
no convergent subsequence. Then lim infn→∞ ‖vn – v‖λ > . By Lemma ., one also has a
subsequence that Jλ(vj )→ c – Jλ(v) >  and J ′λ(vj ) → .
Denote

Vb(x) = max
{
V (x),b

}
,

where b is the positive constant from assumption of (V). Since theVb has a finitemeasure
and vj →  in Lploc, we see that

∫

RN
V (x)

∣
∣f

(
vj

)∣
∣p =

∫

RN
Vb

∣
∣f

(
vj

)∣
∣p + o(). (.)

From (h)-(h), we deduce for any fixed ε >  that there exists Cε such that

h
(
x, f (v)

)
f (v)≤ ε

∣
∣f (v)

∣
∣p +Cε

∣
∣f (v)

∣
∣�p∗

,

http://www.boundaryvalueproblems.com/content/2014/1/243
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thus by (K), we can find a constant C b
�

such that

h
(
x, f (v)

)
f (v) +K(x)

∣
∣f (v)

∣
∣�p∗ ≤ b

�
∣
∣f (v)

∣
∣p +C b

�

∣
∣f (v)

∣
∣�p∗

for all (x, v). (.)

From Lemma .() and (), (.), and (.), we know

S
�

∣
∣f

(
vj

)∣
∣�p
�p∗

≤ S
∣
∣vj

∣
∣p
p∗ ≤

∫

RN

[∣
∣∇vj

∣
∣p + λV (x)

∣
∣f

(
vj

)∣
∣p

]
– λ

∫

RN
V (x)

∣
∣f

(
vj

)∣
∣p

≤ �
∫

RN

[∣
∣∇vj

∣
∣p + λV (x)

∣
∣f

(
vj

)∣
∣p–f

(
vj

)
f ′(vj

)
vj

]
– λ

∫

RN
V (x)

∣
∣f

(
vj

)∣
∣p

≤ �λ

∫

RN
h
(
x, f

(
vj

))
f ′(vj

)
vj + �λ

∫

RN
K(x)

∣
∣f

(
vj

)∣
∣�p∗–f

(
vj

)
f ′(vj

)
vj

– λ

∫

RN
V (x)

∣
∣f

(
vj

)∣
∣p + o()

≤ �λ

∫

RN

[
h
(
x, f

(
vj

))
f
(
vj

)
+K(x)

∣
∣f

(
vj

)∣
∣�p∗]

– λ

∫

RN
Vb(x)

∣
∣f

(
vj

)∣
∣p + o()

≤ �λ

∫

RN

[
h
(
x, f

(
vj

))
f
(
vj

)
+K(x)

∣
∣f

(
vj

)∣
∣�p∗]

– λb
∫

RN

∣
∣f

(
vj

)∣
∣p + o()

≤ �λC b
�

∣
∣f

(
vj

)∣
∣�p∗
�p∗ + o(). (.)

We have

Jλ
(
vj

)
–

p
J ′λ

(
vj

)
vj ≥ λ

�N

∫

RN
K(x)

∣
∣f

(
vj

)∣
∣�p∗ ≥ λKmin

�N

∫

RN

∣
∣f

(
vj

)∣
∣�p∗

,

where Kmin = infK(x) > . It is easy to see that

∣
∣f

(
vj

)∣
∣�p∗
�p∗ ≤ �N(c – Jλ(v))

λKmin
+ o(). (.)

From (.) and (.), we obtain

S
�  ≤ λC b

�

∣
∣f

(
vj

)∣
∣�p∗–�p
�p∗ + o()

≤ λC b
�

(
�N(c – Jλ(v))

λKmin

)p/N

+ o()

= λ– p
N C b

�

(
�N
Kmin

)p/N(
c – Jλ(v)

) p
N + o(),

or, equivalently,

αλ
–N

p ≤ c – Jλ(v) + o(),

http://www.boundaryvalueproblems.com/content/2014/1/243
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where

α =
(

S
� 

) p
N
C– p

N
b
�

Kmin

�N
.

The proof is complete. �

From Lemma ., we have the following conclusions.

Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Then Jλ satisfies the
(PS)c condition for all c < αλ

–N
p .

Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. Then J+λ satisfies the
(PS)c condition for all c < αλ

–N
p .

4 Themountain pass geometry
Lemma . Let E be a real Banach space and J : E → R be a functional of class of C.
Assume that Ẽ is a closed subset of E which disconnects (arcwise) E into distinct connected
components E and E. Suppose further that J() =  and

(i)  ∈ E and there exists α >  such that J |̃E ≥ α > ;
(ii) there exists e ∈ E such that J(e) < .
Then J possesses a (PS)c sequence with c≥ α >  given by

c = inf
γ∈�

max
≤t≤

J
(
γ (t)

)
,

where � = {γ ∈ C([, ],E) : γ () = , J(γ ()) < }.

From now on, we consider λ ≥ , and the following lemma implies that Jλ possesses the
mountain pass geometry.

Lemma . Assume that (V)-(V), (K), and (h)-(h) are satisfied. For each λ there is a
closed subset Ẽλ of E which disconnects (arcwise) E into distinct connected components E

and E. Then Jλ satisfies:
(i)  ∈ E and there exists αλ >  such that Jλ |̃Eλ

≥ αλ > .
(ii) For any finite-dimensional subspace F ⊂ E,

Jλ(v)→ –∞ as v ∈ F and ‖v‖λ → ∞.

(iii) For any σ >  there exists �σ >  such that, for each λ ≥ �σ , there is ēλ ∈ E such
that Jλ(ēλ) <  and

max
t∈[,]

Jλ(tēλ) ≤ σλ
–N

p .

Proof (i) First note that, for each λ, Jλ() = . Now, for every ρ > , define

Ẽλ,ρ =
{

v ∈ E :
∫

RN

[|∇v|p + λV (x)
∣
∣f (v)

∣
∣p

]
= ρp

}

.
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Since
∫

RN [|∇v|p + λV (x)|f (v)|p] is continuous, then Ẽλ,ρ is a closed subset which discon-
nects the space E. From (h)-(h), for any δ > , there exists Cδ >  such that

∫

RN
H

(
x, f (v)

) ≤ δ

∫

RN

∣
∣f (v)

∣
∣p +Cδ

∫

RN

∣
∣f (v)

∣
∣�q. (.)

FromLemma .(), we know |f (v)|, |f (v)|p ∈ E, and since the embedding from E to Ls(RN ),
p≤ s ≤ p∗, is continuous, we have

∫

RN

∣
∣f (v)

∣
∣p ≤ νp

p

∫

RN

[∣
∣∇f (v)

∣
∣p + λV (x)

∣
∣f (v)

∣
∣p

]

≤ νp
p

∫

RN

[|∇v|p + λV (x)
∣
∣f (v)

∣
∣p

] ≤ νp
pρ

p. (.)

Taking  < τ <  such that q = p
� τ +p∗(– τ ), using the Hölder inequality and the Sobolev

embedding theorem, we obtain

∫

RN

∣
∣f (v)

∣
∣�q ≤

(∫

RN

∣
∣f (v)

∣
∣p

)τ(∫

RN

∣
∣f (v)

∣
∣�p∗

)–τ

≤ (� )
p∗(–τ )

p

(∫

RN

∣
∣f (v)

∣
∣p

)τ(∫

RN
|v|p∗

)–τ

≤ (� )
p∗(–τ )

p νpτ
p ρpτS

p∗(τ–)
p

(∫

RN
|∇v|p

) p∗(–τ )
p

≤ (� )
p∗(–τ )

p νpτ
p ρpτ+p∗(–τ )S

p∗(τ–)
p . (.)

Furthermore, since K(x) is bounded, by Lemma .() and the Sobolev embedding theo-
rem, we get

∫

RN
K(x)

∣
∣f (v)

∣
∣�p∗ ≤ (� )

p∗
p |K |∞

∫

RN
|v|p∗

≤ (� )
p∗
p S–

p∗
p |K |∞

(∫

RN
|∇v|p

) p∗
p

≤ (� )
p∗
p S–

p∗
p |K |∞ρp∗

. (.)

By (.)-(.), we know that

Jλ(v)≥
(

p
– λδνp

p

)

ρp – λCδ(� )
p∗(–τ )

p νpτ
p S

p∗(τ–)
p ρpτ+p∗(–τ ) – λ

(� )
p∗
p

�p∗ S–
p∗
p |K |∞ρp∗

for every v ∈ Ẽλ,ρ . Since pτ + p∗( – τ ) > p, we conclude that there are αλ >  and ρλ such
that Jλ |̃Eλ :=Ẽλ,ρλ

≥ αλ > .
(ii) Observe that, by (h), |H(x, f (v))| ≥ c̃(|f (v)|� + |f (v)|)l . Define the functional �λ ∈

C(E,R) by

�λ(v) =

p

∫

RN

[|∇v|p + λV (x)
∣
∣f (v)

∣
∣p

]
– λ̃c

∫

RN

(∣
∣f (v)

∣
∣� +

∣
∣f (v)

∣
∣
)l.
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Then

Jλ(v)≤ �λ(v) for all v ∈ E.

For any finite-dimensional subspace F ⊂ E, we only need to prove

�λ(v)→ –∞ as v ∈ F ,‖v‖λ → ∞.

In fact, by Lemma .(), we get

∣
∣f (v)

∣
∣� +

∣
∣f (v)

∣
∣ ≥ C|v|.

Thus

�λ(v)≤ 
p

∫

RN

[|∇v|p + λV (x)
∣
∣f (v)

∣
∣p

]
– λ̃cCl

∫

RN
|v|l.

Since all norms in a finite-dimensional space are equivalent and l > p, one easily obtains
the desired conclusion.
(iii) From Lemma . and Lemma .(i)-(ii), if Jλ satisfies the (PS)c condition for all c > ,

then Theorem . follows from a variant mountain pass theorem. However, in general we
do not know if Jλ satisfies the (PS)c condition. By Lemma . for λ large and cλ small
enough, Jλ satisfies the (PS)cλ condition. Thus we will find a special finite-dimensional
subspace by which we construct sufficiently small minimax levels for Jλ when λ is large
enough.
Recall that

inf

{∫

RN
|∇ϕ|p : ϕ ∈ C∞


(
R

N)
, |ϕ|l = 

}

= , p < l < p∗.

For any δ > , we can choose ϕδ ∈ C∞
 with |ϕδ|l =  and suppϕδ ⊂ Brδ () such that

|∇ϕδ|pp < δ. Set

eλ(x) := ϕδ

(
λ


p x

)
, (.)

then supp eλ ⊂ B
λ
– 
p rδ

(). Remark that, for t ≥ ,

Jλ(teλ) ≤ �λ(teλ)

=
tp

p

∫

RN

(|∇eλ|p + λV (x)
∣
∣f (teλ)

∣
∣p

)
– λ̃c

∫

RN

(∣
∣f (teλ)

∣
∣� +

∣
∣f (teλ)

∣
∣
)l

≤ tp

p

∫

RN

(|∇eλ|p + λV (x)|eλ|p
)
– λ̃cCltl

∫

RN
|eλ|l

≤ λ
–N

p

(
tp

p

∫

RN

(|∇ϕδ|p +V
(
λ
– 
p x

)|ϕδ|p
)
– c̃Cltl

∫

RN
|ϕδ|l

)

= λ
–N

p �λ(tϕδ),
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where �λ ∈ C(E,R) is defined by

�λ(v) =

p

∫

RN

(|∇v|p +V
(
λ
– 
p x

)|v|p) – c̃Cl
∫

RN
|v|l.

It is easy to show that

max
t≥

�λ(tϕδ) =
l – p

lp(l̃cCl)
p
l–p

(∫

RN
|∇ϕδ|p +V

(
λ
– 
p x

)|ϕδ|p
) l

l–p
.

Since V () =  and suppϕδ ⊂ Brδ (), there is �̂δ >  such that

V
(
λ
– 
p x

) ≤ δ

|ϕδ|pp for all |x| ≤ rδ and λ ≥ �̂δ .

Thus

max
t≥

�λ(tϕδ) ≤ l – p

lp(l̃cCl)
p
l–p

(δ)
l

l–p .

Therefore, for all λ ≥ �̂δ ,

max
t≥

�λ(teλ) ≤ l – p

lp(l̃cCl)
p
l–p

(δ)
l

l–p λ
–N

p .

Choosing δ >  such that

l – p

lp(l̃cCl)
p
l–p

(δ)
l

l–p ≤ σ

and taking �σ = �̂δ , from (ii), we can choose t̄ large enough and define ēλ = t̄eλ; then we
get

Jλ(ēλ) <  and max
≤t≤

Jλ(tēλ) ≤ σλ
–N

p . �

Remark . For any δ > , one can choose nonnegative ϕδ ∈ C ∩ W ,p(RN ) such that
the function eλ defined by (.) is nonnegative. In fact, if {ϕj} is a sequence in C∞

 with
|ϕj|l =  and |∇ϕj|pp → , then by Kato’s inequality, the absolute value sequence |ϕj| ∈
C ∩ W ,p(RN ) with |ϕj|l =  and |∇(|ϕj|)|pp ≤ |∇ϕj|pp → , where C denotes the set of
all continuous functions in R

N with compact supports. Therefore, Lemma . is still true
with the function ēλ ≥ .

As a consequence of Lemma . and Remark ., we have the following conclusions.

Corollary . Assume that (V)-(V), (K), and (h)-(h) are satisfied. For any σ >  there
exists�σ >  such that, for each λ ≥ �σ , there is αλ >  and a (PS)cλ sequence {vn} satisfying

Jλ(vn) → cλ, J ′λ(vn) →  as n→ ∞,

where  < αλ ≤ cλ ≤ σλ
–N

p .
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Corollary . Assume that (V)-(V), (K), and (h)-(h) are satisfied. For any σ >  there
exists�σ >  such that, for each λ ≥ �σ , there is αλ >  and a (PS)cλ sequence {vn} satisfying

J+λ (vn) → cλ, J ′+λ (vn) →  as n→ ∞,

where  < αλ ≤ cλ ≤ σλ
–N

p .

5 Proof of themain results
In section, we prove the existence and multiplicity results.

Proof of Theorem . In virtue of Corollary ., for any  < σ < α, there exists λ ≥ �σ ,
there is αλ >  and a (PS)cλ sequence {vn} satisfying

Jλ(vn) → cλ, J ′λ(vn) →  as n→ ∞,

where  < αλ ≤ cλ ≤ σλ
–N

p . Lemma . implies that Jλ satisfies the (PS)cλ condition, thus
there is vλ ∈ E such that Jλ(vλ) = cλ and J ′λ(vλ) = , then vλ is a positive solution of (.).
Moreover, it is well known that a mountain pass solution is a state solution of (.).
Since vλ is a critical point of Jλ, for ν ∈ [p,p∗],

σλ
–N

p ≥ Jλ(vλ) –

ν
J ′λ(vλ)vλ

≥
(

p
–

ν

)∫

RN

[|∇vλ|p + λV (x)
∣
∣f (vλ)

∣
∣p

]

+ λ

(
μ

ν
– 

)∫

RN
H

(
x, f (vλ)

)

+ λ

∫

RN

(


�ν
–


�p∗

)

K(x)
∣
∣f (vλ)

∣
∣�p∗

,

where μ is the constant in (h). Taking ν = p yields

μ – p
p

∫

RN
H

(
x, f (vλ)

)
+


�N

∫

RN
K(x)

∣
∣f (vλ)

∣
∣�p∗ ≤ σλ

–N
p

and taking ν = μ gives

μ – p
pμ

∫

RN

[|∇vλ|p + λV (x)
∣
∣f (vλ)

∣
∣p

] ≤ σλ
–N

p .

Then
∫

RN

[∣
∣∇f (vλ)

∣
∣p + λV (x)

∣
∣f (vλ)

∣
∣p

] ≤
∫

RN

[|∇vλ|p + λV (x)
∣
∣f (vλ)

∣
∣p

] ≤ σλ
–N

p ,

which means f (vλ) →  inW ,p(RN ) as λ → ∞. The proof is completed. �

Remark . By the same arguments as applied to J+λ , we can obtain the existence of posi-
tive solutions for (.).
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In order to obtain the multiplicity of critical points, we will apply the index theory de-
fined by the Krasnoselski genus. Denote the set of all symmetric (in the sense that –A = A)
and closed subsets of E by �. For each A ∈ �, let gen(A) be the Krasnoselski genus and

i(A) = min
h∈�

gen
(
h(A)∩ Ẽλ

)
,

where � is the set of all odd homeomorphisms h ∈ C(E,E) and Ẽλ is the closed symmetric
set

Ẽλ =
{

v ∈ E :
∫

RN

[|∇v|p + λV (x)
∣
∣f (v)

∣
∣p

]
= ρp

}

such that Jλ |̃Eλ
≥ αλ > . Then i is a version of Benci’s pseudoindex []. Let

cλj = inf
i(A)≥j

sup
v∈A

Jλ(v),  ≤ j ≤ m. (.)

If cλj is finite and Jλ satisfies the (PS)cλj condition, then we know all cλj are critical values
for Jλ.

Proof of Theorem . Consider the functional Jλ, from (h)-(h), we know, for each λ, there
is a closed subset Ẽλ of E and αλ >  such that Jλ |̃Eλ

≥ αλ > .
In the same way as we have done in Lemma ., for anym ∈N and δ > , we can choose

m functions ϕ
j
δ ∈ C∞

 (RN ) such that suppϕi
δ ∩ suppϕk

δ =∅ if i 
= k, |ϕj
δ|l =  and |∇ϕ

j
δ|pp < δ.

Let rmδ >  be such that suppϕ
j
δ ⊂ Brmδ (), ≤ j ≤ m. Set

ejλ(x) := ϕ
j
δ

(
λ


p x

)
,  ≤ j ≤ m

and

Hm
λ (x) := spann

{
eλ, . . . , e

m
λ

}
.

Then i(Hm
λ ) = dimHm

λ =m. Observe that, for each v =
∑m

j= tje
j
λ ∈Hm

λ ,

Jλ(v) =
m∑

j=

Jλ
(
tje

j
λ

)

and as before

Jλ
(
tje

j
λ

) ≤ λ
–N

p �λ

(|tj|ϕj
δ

)
.

Set

βδ = max
{∣
∣ϕ

j
δ

∣
∣p
p :  ≤ j ≤ m

}

and choose �̂m
δ such that

V
(
λ
– 
p x

) ≤ δ

βδ

for all |x| ≤ rmδ and λ ≥ �̂m
δ .
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Thus it is easily to obtain

sup
v∈Hm

λ

Jλ(v)≤ m(l – p)

lp(l̃cCl)
p
l–p

(δ)
l

l–p λ
–N

p

for all λ ≥ �̂m
δ . Choose δ >  such that

m(l – p)

lp(l̃cCl)
p
l–p

(δ)
l

l–p ≤ σ .

Thus, for any m ∈ N and σ ∈ (,α), there exists �̂m
δ such that λ ≥ �̂m

δ , we can choose an
m-dimensional subspace Hm

λ with max Jλ(Hm
λ ) ≤ σλ

–N
p .

Since Jλ |̃Eλ
≥ αλ >  and max Jλ(Hm

λ ) ≤ σλ
–N

p , we deduce

αλ ≤ cλ ≤ cλ ≤ · · · ≤ cλm ≤ sup
v∈Hm

λ

Jλ(v) ≤ σλ
–N

p ,

where cλj defined by (.).
It follows from Lemma ., Jλ satisfies the (PS)c condition if c < αλ

–N
p . Then all cλj are

critical values and Jλ has at leastm pairs of nontrivial critical points satisfying

αλ ≤ Jλ
(
vjλ

) ≤ σλ
–N

p ,  ≤ j ≤ m.

Therefore, (.) has at least m pairs of solutions and uj = f (vλj) must solve problem (.).
�
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