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Abstract
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1 Introduction
In this paper we consider the following boundary value problem with impulsive effects:

⎧
⎪⎨

⎪⎩

–u′′(t) +mu(t) = λf (t,u(t)), t ∈ [, +∞), t �= tj,
�(u′(tj)) = μIj(u(tj)), j = , , . . . ,p,
u′(+) = g(u()), u′(+∞) = ,

(.)

where m is a non-zero constant; λ and μ are referred to as two control parameters,
Ij ∈ C(R,R) for  ≤ j ≤ p,  = t < t < t < · · · < tp < +∞, �(u′(tj)) = u′(t+j ) – u′(t–j ) =
limt→t+j u

′(t) – limt→t–j u
′(t); f : [, +∞) × R → R is an L-Carathéodory function, and

g : R→ R be a Lipschitz continuous function with the Lipschitz constant L > ; i.e.

∣
∣g(s) – g(s)

∣
∣ ≤ L|s – s| (.)

for all s, s ∈ R, satisfying g() = .
Boundary value problems on the half-line, arising naturally in the study of radially sym-

metric solutions of nonlinear elliptic equations and various physical phenomena [], have
been studied extensively and a variety of new results can be found in the papers [–]
and the references cited therein. Criteria for the existence of solutions or multiplicities
of positive solutions are established for the boundary value problem on the half-line. The
main tools used in the literature for such a problem are the coincidence degree theory of
Mawhin, fixed point arguments together with the lower and upper solutions method. For
example the readers are referred to [–] and the references therein.
Recently, many researchers pay more attention to the impulsive boundary value prob-

lems, such as Dirichlet boundary value problem, periodic boundary value problem, two
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point boundary value problem and so on (see for example, [, ] and references therein).
The existence or multiplicity of solutions for impulsive boundary value problems (IBVP)
on the half-line has been studied by many authors [–]. Kaufmann et al. [] investi-
gated the following impulsive boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–(qu′)′(t) = f (t,u(t)), t ∈ [, +∞), t �= tj,
�(u′(tj)) = Ij(u(tj)), j = , , . . . ,p,
αu′() – β limt→+ q(t)u′(t) = ,
γ limt→∞ u(t) + δ limt→∞ q(t)u′(t) = ,

(.)

where q ∈ C[,∞) ∩ C[,∞) and q(t) >  for all t > ; and f : [, +∞) × R → R is con-
tinuous. By using the fixed point theorem, the existence of at least one solution for IBVP
(.) is obtained.
In [], Li and Nieto considered the existence of multiple positive solutions of the fol-

lowing IBVP on the half-line:

⎧
⎪⎨

⎪⎩

u′′(t) + q(t)f (t,u(t)) = , t ∈ [, +∞), t �= tj,
�(u(tj)) = Ij(u(tj)), j = , , . . . ,p,
αu() =

∑m–
i= αiu(ξi), limt→∞ u′(t) = ,

where q ∈ C([,∞), [,∞)) and f : [, +∞) × [, +∞) → [, +∞) is continuous. By using
a fixed point theorem due to Avery and Peterson, the existence of at least three positive
solutions is obtained.
On the other hand, critical point theory and variational methods are proved to be a

powerful tool in studying the existence of solutions for the impulsive differential equa-
tions [–]. For some recent works on the theory of critical point theory and variational
methods we refer the readers to [].
In the case m = μ = , Chen and Sun [] studied and presented some results on the

existence and multiplicity of solutions for IBVP (.) by using a variational method and a
three critical points theorem due to Bonanno and Marano (see Theorem . of []). The
result is as follows.

Theorem . ([, Theorem .]) Suppose that the following conditions hold.
(H) g(u), Ij(u) are nondecreasing, and g(u)u≥ , Ij(u)u ≥  for any u ∈ R.
(H) There exist positive constants a, l with l < , b ∈ L[, +∞) and c ∈ L[,+∞) such

that

F(t,u) ≤ b(t)
(
a+ |u|l), f (t,u) ≤ c(t)|u|l–, for a.e. t ∈ [, +∞) and all u ∈ R,

where F(t,u) =
∫ u
 f (t, s)ds.

(H) There exist two constants d,k >  such that

d

M < k + 
p∑

j=

∫ ke–tj


Ij(s)ds + 

∫ k


g(s)ds.

(H) M ∫ +∞
 max|ξ |≤d F(t,ξ )dt

d <
∫ +∞
 F(t,ke–t )dt

k+
∑p

j=
∫ ke–tj
 Ij(s)ds+

∫ k
 g(s)ds

.
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Then, for each λ ∈ [
k
 +

∑p
j=

∫ ke–tj
 Ij(s)ds+

∫ k
 g(s)ds

∫ +∞
 F(t,ke–t )dt , d

M ∫ +∞
 max|ξ |≤d F(t,ξ )dt

], IBVP (.) has at least
three classical solutions.

Soon after, in the case m = μ = , by using the variant fountain theorems (see Theo-
rem . of []), Dai and Zhang [] obtained some existence theorems of solutions for
IBVP (.) when the function g and the impulsive functions Ij (j = , , . . . ,p) satisfies the
following superlinear growth conditions:

(H′) Ij(u) (j = , , . . . ,p), g(u) satisfy
∫ u
 Ij(s)ds≥ ,

∫ u
 g(s)ds≥  for any u ∈ R; and there

exist positive constants γj > α – , θ > α –  ( < α < ) and qj , q (j = , , . . . ,p) such
that Ij(u) ≤ qj|u|γj , g(u) ≤ q|u|θ , ∀u ∈ R.

However, there is no work for IBVP (.) when the parameter μ �≡  and f is an L-
Carathéodory function. As a result, the goal of this paper is to fill the gap in this area. Our
aim is to establish a precise open interval 	 ⊆ (, +∞), for each λ ∈ 	, there exists a δ > 
such that for each μ ∈ [, δ), IBVP (.) admits at least three classical solutions.
The remainder of the paper is organized as follows. In Section , we present some pre-

liminaries. In Section , we will state and prove the main results of the paper, and also two
examples are presented to illustrate our main results.

2 Preliminaries
In this section, we first introduce some notations and some necessary definitions.
Set

W :=
{
u : [, +∞)→ R is absolutely continuous,u′ ∈ L[,+∞)

}
.

Denote the Sobolev space X by

X :=
{

u ∈ W :
∫ +∞



(∣
∣u′(t)

∣
∣ +m∣∣u(t)

∣
∣

)
dt <∞

}

,

with the inner product

(u, v) =
∫ +∞



(
u′(t)v′(t) +mu(t)v(t)

)
dt,

which induces the norm

‖u‖X :=
(∫ +∞



(∣
∣u′(t)

∣
∣ +m∣∣u(t)

∣
∣

)
dt

)/

.

Obviously, X is a reflexive Banach space. We define the norm in L([, +∞)) as ‖u‖ =
(
∫ ∞
 |u(t)| dt)/, and let C := {u ∈ C([, +∞)) : supt∈[,+∞) |u(t)| < +∞}, with the norm

‖u‖∞ = supt∈[,+∞) |u(t)|. Then C is a Banach space. In addition, X is continuously em-
bedded into C , and therefore, there exist two constantsM,M such that

‖u‖∞ ≤ M‖u‖X , for any u ∈ X, (.)

http://www.boundaryvalueproblems.com/content/2014/1/246
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and

‖u‖ ≤ M‖u‖X , for any u ∈ X. (.)

Suppose that u ∈ C[, +∞). By a classical solution of IBVP (.), we mean a function

u ∈ {
z ∈ C

(
[, +∞)

)
: z|[tj ,tj+] ∈ C([tj, tj+]

)
, j = , , , . . . ,p – ;

z|[tp ,+∞) ∈ C([tp, +∞)
)}

that satisfies the equation in IBVP (.) a.e. on [,+∞), the limits u′(t+j ), u′(t–j ), j = , , . . . ,p
exist and the impulsive conditions in IBVP (.) hold; u′(+), u′(+∞) exist, and the bound-
ary conditions in IBVP (.) also are met.
For each u ∈ X, put


(u) =


‖u‖X +G

(
u()

)
, (.)

�(u) =
∫ +∞


F
(
t,u(t)

)
dt –

μ

λ

p∑

j=

∫ u(tj)


Ij(s)ds, (.)

where G(u()) =
∫ u()
 g(s)ds, F(t,u) =

∫ u
 f (t, s)ds.

It is clear that � is differentiable at any u ∈ X and

� ′(u)(v) =
∫ +∞


f
(
t,u(t)

)
v(t)dt –

μ

λ

p∑

j=

Ij
(
u(tj)

)
v(tj), (.)

for any v ∈ X.
Recall that a function f : [, +∞)×R→ R is said to be an L-Carathéodory function, if

(S) t → f (t,u) is measurable for every u ∈ R;
(S) u→ f (t,u) is continuous for almost every t ∈ [, +∞);
(S) for every ρ >  there exists a function lρ ∈ L([, +∞)) such that

sup
|u|≤ρ

∣
∣f (t,u)

∣
∣ ≤ lρ(t), for almost every t ∈ [, +∞).

If we assume that the function f satisfies the further condition

(S′) there exists a function l ∈ L([, +∞)) such that

sup
u∈R

∣
∣f (t,u)

∣
∣ ≤ l(t), for almost every t ∈ [, +∞),

then one has the following result.

Lemma . Suppose that condition (S′) holds. Then � ′ : X → X∗ is a compact operator.
In particular, � : X → R is a weakly sequentially continuous functional.

Proof Let  be a bounded set in X and let {an} be a sequence in � ′(). Then there is a
sequence {un} in  such that bn = � ′(un) and ‖an –bn‖X∗ < 

n for all n ∈N. Due to X being
reflexive, there exists a subsequence unk converging weakly to u ∈ X. We can prove that
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{un} has a subsequence which converges almost everywhere in [,+∞) to the function u.
In fact, given a number r > , let r :=([, r)). Then we easily infer that {un} is bounded
in r . Pick r = , the Rellich-Kondrachov theorem [, Theorem IX.] yields a subse-
quence {u()n } of {un} such that limn→∞ u()n (t) = u(t) at most all points t ∈ [, ). Applying
this argument again, with  replaced by , we also obtain a sequence {u()n } of {un} such that
limn→∞ u()n (t) = u(t) at almost all points t ∈ [, ). Thus, the sequence {u(n)n } clearly com-
plies with the conclusion. Without loss of generality we write {u(n)n } as {unk }. Therefore,
{f (t,unk )} converges to {f (t,u(t))} a.e. on [,∞). From (.), (.), and (.), we have

∣
∣� ′(unk )(v) –� ′(u)(v)

∣
∣

≤
∫ ∞



∣
∣f

(
t,unk (t)

)
– f

(
t,u(t)

)∣
∣ · ∣∣v(t)∣∣dt + μ

λ

p∑

j=

∣
∣Ij

(
unk (tj)

)
– Ij

(
u(tj)

)∣
∣ · ∣∣v(tj)

∣
∣

≤
(∫ ∞



∣
∣f

(
t,unk (t)

)
– f

(
t,u(t)

)∣
∣ dt

)/

·
(∫ ∞



∣
∣v(t)

∣
∣ dt

)/

+
μ

λ

p∑

j=

∣
∣Ij

(
unk (tj)

)
– Ij

(
u(tj)

)∣
∣ · ‖v‖∞

≤ M

(∫ ∞



∣
∣f

(
t,unk (t)

)
– f

(
t,u(t)

)∣
∣ dt

)/

+
μ

λ
M

p∑

j=

∣
∣Ij

(
unk (tj)

)
– Ij

(
u(tj)

)∣
∣

for all v ∈ X with ‖v‖X ≤ . Hence, from (S′), the Lebesgue dominated convergence the-
orem and continuity of Ij show that the sequence {� ′(unk )} converges to � ′(u) in X∗.
Therefore, taking into account that

∥
∥ank –� ′(u)

∥
∥
X∗ ≤ ‖ank – bnk‖X∗ +

∥
∥bnk –� ′(u)

∥
∥
X∗ ,

the sequence {ank } converges in � ′() and the compactness is proved.
Finally, it follows from Corollary . of [, p.] that � is a weakly sequentially con-

tinuous functional. This completes the proof. �

By standard arguments, we find that 
 is a Gâteaux differentiable and sequentially
weakly lower semicontinuous functional whose Gâteaux derivative at the point u ∈ X is
the functional 
′(u) ∈ X∗, given by


′(u)(v) =
∫ +∞



(
u′(t)v′(t) +mu(t)v(t)

)
dt + g

(
u()

)
v(), (.)

for any v ∈ X.

Definition . A function u ∈ X is said to be a weak solution IBVP (.) if u satisfies
∫ +∞


u′(t)v′(t)dt +m

∫ +∞


u(t)v(t)dt – λ

∫ +∞


f
(
t,u(t)

)
v(t)dt

+μ

p∑

j=

Ij
(
u(tj)

)
v(tj) + g

(
u()

)
v() = ,

for any v ∈ X.
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It is easy to verify that u ∈ X is a weak solution to IBVP (.) if and only if u is a classical
solution of IBVP (.).

Arguing in a standard way, it is easy to prove that the critical points of the functional
Eλ :=
(u) – λ�(u) are the weak solution of IBVP (.) and so they are classical solutions.
The main tools to prove our results in Section  are the following critical points theo-

rems.

Theorem . ([]) Let X be a reflexive real Banach space; 
 : X → R be a sequentially
weakly lower semicontinuous, coercive and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗, � : X → R be a sequen-
tially weakly upper semicontinuous, continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact, such that 
() = �() = . Assume that there exist r > 
and v̄ ∈ X, with r < 
(v̄) such that

(i) sup
(u)≤r �(u) < r�(v̄)/
(v̄),
(ii) for each λ in

	r :=
(


(v̄)
�(v̄)

,
r

sup
(u)≤r �(u)

)

,

the functional 
–λ� is coercive. Then, for each λ ∈ 	r the functional 
–λ� has at least
three distinct critical points in X.

Theorem . ([]) Let X be a reflexive real Banach space; 
 : X → R be a convex, coer-
cive and continuously Gâteaux differentiable functionals whose derivative admits a contin-
uous inverse on X∗, � : X → R be a continuously Gâteaux differentiable functionals whose
derivative is compact, such that
() infX 
 = 
() =�() = ;
() for each λ >  and for every u, u which are local minimum for the functional


 – λ� and such that �(u)≥  and �(u) ≥ , one has

inf
s∈[,]

�
(
su + ( – s)u

) ≥ .

Assume that there are two positive constants r, r, and v̄ ∈ X, with r < 
(v̄) < r
 , such

that
(b)

supu∈
–(–∞,r)
�(u)

r
< �(v̄)


(v̄) ;

(b)
supu∈
–(–∞,r)

�(u)
r

< �(v̄)

(v̄) .

Then, for each λ ∈ ( 
(v̄)
�(v̄) ,min{ r

supu∈
–(–∞,r)
�(u) ,

r
 supu∈
–(–∞,r)

�(u) }), the functional 
 – λ�

has at least three distinct critical points which lie in 
–(–∞, r).

3 Main results
Lemma . Suppose that
(C) there exist constants αj,βj > , and σj ∈ [, ) (j = , , . . . ,p) such that

∣
∣Ij(u)

∣
∣ ≤ αj + βj

∣
∣u(tj)

∣
∣σj , for any u ∈ R, j = , , . . . ,p.

http://www.boundaryvalueproblems.com/content/2014/1/246
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Then, for each u ∈ X, we have
∣
∣
∣
∣
∣

p∑

j=

∫ u(tj)


Ij(s)ds

∣
∣
∣
∣
∣
≤

p∑

j=

(

αj‖u‖∞ +
βj

σj + 
‖u‖σj+

∞
)

. (.)

Proof By the condition (C), we have

∣
∣
∣
∣

∫ u(tj)


Ij(s)ds

∣
∣
∣
∣ ≤ αj

∣
∣u(tj)

∣
∣ +

βj

σj + 
∣
∣u(tj)

∣
∣σj+.

Thus, (.) is proved. �

Now we can state and prove our main results.

Theorem . Assume that (C) and M
L <  hold. Let f : [, +∞) × R → R be an L-

Carathéodory function such that (S′) satisfies. Furthermore, suppose that there exist two
positive constants a and b such that
(C) a < M

 b
(m–M

 L+)
 ;

(C)
∫ +∞
 F(t,be–t )dt

b(m+M
 L+)

> M
 ·(∫ +∞

 sup|ξ |≤a |f (t,ξ )| dt)/
a(–M

 L)
, and

∫ +∞
 F(t,be–t)dt > .

Then, for each λ in

	 :=
(
b(m + M

L + )


∫ +∞
 F(t,be–t)dt

,
( –M

L)a
M

 · (∫ +∞
 sup|ξ |≤a |f (t, ξ )| dt)/

)

, (.)

there exists

δ := min

{ ( –M
L)a – M

λ · (∫ +∞
 sup|ξ |≤a |f (t, ξ )| dt)/

M
 (

∑p
j=(αja +

βj
σj+

aσj+))
,

λ
∫ +∞
 F(t,be–t)dt – b(m + M

L + )


∑p

j=(αjb +
βj

σj+
bσj+)

}

(.)

such that for each μ ∈ [, δ), IBVP (.) has at least three distinct classical solutions.

Proof Obviously, under the condition (S′), � : X → R is weakly sequentially lower semi-
continuous and Gâteaux differentiable functional.
Note that as (.) holds for every s, s ∈ R and g() = , one has

∣
∣g(s)

∣
∣ =

∣
∣g(s) – g()

∣
∣ ≤ L|s|, for every s ∈ R.

Furthermore, for any u ∈ X, one has


(u) =


‖u‖X +

∫ u()


g(s)ds≤ 


‖u‖X +

∫ u()


L|s|ds≤  +M

L


‖u‖X (.)

and


(u) ≥ 

‖u‖X –

∫ u()



∣
∣g(s)

∣
∣ds≥ 


‖u‖X –

∫ u()


L|s|ds ≥  –M

L


‖u‖X . (.)

So 
 is coercive.

http://www.boundaryvalueproblems.com/content/2014/1/246
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Next, we show that 
′ : X → X∗ admits a Lipschitz continuous inverse. For any u ∈
X \ {}, it follows from (.) and (.) that

〈

′(u),u

〉
=

∫ +∞



(∣
∣u′(t)

∣
∣ +m∣∣u(t)

∣
∣

)
dt + g

(
u()

)
u() ≥ (

 –M
L

)‖u‖X .

By the assumptionM
L < , it turns out that

lim‖u‖X→+∞
〈
′(u),u〉

‖u‖X = +∞,

that is, 
′ is coercive.
For any u, v ∈ X,

〈

′(u) –
′(v),u – v

〉
= 〈u – v,u – v〉 + (

g
(
u()

)
– g

(
v()

))(
u() – v()

)

≥ (
 –M

L
)‖u – v‖X ,

so 
′ is a strongly monotone operator. By [, Theorem .A], one finds that (
′)– exists
and is Lipschitz continuous on X∗. Hence the functionals 
 and � satisfy the regularity
assumptions of Theorem ..
Furthermore for any fixed λ, and μ as in (.), (.). Put r = (–M

 L)a


M


. Taking (.) into
account, for every u ∈ X such that 
(u) ≤ r, we have supt∈[,+∞) |u(t)| ≤ a. Therefore, it
follows from (.), (.), and the Hölder inequality that

sup

(u)≤r

�(u) = sup

(u)≤r

{∫ +∞


F
(
t,u(t)

)
dt –

μ

λ

p∑

j=

∫ u(tj)


Ij(s)ds

}

≤ sup

(u)≤r

{∫ +∞


sup
|ξ |≤a

∣
∣f (t, ξ )

∣
∣
∣
∣u(t)

∣
∣dt +

μ

λ

p∑

j=

(

αj‖u‖∞ +
βj

σj + 
‖u‖σj+

∞
)}

≤ sup

(u)≤r

(∫ +∞


sup
|ξ |≤a

∣
∣f (t, ξ )

∣
∣ dt

)/

· ‖u‖ + μ

λ

p∑

j=

(

αja +
βj

σj + 
aσj+

)

≤ a ·
(∫ +∞


sup
|ξ |≤a

∣
∣f (t, ξ )

∣
∣ dt

)/

+
μ

λ

p∑

j=

(

αja +
βj

σj + 
aσj+

)

,

which implies

sup

(u)≤r

�(u)
r

≤ M


( –M
L)a

{

·
(∫ +∞


sup
|ξ |≤a

∣
∣f (t, ξ )

∣
∣ dt

)/

+
μ

λ

p∑

j=

(

αj +
βj

σj + 
aσj

)}

.

Since μ < δ, one has

sup

(u)≤r

�(u)
r

<

λ
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/246
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Put v(t) = be–t . Obviously, v ∈ X, ‖v‖ = (m+)b
 . By a similar reasoning to (.) and

(.), we get

m – M
L + 


b ≤ 
(v) ≤ M

L +m + 


b.

From (C) we get r < 
(v). It follows from (.) that

�(v) =
∫ +∞


F
(
t, v(t)

)
dt –

μ

λ

p∑

j=

∫ v(tj)


Ij(s)ds

≥
∫ +∞


F
(
t, v(t)

)
dt –

μ

λ

p∑

j=

(

αj
∥
∥v(tj)

∥
∥∞ +

βj

σj + 
∥
∥v(tj)

∥
∥σj+

∞

)

≥
∫ +∞


F
(
t,be–t

)
dt –

μ

λ

p∑

j=

(

αjb +
βj

σj + 
bσj+

)

,

then

�(v)

(v)

≥
∫ +∞
 F(t,be–t)dt – μ

λ

∑p
j (αjb +

βj
σj+

bσj+)
(m+M

 L+)b


.

Since μ < δ, one has

�(v)

(v)

>

λ
. (.)

Combining with (.) and (.), condition (i) of Theorem . is fulfilled.
Next we will prove the coercivity of the functional Eλ.
Taking into account (S′) and the Hölder inequality, one has

∫ +∞


F
(
t,u(t)

)
dt ≤

∫ +∞



(∫ u


sup
ξ∈R

∣
∣f (t, ξ )

∣
∣dξ

)

dt

≤
∫ +∞



(∫ u


l(t)dξ

)

dt

≤
∫ +∞



∣
∣l(t)

∣
∣
∣
∣u(t)

∣
∣dt

≤
(∫ +∞


l(t)dt

)/

·
(∫ +∞



∣
∣u(t)

∣
∣ dt

)/

= ‖l‖ · ‖u‖ < +∞, (.)

combining with (.) and Lemma ., it follows that

Eλ(u) = 
(u) – λ�(u)

=


‖u‖X +G

(
u()

)
– λ

∫ +∞


F
(
t,u(t)

)
dt +μ

p∑

j=

∫ u(tj)


Ij(s)ds
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≥  –M
L


‖u‖X – λ

∫ +∞



(∫ u


sup
ξ∈R

∣
∣f (t, ξ )

∣
∣dξ

)

dt

–μ

p∑

j=

(

αj‖u‖∞ +
βj

σj + 
‖u‖σj+

∞
)

≥  –M
L


‖u‖X – λ‖l‖ · ‖u‖ –μ

p∑

j=

(

αjM‖u‖X +
βjM

σj+


σj + 
‖u‖σj+

X

)

≥  –M
L


‖u‖X –

(

λM‖l‖ +μM

p∑

j=

αj

)

‖u‖X –μ

p∑

j=

βjM
σj+


σj + 
‖u‖σj+

X .

SinceM
L < ,  ≤ σj +  < , the above inequality implies that lim‖u‖X→+∞ Eλ(u) = +∞, so

Eλ(u) is coercive. According to Theorem ., it follows that, for each

λ ∈ 	,

the functional Eλ(u) = 
(u)–λ�(u) has at least three distinct critical points, i.e. IBVP (.)
has at least three distinct weak solutions. This completes the proof. �

Let

I∗r :=
p∑

j=

min|ξ |≤r

∫ ξ


Ij(s)ds, for any r > ,

and

θ =
M


 –M

L
.

Theorem. Assume thatM
L <  holds,and f : [, +∞)×R → R be an L-Carathéodory

function such that (S′) satisfies, and f (t,u) ≥  for all (t,u) ∈ [, +∞) × R. Furthermore,
suppose that there exist a function ω ∈ X and two positive constants c, c with c

–M
 L

<
‖ω‖X < c

+M
 L

such that
(D)

∫ +∞
 sup|u|≤√

θc F(t,u)dt
c

<


∫ +∞
 F(t,ω(t))dt

( +M
L)‖ω‖X

;

(D)
∫ +∞
 sup|u|≤√

θc F(t,u)dt
c

<

∫ +∞
 F(t,ω(t))dt

( +M
L)‖ω‖X

.

Then, for each λ in

	 :=
(

( +M
L)‖ω‖X


∫ +∞
 F(t,ω(t))dt

,min

{
c

∫ +∞
 sup|u|≤√

θc F(t,u)dt
,

c

∫ +∞
 sup|u|≤√

θc F(t,u)dt

})

, (.)
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and for every negative continuous function Ij, j = , , . . . ,p, and g(u) ≤  for all u ∈ R, there
exists

δ := min

{
λ

∫ +∞
 sup|u|≤√

θc F(t,u)dt – c
I∗√

θc

,
λ

∫ +∞
 sup|u|≤√

θc F(t,u)dt –
c


I∗√
θc

}

such that, for each μ ∈ [, δ), IBVP (.) has three distinct classical solutions ui, i = , , ,
with  < ‖ui‖X ≤

√
c

–M
 L
.

Proof In order to apply Theorem . to IBVP (.), we take the functionals 
,� : X → R
as given in (.) and (.). Obviously, 
 and � satisfy the conditions () of Theorem ..
Now we will prove that the functional Eλ(u) = 
(u) –λ�(u) satisfies the assumption () of
Theorem .. Let u∗ and u∗∗ be two local minima for Eλ(u). Then u∗ and u∗∗ are critical
points for Eλ(u), which implies that u∗, u∗∗ are weak solutions of IBVP (.). In particular
u∗ and u∗∗ are nonnegative. Indeed, with no loss of generality we may assume that u be
a weak solution of IBVP (.), and the set  = {t ∈ (, +∞) : u(t) < } is nonempty and of
positive measure. Furthermore, taking into account that u is a weak solution, one has

∫ +∞


u′′
(t)v(t)dt –m

∫ +∞


u(t)v(t)dt + λ

∫ +∞


f
(
t,u(t)

)
v(t)dt = ,

for all v ∈ X.
Put v̄(t) = max{,–u(t)} for all t ∈ [, +∞). Clearly v̄ ∈ X and we deduce that

 =
p∑

j=

∫ tj+

tj
u′′
(t)v̄(t)dt –m

∫ +∞


u(t)v̄(t)dt + λ

∫ +∞


f
(
t,u(t)

)
v̄(t)dt

=
p∑

j=

u′
(t)v̄(t)|tj+tj –

∫ +∞


u′
(t)v̄

′(t)dt –m
∫ +∞


u(t)v̄(t)dt

+ λ

∫ +∞


f
(
t,u(t)

)
v̄(t)dt

= –
p∑

j=

�u′
(tj)v̄(tj) –

∫ +∞


u′
(t)v̄

′(t)dt –m
∫ +∞


u(t)v̄(t)dt

+ λ

∫ +∞


f
(
t,u(t)

)
v̄(t)dt – g

(
u()

)
v̄()

= –μ

p∑

j=

�Ij
(
u(tj)

)
v̄(tj) +

∫ +∞



(
v̄′(t)

) dt +m
∫ +∞



(
v̄(t)

) dt

+ λ

∫ +∞


f
(
t,u(t)

)
v̄(t)dt – g

(
u()

)
v̄()

≥ ‖v̄‖,

which implies v̄(t) =  for t ∈ [, +∞). Hence, u ≡  on , which is absurd. Then we
obtain u∗(t) ≥ , u∗∗(t) ≥  for all t ∈ [, +∞). So, one has su∗ + ( – s)u∗∗ ≥  for every
s ∈ [, ], which implies that

f
(
t, su∗(t) + ( – s)u∗∗(t)

) ≥ ,
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and

Ij
(
su∗(tj) + ( – s)u∗∗(tj)

) ≤ , j = , , . . . ,p.

Consequently, �(su∗ + ( – s)u∗∗) ≥  for every s ∈ [, ].
From (.) and (.), we have

 –M
L


‖u‖X ≤ 
(u) ≤  +M

L


‖u‖X , (.)

for all u ∈ X.
Note that by the condition c

–M
 L

< ‖ω‖ < c
+M

 L
, we get c <
(ω) < c

 . It follows from
the definition of 
, (.), and (.) that


–(–∞, r) =
{
u ∈ X :
(u) < r

}

⊆
{

u ∈ X : ‖u‖X <

√
r

 –M
L

}

⊆
{

u ∈ X : ‖u‖∞ <

√
M

 r
 –M

L

}

=
{
u ∈ X :

∣
∣u(t)

∣
∣ <

√
θr for all t ∈ [, +∞)

}
.

So, we have

sup
u∈
–(–∞,r)

�(u) = sup
u∈
–(–∞,r)

{∫ +∞


F
(
t,u(t)

)
dt –

μ

λ

p∑

j=

∫ u(tj)


Ij(s)ds

}

≤
∫ +∞


sup

|u|≤√
θr
F
(
t,u(t)

)
dt –

μ

λ
I∗√

θr .

Therefore, due to the assumption (D), one gets


c

· sup
u∈
–(–∞,c)

�(u) ≤
∫ +∞
 sup|u|≤√

θc F(t,u(t))dt –
μ

λ
I∗√

θc
c

<

λ

≤ 
( +M

L)
·
∫ +∞
 F(t,ω(t))dt

‖ω‖X
≤ 


�(ω)

(ω)

.

From the assumption (D), one infers that


c

· sup
u∈
–(–∞,c)

�(u) ≤
∫ +∞
 sup|u|≤√

θc F(t,u(t))dt –
μ

λ
I∗√

θc
c

<

λ

≤ 
( +M

L)
·
∫ +∞
 F(t,ω(t))dt

‖ω‖X
≤ 


�(ω)

(ω)

.
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So, the conditions (b) and (b) of Theorem . are satisfied. Then by means of Theo-
rem ., IBVP (.) admits at least three distinct weak solutions ui (i = , , ) in X, such
that  < ‖ui‖X ≤

√
c

–M
 L
. This completes the proof. �

Example . Consider the following boundary value problem with impulsive effect:

⎧
⎪⎨

⎪⎩

–u′′(t) + 
u(t) = λf (t,u(t)), t ∈ [, +∞), t �= t,

�(u′(t)) = μI(u(t)),
u′(+) = g(u()), u′(+∞) = ,

(.)

wherem =
√

 , I(u) = –

√|u(t)|. Choose α = , β = , σ = 
 , then the condition (C) is

satisfied.M is a positive constant defined in (.). WhenM lies in different intervals, we
can choose different f and g satisfying the conditions. Hence we only consider one case.
IfM ≤

√

 , we may choose g(x) = 

M


sinx and

f (t,u) =

⎧
⎪⎨

⎪⎩

Me–t , u≤ M
 ,

e–tu
M

, M
 < u≤ M,

e–tM


u , u >M,

whereM is given in (.). Then

F(t,u) =

⎧
⎪⎨

⎪⎩

Me–tu, u≤ M
 ,

e–tu
M

+ M
 e

–t

 , M
 < u≤ M,

e–tM
 lnu + (  – lnM)M

 e–t , u >M.

Obviously, f satisfies (S′) with l(t) = Me–t , and g satisfies (.) with L = 
M


, and

M
L < . Take a = M


 , b = M. By simple calculations (C) and (C) are satisfied. Ap-

plying Theorem ., IBVP (.) admits at least three distinct classical solutions for each
λ ∈ (  ,


√


M
), and for each

 < μ < min

{
 – 

√
λM

( + 
√
M)M


,
(λ – )M

 + 
√
M

}

.

Example . Consider the following problem:

⎧
⎪⎨

⎪⎩

–u′′(t) + u(t) = λf (t,u(t)), t ∈ [, +∞), t �= tj,
�(u′(t)) = μI(u(t)),
u′(+) = g(u()), u′(+∞) = ,

(.)

where m = , I(u) = – – |u(t)|. Then I(u) ≤  for any u ∈ R. M is a positive constant
defined in (.). WhenM lies in different intervals, we can choose different f and g satis-
fying the conditions. For example, if

√


 ≤ M < , we may choose g(x) = ––M


M

( – cosx)

and

f (t,u) =

{
ue–t , u≤ M,
M

 e
–t

u , u > M,
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whereM is given in (.). Then

F(t,u) =

{

u

e–t , u≤ M,
– M

 e
–t

u + M
 e

–t

 , u > M.

Obviously, M
L < , f (t,u) ≥  for all (t,u) ∈ [, +∞) × R and satisfies (S′) with l(t) =

M
 e–t . g satisfies (.) with L = –M


M


> , and g(u) ≤  for any u ∈ R. Take ω(t) = Me–t ,

c =
M


 , and c = M

 . Then θ = , c
–M

 L
< ‖ω‖X = M

 <
c

+M
 L
. By simple calcula-

tions (D) and (D) are satisfied. Applying Theorem ., for each λ ∈ ( –M



M
, 
M

) and for
each

 < μ < min

{M( – λM
 )

M + 
,
M( – λM

 )
M + 

}

,

IBVP (.) admits at least three distinct classical solutions ui (i = , , ) with  < ‖ui‖X ≤
.

We observe that in Example . and Example . the functions f , g , and the impulsive
term do not satisfy the conditions (H), (H) of Theorem . in [] or the conditions of
Theorem . in []. Hence, the problem (.) and (.) cannot be dealt with by the
results of [, ].
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