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Abstract
In this paper, we show the existence of at least three nontrivial solutions for a
nonlinear elliptic equation driven by the p-Laplacian with a nonsmooth potential
(hemivariational inequality) and Robin boundary condition. Two of these solutions are
of constant sign (one is positive, the other negative). We mainly use a variational
approach together with a sub-sup solution method.
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1 Introduction
Consider the problem

{
–�px + α|x|p–x ∈ ∂j(z,x), z ∈ Z,
|∇x|p– ∂x

∂n + b(z)|x|p–x = , z ∈ ∂Z,
(.)

where Z ⊂ R
N is a bounded domain with C-boundary ∂Z, �px = div(|∇x|p–∇x) ( < p <

∞) is the p-Laplacian operator, α > , b(z) ∈ L∞(∂Z), b(z)≥ , and b(z) �=  on ∂Z. j(z,x) is
a measurable potential function on Z ×R, which is locally Lipschitz in the x ∈ R, ∂j(z,x)
stands for the generalized subdifferential of x �→ j(z,x). Also ∂x

∂n denotes the outer normal
derivative of x with respect to ∂Z. The aim of this paper is to prove the existence of two
constant sign solutions and furthermore prove the existence of at least three nontrivial
solutions for problem (.).
A multiplicity of solutions for problems driven by the p-Laplacian has been obtained

by Ambrosetti et al. [] and Garcia Azorero et al. []. In these works, the authors deal
with a right-hand side nonlinearity of the form –�px = λ|x|q–x + |x|r–x with λ >  being
a real parameter,  < q < p < r < p∗ (p∗ = Np

N–p if p < N ; p∗ = +∞ otherwise) and prove the
existence of positive and negative solutions. The question of the existence of a p-Laplacian
Robin problem –�px+α|x|p–x = j(z,x) was also present in the work of Zhang et al. [] for
p = , the authors show that the Robin problemhas at least four nontrivial solutions using a
sub-sup solutionmethod, the Fucík spectrum, themountain pass theorem, and the degree
theorem together. In the work of Zhang et al. [, ] for p > , the authors show that the
oscillating equations with the p-Laplacian Robin problem has infinitely many nontrivial
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solutions. In Anello [] and Ricceri [], the main tool is an abstract variational principle of
Ricceri and its use is made possible by the hypothesis that p >N ; by the fact that Sobolev
space W ,p(Z) is compactly embedded in C(Z), the authors obtain infinitely many weak
solutions for p-Laplacian Neumann problem.
In all the aforementioned works, the nonlinearity is a Carathéodory function, a.e. j(z,x)

is continuously differentiable in the variable x. In Barletta and Papageorgiou [], the au-
thors consider a nonsmooth potential with an asymmetric behavior at +∞ and at –∞
to get two nontrivial solutions using degree methods. Also, in Dancer and Du [], the au-
thors use the critical point theory and a sub-sup solutionmethod on smooth critical point
theory.
In this paper, we use a combination of nonsmooth critical point theory with sub-sup

solutionmethods.We also use the nonsmooth version of the second deformation theorem
due to Corvellec []. Thus, we can extend the works of [, –] to a hemivariational
inequality with the Robin boundary condition.

2 Preliminaries
Now we recall the subdifferential theory for locally Lipschitz functions and the corre-
sponding nonsmooth critical point theory. Let X be a Banach space and let X∗ be its topo-
logical dual. We denote by 〈·, ·〉 the duality brackets for the pair (X,X∗). The generalized
directional derivative ϕ(x;h) of a locally Lipschitz function ϕ : X → R at x ∈ X along the
direction h ∈ X is defined as follows:

ϕ(x;h) = lim sup
y→x,λ→

ϕ(y + λh) – ϕ(y)
λ

.

It is well known that ϕ(x; ·) is sublinear continuous and it is the support function of a
nonempty, convex, and w∗-compact set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) =
{
x∗ ∈ X∗ :

〈
x∗,h

〉 ≤ ϕ(x;h),∀h ∈ X
}
.

The function ∂ϕ(x) is the ‘generalized subdifferential’ of ϕ. If ϕ ∈ C(X), then ϕ is locally
Lipschitz and ∂ϕ(x) = {ϕ′(x)}. Moreover, if ϕ is also convex, then ∂ϕ(x) coincides with the
subdifferential in the sense of convex analysis, ∂cϕ(x), which is defined by

∂cϕ(x) =
{
x∗ ∈ X∗ :

〈
x∗,h

〉 ≤ ϕ(x + h) – ϕ(x),∀h ∈ X
}
.

If  ∈ ∂ϕ(x), then we call x ∈ X critical point of ϕ. It is easy to see that if x ∈ X is a local
minimum or a local maximum of ϕ, then x ∈ X is a critical point of ϕ.
A locally Lipschitz function ϕ satisfies the Palais-Smale condition at level c ∈R, if every

sequence {xn}n≥ ⊆ X satisfying ϕ(xn) → c and inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)} →  as n → ∞ has
a strongly convergent subsequence. If ϕ satisfies the Palais-Smale condition at level c ∈ R

for all c ∈ R, then we say that it satisfies the Palais-Smale condition. For the details, we
refer to [].
In the following study, denote R(z,x) = |∇x|p– ∂x

∂n + b(z)|x|p–x, and we will use the fol-
lowing spaces:

W ,p
n (Z) =

{
x ∈W ,p(Z) : ∃{xn} ⊂ C∞(Z),xn → x inW ,p(Z),R(z,xn) = ,∀z ∈ ∂Z

}
,
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C
n(Z) =

{
x ∈ C(Z) : R(z,x) = ,∀z ∈ ∂Z

}
.

Both are ordered Banach spaces, and we denote

W+ =
{
x ∈W ,p

n (Z) : x(z) ≥  a.e. z ∈ Z
}
,

C+ =
{
x ∈ C

n(Z) : x(z)≥ ,∀z ∈ Z
}
,

int
(
C+) = {

x ∈ C+ : x(z) > ,∀z ∈ Z
}
.

It is well known that the principal eigenfunction e ∈ int(C+), so int(C+) �= ∅.
Furthermore, define u as the normalized principal eigenfunction of (–�p,W

,p
n (Z)) (see

[]). It is well known that u(z) ≥ , a.e. z ∈ Z, from the nonlinear regularity u ∈ C
n(Z)

(see Di Benedetto [], [, Chapter IX]), furthermore u ∈ int(C+) by virtue of the strong
maximum principle of Vazquez [].
We give the following minimax characterization (see []), suited for our purpose.

Proposition . Let S = W ,p
n (Z) ∩ ∂B and � = {γ ∈ C([, ],S) : γ () = –u,γ () = u},

where ∂B = {x ∈ Lp(Z) : ‖x‖p = }. Then the first eigenvalue λ of (–�p,W
,p
n (Z)) equals

λ = inf
γ∈�

max
t∈[,]

∥∥Dγ (t)
∥∥p
p.

Next we recall the definitions of sub-sup solutions for problem (.).
() A function x ∈W ,p(Z) with R(z,x(z)) ≥  is called a ‘sup solution’, if

∫
Z

∣∣Dx(z)∣∣p–(Dx(z),Dy(z))dz + α

∫
Z

∣∣x(z)∣∣p–(x(z), y(z))dz
+

∫
∂Z

b(z)
∣∣x(z)∣∣p–(x(z), y(z))dz ≥

∫
Z
u(z)y(z)dz

for all y ∈W ,p
n (Z), y(z) ≥  a.e. on Z and for some u ∈ Lq(Z), u(z) ∈ ∂j(z,x(z)) a.e.

on Z for some  < q < Np
N–p if N > p, q = +∞ if N ≤ p.

() A function x ∈W ,p(Z) with R(z,x(z)) ≤  is called a ‘sub-solution’, if

∫
Z

∣∣Dx(z)∣∣p–(Dx(z),Dy(z))dz + α

∫
Z

∣∣x(z)∣∣p–(x(z), y(z))dz
+

∫
∂Z

b(z)
∣∣x(z)∣∣p–(x(z), y(z))dz ≤

∫
Z
u(z)y(z)dz

for all y ∈W ,p
n (Z), y(z) ≥  a.e. on Z and for some u ∈ Lq(Z), u(z) ∈ ∂j(z,x(z)) a.e.

on Z for some  < q < Np
N–p if N > p, q = +∞ if N ≤ p.

Finally we recall the following topological notionwhich is crucial in critical point theory.

Definition . [] Let S,Q be closed subsets of a Banach spaceX,Qwith relative bound-
ary ∂Q. We say S and ∂Q link if
() S ∩ ∂Q = ∅, and
() for any map h ∈ C(X,X) such that h|∂Q = id we have h(Q)∩ S �= ∅.

http://www.boundaryvalueproblems.com/content/2014/1/257
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From the definition, we give the following general minimax principle for the critical
values of a locally Lipschitz function ϕ.

Proposition . [] Suppose ϕ is locally Lipschitz and satisfies the (PS)-condition. Con-
sider closed subsets S,Q⊂ X and Q with relative boundary ∂Q. Suppose
() S and ∂Q link,
() infS ϕ > sup∂Q ϕ.
Let

� =
{
h ∈ C(X,X) : h|∂Q = id

}
.

Then the number

β = inf
h∈�

sup
u∈Q

ϕ
(
h(u)

)

defines a critical value β ≥ infS ϕ of ϕ.

Remark . From the above general minimax principle, a nonsmooth version of the
mountain pass theorem, the saddle point theorem, and the generalized mountain pass
theorem are available by choosing the link sets appropriately (see [, ]).

The following result is the so-called ‘second deformation theorem’ for a nonsmooth set-
ting. In fact, this result is due to Corvellec []. We give the following sets:

K =
{
x ∈ X :  ∈ ∂ϕ(x)

}
,

Kc =
{
x ∈ X :  ∈ ∂ϕ(x),ϕ(x) = c

}
,

ϕc =
{
x ∈ X : ϕ(x) < c

}
.

We know that K , Kc, and ϕc are the critical set of ϕ, the critical set at level c ∈R of ϕ, and
the strict sublevel set of ϕ at c, respectively.

Proposition . Let X be a Banach space, ϕ : X → R be locally Lipschitz satisfying the
Palais-Smale condition. a,b ∈R with a < b. Assume also that K ∩ ϕ–((a,b)) = ∅ and Ka is
a finite set containing only local minimizers of ϕ.
Then there exists a continuous deformation 
 : [, ]× ϕb → ϕb such that
() 
(t,x) = x for all t ∈ [, ], x ∈ Ka,
() 
(,ϕb) ⊆ ϕa ∪Ka,
() ϕ(
(t,x))≤ ϕ(x) for all t ∈ [, ], x ∈ ϕb.

Definition . [] Let X be a topological space and A a subspace of X. A weak deforma-
tion retraction from X to A is a homology F : X × I → X such that for all x ∈ X and a ∈ A,
we have F(x, ) = x, F(a, ) = a, and F(x, ) ∈ A.

In particular, the set ϕa ∪Ka is a weak deformation retract of ϕb.
We now recall another notion, which will be useful in the following. Suppose W is a

Banach space and A : W → W ∗ is a mapping, we say that A is a type (S)+ if for every
sequence {xn}∞n= such that xn ⇀ x ∈ W and lim supn→∞〈A(xn),xn – x〉 ≤ .
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Considering the nonlinear mapping A :W ,p
n (Z) → W ,p

n (Z)∗ defined for all x ∈ W ,p
n (Z)

by

〈
A(x), y

〉
=

∫
Z

∣∣Dx(z)∣∣p–Dx(z) ·Dy(z)dz. (.)

We have the following result (see [, Proposition .]).

Proposition . The mapping (.) is continuous and of the type (S)+.

Definition . [] Given a functional ϕ :W ,p
n (Z) → R, x ∈ W ,p

n (Z) is called aW -local
minimizer of ϕ if there exists r >  satisfying for all y ∈ W ,p

n (Z) with ‖y‖W ,p
n (Z) ≤ r, we

have

ϕ(x) ≤ ϕ(x + y).

Definition . [] x ∈ W ,p
n (Z) is called a C-local minimizer of ϕ if there exists r > 

satisfying for all y ∈ C
n(Z) with ‖y‖C

n(Z) ≤ r, we have

ϕ(x) ≤ ϕ(x + y).

As the study of problems like (.) is reduced to seeking the critical points of correspond-
ing energy functional on W ,p

n (Z) or on C
n(Z), in this section we introduce the notations

used along the paper together with the main abstract results that we will use later on for
a C-local minimizer to be a W -local minimizer. Such a result for p >  was first proved
in []. Then it has been extended to the Neumann boundary condition and a nonsmooth
potential by [].
We denote ψ :W ,p

n (Z) →R for all x ∈W ,p
n (Z)

ψ(x) =

p
‖Dx‖pp +


p

∫
∂Z

b(z)|x|p ds –
∫
Z
j
(
z,x(z)

)
dz.

From Clarke [, pp.-], we know that ψ is locally Lipschitz. By [], we know that
if we let x ∈ W ,p

n (Z) be a C-local minimizer of ψ , then x ∈ C
n(Z) and it is a W -local

minimizer of ψ .

3 Solutions of constant sign
In this section, by using a sub-sup solution method, we get two solutions of (.) with
constant sign, one positive and the other negative.
Our general assumptions on the nonsmooth potential j(z,x) are the following:

A(j) (i) z �→ j(z,x) is measurable for all x ∈R;
(ii) x �→ j(z,x) is locally Lipschitz for a.e. z ∈ Z;
(iii) |u| ≤ γ (z) +C|x|p– for a.e. z ∈ Z, all x ∈R, u ∈ ∂j(z,x), with γ ∈ L∞(Z)+ and

C > ;
(iv) lim sup|x|→∞

u
|x|p–x ≤ ω(z) for a.e. z ∈ Z, all u ∈ ∂j(z,x), with ω ∈ L∞(Z)+

satisfying ω(z) ≤ α a.e. in Z and ω(z) < α in some set of positive measure;

http://www.boundaryvalueproblems.com/content/2014/1/257
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(v) η(z) + α ≤ lim infx→
u

|x|p–x for a.e. z ∈ Z, all u ∈ ∂j(z,x), with η ∈ L∞(Z)+
satisfying λ ≤ η(z) a.e. in Z and λ < η(z) in some set of positive measure,
λ is the first eigenvalue of –�p with Robin boundary condition;

(vi) ux ≥  for a.e. z ∈ Z, all x ∈R, u ∈ ∂j(z,x).

Theorem . Assume that A(j)(i)-(vi) hold. Problem (.) has at least two solutions x ∈
int(C+) and x∗ ∈ – int(C+).

Example The following potential function j satisfies assumptions A(j) (for the sake of
simplicity we drop the z-dependence):

j(x) =

{
η+α

p |x|p, |x| ≤ ,
ω
p |x|p +C ln |x|p + η+α–ω

p , |x| > ,

where  < ω < α, η > λ, and C > . Note that, if C = η+α–ω

p , then j ∈ C(R).
Note that

∂j(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[–ω – pC, –η – α], x = –,

(η + α)|x|p–x, |x| ≤ ,

, x = ,

ω|x|p–x + pC x
|x| , |x| > ,

[η + α,ω + pC], x = .

It is easy to see that j satisfies A(j)(i)-(iii), (vi). For all u ∈ ∂j(x), we have

lim sup
|x|→∞

u
|x|p–x ≤ ω

and

η + α ≤ lim inf
x→

u
|x|p–x .

Then the potential function j satisfies assumptions A(j).

Remark . In fact, problem (.) has the trivial solution  ∈ ∂j(z, ) for a.e. z ∈ Z ac-
cording to assumption A(j)(vi) and the upper semicontinuity of the subdifferential ∂j(z, ·)
(see Clarke []). What we are interesting in is whether it has nontrivial solutions.

We introduce a useful extension of the notion of maximal monotonicity (see [, p.]).

Definition . Let X be a reflexive Banach space and A : X → X∗ an operator. We say
that A is pseudomonotone if
() A has nonempty, bounded and convex values;
() A is upper semicontinuous for every finite dimensional subspace of X into X∗;
() if xn ⇀ x in X , x∗

n ∈ A(xn), and lim supn→+∞〈x∗
n,xn – x〉X ≤ , then for every y ∈ X ,

there exists u∗(y) ∈ A(x), such that

〈
u∗(y),x – y

〉
X ≤ lim inf

n→+∞
〈
x∗
n,xn – y

〉
X .

http://www.boundaryvalueproblems.com/content/2014/1/257


Zhang Boundary Value Problems 2014, 2014:257 Page 7 of 18
http://www.boundaryvalueproblems.com/content/2014/1/257

Definition . [] A is said to be demicontinuous on X if {xn} ⊂ X and xn → x ∈ X
together imply A(xn) ⇀ A(x).

It is well known that (.) is the Euler-Lagrange equation of the functional ϕ :W ,p
n (Z) →

R,

ϕ(x) =

p
‖Dx‖pp +

α

p
‖x‖pp +


p

∫
∂Z

b(z)|x|p ds –
∫
Z
j
(
z,x(z)

)
dz, ∀x ∈W ,p

n (Z).

We introduce the truncation function ν+ :R →R+ by

ν+(x) =

{
x, x > ,
, x ≤ ;

then define the locally Lipschitz functional ϕ+ :W
,p
n (Z)→R by

ϕ+(x) =

p
‖Dx‖pp +

α

p
‖x‖pp +


p

∫
∂Z

b(z)|x|p ds –
∫
Z
j+

(
z,x(z)

)
dz, ∀x ∈W ,p

n (Z),

where j+(z,x) = j(z,ν+(x)) for all z ∈R, x ∈ R, which is locally Lipschitz.
We consider the nonlinear Robin problem for given ε >  and δε(z) ∈ L∞(Z)+, δε �= :

{
–�px + α|x|p–x = (ω(z) + ε)|x|p–x + δε(z), z ∈ Z,
|∇x|p– ∂x

∂n + b(z)|x|p–x = , z ∈ ∂Z.
(.)

Define the mapping I :W ,p
n (Z) →W ,p

n (Z)∗ for all x, y ∈W ,p
n (Z) by

〈
I(x), y

〉
=

∫
Z

∣∣Dx(z)∣∣p–Dx(z) ·Dy(z)dz + α

∫
Z

∣∣x(z)∣∣p–x(z) · y(z)dz
+

∫
∂Z

b(z)
∣∣x(z)∣∣p–x(z) · y(z)ds.

It is well known that I is strictly monotone and demicontinuous, furthermore, maximal
monotone (see []). We denote Kε : Lp(Z) → Lp′ (Z) ( p +


p′ = ) and we have

Kε(x)(·) =
(
ω(·) + ε

)∣∣x(·)∣∣p–x(·),
which is bounded and continuous. Then the mapping I(x) – Kε(x) is pseudomonotone
from W ,p

n (Z) into W–,p′
n (Z), in fact, W ,p

n (Z) ↪→ Lp(Z) is compact embedding and Kε :
W ,p

n (Z) → Lp′ (Z) is completely continuous.
Next, we will show that (.) has a solution x ∈ int(C+).

Lemma . Let ω ∈ L∞(Z)+ satisfy ω(z) ≤ α a.e. in Z and ω(z) < α in some set of positive
measure. Then (.) has a solution x ∈ int(C+) for ε >  small enough.

Proof First, we claim that there exists ξ >  such that

J(x) = ‖Dx‖pp + α‖x‖pp +
∫

∂Z
b(z)|x|p ds –

∫
Z
ω(z)

∣∣x(z)∣∣p dz ≥ ξ‖x‖pp, ∀x ∈W ,p
n (Z).

http://www.boundaryvalueproblems.com/content/2014/1/257
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In fact, from assumption b ≥ , we know that J(x) ≥ , for all x ∈ W ,p
n (Z). Suppose the

conclusion is false, we have xn ∈ W ,p
n (Z), J(xn) < 

n‖xn‖pp, xn �= . If we set x′
n =

xn
‖xn‖ , then

J(x′
n) <


n (J is p-homogeneous). We may assume x′

n ⇀ x in W ,p
n (Z), x′

n → x in Lp(Z) by
passing to a subsequence if necessary. Then

‖x‖pp = lim
n→∞

∥∥x′
n
∥∥p
p, ‖Dx‖pp ≤ lim inf

n→∞
∥∥Dx′

n
∥∥p
p,∫

∂Z
b(z)|x|p ds –

∫
Z
ω(z)

∣∣x(z)∣∣p dz = lim
n→∞

(∫
∂Z

b(z)
∣∣x′

n
∣∣p ds – ∫

Z
ω(z)

∣∣x′
n(z)

∣∣p dz).
So, by passing to the limit of J , we have

‖Dx‖pp + α‖x‖pp +
∫

∂Z
b(z)|x|p ds –

∫
Z
ω(z)

∣∣x(z)∣∣p dz ≤ .

This implies

‖Dx‖pp ≤
∫
Z

(
ω(z) – α

)∣∣x(z)∣∣p dz – ∫
∂Z

b(z)|x|p ds≤ .

Hence, we have x(z) = C for a.e. z ∈ Z where C ∈ R. In fact, C = , if not, from the above
inequality,

 ≤ |C|p
[∫

Z

(
ω(z) – α

)
dz –

∫
∂Z

b(z)ds
]
< .

It produces a contradiction. On the other hand,

∥∥Dx′
n
∥∥p
p = J

(
x′
n
)
– α

∥∥x′
n
∥∥p
p –

∫
∂Z

b(z)
∣∣x′

n
∣∣p ds – ∫

Z
ω(z)

∣∣x′
n(z)

∣∣p dz.
We have ‖Dx′

n‖p → , together with xn → x in Lp(Z), so xn →  in W ,p
n (Z), but

‖xn‖W ,p
n (Z) = , n ∈ Z. So the assumption is false, we have the conclusion.

For all x ∈W ,p
n (Z), from the above discussion, we get

〈
I(x) –Kε(x),x

〉
= ‖Dx‖pp + α‖x‖pp +

∫
∂Z

b(z)|x|p ds –
∫
Z
ω(z)

∣∣x(z)∣∣p dz – ε‖x‖pp
≥ (ε – ε)‖x‖pp.

So if ε < ε small enough, we have I(·) –Kε(·) is coercive. But a pseudomonotone coercive
operator is surjective (see [, Theorem .]), for δε , we can find x ∈W ,p

n (Z) such that

I(x) –Kε(x) = δε .

That is,
{
–�px + α|x|p–x = (ω(z) + ε)|x|p–x + δε(z), z ∈ Z,
|∇x|p– ∂x

∂n + b(z)|x|p–x = , z ∈ ∂Z.
(.)

It follows that x ∈W ,p
n (Z) is a solution of (.).

http://www.boundaryvalueproblems.com/content/2014/1/257
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Next we show x ∈ int(C+). Take –x– = –max{–x, } ∈W ,p
n (Z) for δε ≥ , then

〈
I(x) –Kε(x), –x–

〉
= –‖Dx–‖pp – α‖x–‖pp –

∫
∂Z

b(z)|x–|p ds

+
∫
Z
ω(z)

∣∣x–(z)∣∣p dz + ε‖x–‖pp ≥ .

So

ε‖x–‖pp ≤ ‖Dx–‖pp + α‖x–‖pp +
∫

∂Z
b(z)|x–|p ds –

∫
Z
ω(z)

∣∣x–(z)∣∣p dz ≤ ε‖x–‖pp.

But ε < ε, we have x– = , that is, x ≥ . Since δε > , from (.), we have x �=  and
x ∈ C

n(Z) (nonlinear regularity theorem, see []), furthermore, �px ≤  on Z, so x ∈
int(C+). �

Now we prove that the solution x of (.) is a strict sup solution of (.) for ε >  small
enough.

Lemma . Let assumptions A(j)(i)-(iv) hold. Then the solution x of (.) is a strict sup
solution of (.) for ε >  small enough.

Proof From A(j)(iv), for given ε > , we can find M > , such that for all z ∈ Z, x ≥ M,
u ∈ ∂j(z,x), we have

u
xp–

≤ ω(z) + ε.

From A(j)(iii), we can find δε ∈ L∞(Z)+, δε �= , such that for all z ∈ Z, x ∈ [,M], u ∈
∂j(z,x), we have

u < δε(z).

So for all z ∈ Z, x ≥ , u ∈ ∂j(z,x), we have

u <
(
ω(z) + ε

)
xp– + δε(z).

From Lemma ., we see that (.) has a solution x ∈ int(C+), so when ε < ε small enough,
for all z ∈ Z, x ∈ Lp′ (Z)+, u ∈ ∂j(z,x(z)), we have

u <
(
ω(z) + ε

)
xp– + δε(z),

that is,

u < –�px + α|x|p–x,

and from the definition of a sup solution, we know that x is a sup solution of (.). �
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Remark . We have found a sup solution of (.) and ∂j(z, ) = {} a.e. on Z, we also find
x ≡  is a sub-solution of (.). Define the set

W =
{
x ∈W ,p

n (Z) :  ≤ x(z) ≤ x(z), a.e. on Z
}
.

Next, we will find a nontrivial solution of (.) inW .

Proof of Theorem .
Step : Claim: We can find x ∈W which is a local minimizer of ϕ+ and of ϕ.
From the discussion of Lemma ., for a.e. z ∈ Z, all x ≥ , u ∈ ∂j+(z,x) = ∂j(z,x), we

have

u <
(
ω(z) + ε

)
xp– + δε(z).

Furthermore, for a.e. z ∈ Z, all x ≥ , from assumptions A(j)(i), (ii),

d
dx

j+(z,x) <
(
ω(z) + ε

)
xp– + δε(z)

then for a.e. z ∈ Z, all x ≥ , we have

j+(z,x) <

p
(
ω(z) + ε

)|x|p + δε(z)|x|.

So, for some C > , we have

ϕ+(x) =

p
‖Dx‖pp +

α

p
‖x‖pp +


p

∫
∂Z

b(z)|x|p ds –
∫
Z
j+

(
z,x(z)

)
dz

>

p
‖Dx‖pp +

α

p
‖x‖pp +


p

∫
∂Z

b(z)|x|p ds – 
p

∫
Z
ω(z)

∣∣x(z)∣∣p dz – ε

p
‖x‖pp –C‖x‖p

≥ 
p
(ε – ε)‖x‖pp –C‖x‖p.

Because of ε < ε, p > , we see that ϕ+ is coercive, and together with ϕ+ weakly lower
semicontinuous onW . Thus by the Weierstrass theorem, we can find x ∈W , satisfying

ϕ+(x) = inf
W

ϕ+.

We claim that x �= . In fact, from assumption A(j)(v), we see that, for given ε > , we can
find some δ > , for a.e. z ∈ Z, all x ∈ [, δ], u ∈ ∂j+(z,x) = ∂j(z,x),

u
xp–

≥ η(z) + α – ε;

then for a.e. z ∈ Z and all x ∈ [, δ], we get

j+(z,x)≥ 
p
(
η(z) + α – ε

)
xp.
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Furthermore, let e be the first eigenfunction of Robin problem of –�p (see []), then for
x ∈ int(C+), we can find θ > , such that

θe(z) ≤ min
{
x(z), δ

}
, ∀z ∈ Z.

Then θe ∈ int(C+), and

ϕ+(θe) =
θp

p
‖De‖pp +

αθp

p
‖e‖pp +

θp

p

∫
∂Z

b(z)|e|p ds –
∫
Z
j+

(
z, θe(z)

)
dz

≤ θp

p
‖De‖pp –

θp

p

∫
Z
η(z)|e|p dz + θp

p

∫
∂Z

b(z)|e|p ds + εθp

p
‖e‖pp

=
θp

p

[∫
Z

(
λ – η(z)

)|e|p dz + ε‖e‖pp
]
.

From assumption A(j)(v) and e > , we have

∫
Z

(
λ – η(z)

)|e|p dz < .

If we choose ε small enough, we can get ϕ+(θe) <  for all θ >  small enough. So, we have

ϕ+(x) = inf
W

ϕ+ ≤ ϕ+(θe) <  = ϕ+(),

then we have x �= , x ∈ W .
Step : The local minimizer of ϕ+, x ∈W ,p

n (Z) is a nontrivial solution of (.).
Firstly, we claim that x is also a local W ,p

n (Z)-minimizer of ϕ+. In fact, the nonlinear
regularity theory (see for example []) assures that x ∈ C(Z). Hence, as the boundary
relation is understood in a pointwise sense and we get x ∈ C

n(Z), also, by x �= , x ≥ ,
and the nonlinear strong maximum principle of Vazquez, x ∈ int(C+), x– x ∈ int(C+). So
we can find δ >  satisfying

Bδ(x) =
{
x ∈ C

n(Z) : ‖x – x‖C
n(Z) < δ

} ⊆ int(C+),

Bδ(x – x) =
{
x ∈ C

n(Z) :
∥∥x – (x – x)

∥∥
C
n(Z)

< δ
} ⊆ int(C+).

Then

x + Bδ ⊆ int(C+), x – x + Bδ ⊆ int(C+).

So, x is also a local minimizer of ϕ+ on C
n(Z); also from [], x is also a local W ,p

n (Z)-
minimizer of ϕ+ and of ϕ too.
Also, from [], there exists ω(z) ∈ ∂j+(z,x(z)) = ∂j(z,x(z)), u ∈ Lp′ (Z) satisfying

 ≤ 〈
I(x), y – x

〉
–

∫
Z
u(z)(y – x)(z)dz, ∀y ∈W .
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Using

y(z) =

⎧⎪⎪⎨
⎪⎪⎩
x(z), z ∈ {x≤ x + εv} = A,

x(z) + εv(z), z ∈ { < x + εv < x} = B,

, z ∈ {x + εv ≤ } = C.

We have y ∈W for all v ∈ W ,p
n (Z), ε > , then we have

 ≤
∫
A
|Dx|p–

〈
Dx,D(x – x)

〉
dz + α

∫
A
|x|p–〈x,x – x〉dz –

∫
A
u(x – x)dz

+ ε

∫
B
|Dx|p–〈Dx,Dv〉dz + α

∫
B
|x|p–〈x, εv〉dz –

∫
B
u(εv)dz

+
∫

∂B
b(z)|x|p–〈x, εv〉ds

–
∫
C

|Dx|p dz – α

∫
C

|x|p dz +
∫
C
ux dz –

∫
∂C

b(z)|x|p ds

+
∫

∂A
b(z)|x|p–〈x,x – x〉ds

= ε

∫
Z
|Dx|p–〈Dx,Dv〉dz + εα

∫
Z
|x|p–〈x, v〉dz – ε

∫
Z
uvdz

+ ε

∫
∂Z

b(z)|x|p–〈x, v〉ds

–
∫
C

|Dx|p dz – α

∫
C

|x|p dz – ε

∫
C

|Dx|p–〈Dx,Dv〉dz –
∫

∂C
b(z)|x|p ds

–
∫
A
|Dx|p–〈Dx,D(x + εv – x)

〉
dz – α

∫
A
|x|p–〈x,x + εv – x〉dz

+
∫
A
u(x + εv – x)dz

–
∫

∂A
b(z)|x|p–〈x,x + εv – x〉ds +

∫
C
u(x + εv)dz +

∫
A
(u – u)(x – x – εv)dz

+
∫
A

〈|Dx|p–Dx – |Dx|p–Dx,D(x – x)
〉
dz + α

∫
A

〈|x|p–x – |x|p–x,x – x
〉
dz

+
∫

∂A
b(z)

〈|x|p–x – |x|p–x,x – x
〉
ds + ε

∫
C

〈|Dx|p–Dx – |Dx|p–Dx,Dv
〉
dz

– ε

∫
∂A

b(z)|x|p–〈x, v〉ds – ε

∫
∂C

b(z)|x|p–〈x, v〉ds + ε

∫
∂A

b(z)|x|p–〈x, v〉ds

– εα

∫
A
|x|p–〈x, v〉dx – εα

∫
C

|x|p–〈x, v〉dx + εα

∫
A
|x|p–〈x, v〉dx.

From the monotonicity of I , we have

∫
A

〈|Dx|p–Dx – |Dx|p–Dx,D(x – x)
〉
dz + α

∫
A

〈|x|p–x – |x|p–x,x – x
〉
dz

+
∫

∂A
b(z)

〈|x|p–x – |x|p–x,x – x
〉
ds≤ .
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From the definition of a sup solution of (.), we have

–
∫
A
|Dx|p–〈Dx,D(x + εv – x)

〉
dz – α

∫
A
|x|p–〈x,x + εv – x〉dz +

∫
A
u(x + εv – x)dz

–
∫

∂A
b(z)|x|p–〈x,x + εv – x〉ds≤ .

From A(j)(vi), we have
∫
C u(x + εv)dz ≤ . Furthermore,

∫
C
(u – u)(x – x – εv)dz ≤ εc

∫
{x+εv≥x>x}

vdz.

Also,

m{x + εv ≥ x > x} → , as ε → ,

and

Dx(z) =  a.e. on {x = },
Dx(z) =Dx(z) a.e. on {x = x}.

So, we have

 ≤ ε

∫
Z
|Dx|p–〈Dx,Dv〉dz + εα

∫
Z
|x|p–〈x, v〉dz

+ ε

∫
∂Z

b(z)|x|p–〈x, v〉ds – ε

∫
Z
uvdz

– ε

∫
C

|Dx|p–〈Dx,Dv〉dz + εc
∫

{x+εv≥x>x}
vdz

+ ε

∫
C

〈|Dx|p–Dx – |Dx|p–Dx,Dv
〉
dz.

As ε → , for all v ∈W ,p
n (Z), we obtain

 ≤ 〈
I(x), v

〉
–

∫
Z
uvdz =

〈
I(x) – u, v

〉
.

That is,

I(x) = u.

Then x ∈W ,p
n (Z) is a solution of (.).

Step : In a similar way, we introduce another truncation function ν– :R →R– by

ν–(x) =

{
x, x < ,
, x≥ ,

http://www.boundaryvalueproblems.com/content/2014/1/257
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then define the locally Lipschitz functional ϕ– :W
,p
n (Z) →R by

ϕ–(x) =

p
‖Dx‖pp +

α

p
‖x‖pp +


p

∫
∂Z

b(z)|x|p ds –
∫
Z
j–

(
z,x(z)

)
dz, ∀x ∈W ,p

n (Z),

where j–(z,x) = j(z,ν–(x)) for all z ∈ R, x ∈ R which is locally Lipschitz. Then we have
another nontrivial solution x∗ ∈ W ,p

n (Z) which is a local minimum of ϕ– and of ϕ too.
�

4 Existence of the third nontrivial solution
In this section, we prove the existence of the third solution. Then we give the new assump-
tions which differ slightly from A(j)(v):

A′(j) (i) z �→ j(z,x) is measurable for all x ∈R;
(ii) x �→ j(z,x) is locally Lipschitz for a.e. z ∈ Z;
(iii) |u| ≤ γ (z) +C|x|p– for a.e. z ∈ Z, all x ∈ R, u ∈ ∂j(z,x), with γ ∈ L∞(Z)+ and

C > ;
(iv) lim sup|x|→∞

u
|x|p–x ≤ ω(z) for a.e. z ∈ Z, all u ∈ ∂j(z,x), with ω ∈ L∞(Z)+

satisfying ω(z) ≤ α a.e. in Z and ω(z) < α in some set of positive measure;
(v) η(z) ≤ lim infx→

u
|x|p–x for a.e. z ∈ Z, all u ∈ ∂j(z,x), with η ∈ L∞(Z)+

satisfying λ + α ≤ η(z) a.e. in Z and λ + α < η(z) in some set of positive
measure, λ is the first eigenvalue of –�p with the Robin boundary condition;

(vi) ux ≥  for a.e. z ∈ Z, all x ∈R, u ∈ ∂j(z,x).

Theorem . Let assumptions A′(j)(i)-(vi) hold. Then we can find three nontrivial solu-
tions x ∈ int(C+), x∗ ∈ – int(C+), and y ∈ C

n(Z) of (.).

Proof From Theorem ., we have two constant sign solutions x ∈ int(C+) and x∗ ∈
– int(C+) which are the local minimizers of ϕ+ and of ϕ–, also of ϕ. We may assume that x
is the only nontrivial critical point of ϕ+ and x∗ is the only nontrivial critical point of ϕ–.
In fact, if there exists another nontrivial critical point x of ϕ+, x �= x. Then, by a similar
discussion, x ∈ int(C+) and it solves (.). Thus we have a third nontrivial solution, a.e.
y = x.
Moreover, as for ϕ, we see that ϕ is coercive and so we can easily prove the Palais-Smale

condition. In fact, as in the proof of Theorem ., for a.e. z ∈ Z, all x ∈R, we have

j(z,x) <

p
(
ω(z) + ε

)|x|p + δε(z)|x|,

where ω satisfies (iii), δε ∈ L∞(Z)+, δε �= .
Then, using Lemma ., we have

ϕ(x) ≥ 
p
‖Dx‖pp +

α

p
‖x‖pp +


p

∫
∂Z

b(z)|x|p ds – 
p

∫
Z
ω(z)

∣∣x(z)∣∣p dz – ε

p
‖x‖pp –C‖x‖p

≥ 
p
(ε – ε)‖x‖pp –C‖x‖p.

It follows that ϕ is coercive.
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We set S = ∂Bδ(x) = {x ∈ W ,p
n (Z) : ‖x– x‖W ,p

n (Z) = δ},Q = [x∗,x], with relative bound-
ary ∂Q = {x∗,x}. If we choose  < δ < ‖x∗ – x‖W ,p

n (Z). Then S and ∂Q link. In fact,
S ∩ ∂Q = ∅, and for any map h ∈ C(Q,W ,p

n (Z)) such that h|∂Q = Id, we can choose some
t ∈ (, ) satisfying

∥∥h(tx∗ + ( – t)x
)
– x

∥∥
W ,p

n (Z) = δ,

so h(Q)∩ S �= ∅, S and ∂Q link.
When we choose δ, we can also assume δ satisfy infx∈S ϕ > ϕ(x) and infx∈S ϕ > ϕ(x∗) (x,

x∗ are local minimizers of ϕ), we may assume that ϕ(x∗) < ϕ(x). Therefore, we can apply
Proposition .; let � = {h ∈ C(Q,W ,p

n (Z)) : h|∂Q = Id}, produce y ∈ W ,p
n (Z), a critical

point of ϕ, such that

 ∈ ∂ϕ(y),

ϕ(x∗) < ϕ(x) < inf
x∈Sϕ ≤ ϕ(y) = inf

h∈�
sup
x∈Q

ϕ
(
h(x)

)
.

From the above inequality, we have y �= x, y �= x∗.
From  ∈ ∂ϕ(y), we know that

{
–�py(z) + α|y(z)|p–y(z) ∈ ∂j(z, y(z)), z ∈ Z,
|∇y(z)|p– ∂y(z)

∂n + b(z)|y(z)|p–y(z) = , z ∈ ∂Z,
(.)

and from the regularity theory (see []), we have y ∈ C
n(Z), hence (.) holds in all z ∈ Z,

we get y ∈ C
n(Z).

Finally, we prove that y �= . It is equivalent to proving that there is a path h ∈ � such
that for all x ∈Q,

ϕ
(
h(x)

)
<  = ϕ().

From Proposition ., recall that S =W ,p
n (Z) ∩ ∂B, ∂B = {x ∈ Lp(Z) : ‖x‖p = } endowed

with the W ,p
n (Z)-topology. Furthermore, set Sc = S ∩ C

n(Z) equipped with the C
n(Z)-

topology. Then we can find h ∈ Sc by virtue of the density of Sc in S in the W ,p
n (Z)-

topology, so C(Q,Sc) is dense in C(Q,S), and

max

{
‖Dx‖pp +

∫
∂Z

b(z)|x|p ds,x ∈ h(Q)
}

≤ λ + δ. (.)

From assumption A′(j)(v), we can find δ > , such that for a.e. z ∈ Z, all  < |x| < δ, u ∈
∂j(z,x), we get

η(z) ≤ u
|x|p–x .

So for a.e. z ∈ Z, all  < |x| < δ,

η

p
|x|p < j(z,x). (.)
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Since h(Q) ∈ Sc, for the δ, we can find ε > , such that for a.e. z ∈ Z, x ∈ h(Q), we have

ε
∣∣x(z)∣∣ ≤ δ. (.)

Then let δ >  be such that λ + α + δ < η, from (.), (.), (.), and ‖x‖p = , we have

ϕ(εx) =
εp

p
‖Dx‖pp +

αεp

p
‖x‖pp +

εp

p

∫
∂Z

b(z)|x|p ds –
∫
Z
j
(
z, εx(z)

)
dz

≤ εp

p
‖Dx‖pp +

αεp

p
‖x‖pp +

εp

p

∫
∂Z

b(z)|x|p ds – ηεp

p
‖x‖pp

=
εp

p

(
‖Dx‖pp +

∫
∂Z

b(z)|x|p ds
)
+

α – η

p
εp

≤ λ + δ + α – η

p
εp < .

We consider the continuous path hε = εh, then for all x ∈Q,

ϕ
(
hε(x)

)
< , ∀x ∈Q.

Next recall that ϕ is coercive and satisfies the Palais-Smale condition. From the discussion,
we set a = ϕ(x) = infϕ < , b = , ϕ has no critical points in ϕ–(a,b), Ka = {x}. Then with
the help of Proposition ., there exists a deformation 
 : [, ]× ϕb → ϕb such that


(t, ·)|Ka = Id, ∀t ∈ [, ],



(
,ϕb) ⊆ ϕa ∪Ka, (.)

ϕ
(

(t,x)

) ≤ ϕ(x), ∀(t,x) ∈ [, ]× ϕb.

In fact, the continuous path � can be seen as � = {h ∈ C([, ],W ,p
n (Z)) : h() =

x∗,h() = x}. Then we define h : [, ]→ ϕb by

h(t) = 
(t, εu), ∀t ∈ [, ].

Then it is a continuous path, so from (.), we have

h() =
(, εu) = εu,

h() =
(, εu) = x
(
ϕa = ∅,Ka = {x}

)
,

ϕ
(
h(t)

)
= ϕ

(

(t, εu)

) ≤ ϕ(εu) < , ∀t ∈ [, ] (ϕ|hε < ).

Thus, we construct a continuous path h joining εu and x such that

ϕ|h < .

Similarly, we construct a continuous path h joining –εu and x∗ such that

ϕ|h < .
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Then we join h, hε , h, and we construct a continuous path h ∈ � such that

ϕ|h < .

It follows that ϕ(y) <  = ϕ() and so y �= .
Therefore, we find the third nontrivial solution of (.). �

5 Open related questions
Consider the problem

{
–�px + α(z)|x|p–x ∈ ∂j(z,x), z ∈ Z,
|∇x|p– ∂x

∂n + b(z)|x|p–x = , z ∈ ∂Z,
(.)

where Z ⊂R
N is a bounded domain with C-boundary ∂Z, �px = div(|∇x|p–∇x) ( < p <

∞) is the p-Laplacian operator, α(z),b(z) ∈ L∞(∂Z), b(z) ≥ , and b(z) �=  on ∂Z. j(z,x) is
a measurable potential function on Z ×R, which is locally Lipschitz in the x ∈ R, ∂j(z,x)
stands for the generalized subdifferential of x �→ j(z,x). Also ∂x

∂n denotes the outer normal
derivative of x with respect to ∂Z.
Whether problem (.) has more solutions and whether it has oscillating solutions, we

will discuss in the future.
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