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Abstract
We are concerned with the following elliptic equations with variable exponents:
–div(ϕ(x,∇u)) + |u|p(x)–2u = λf (x,u) in R

N , where the function ϕ(x, v) is of type |v|p(x)–2v
with continuous function p :RN → (1,∞) and f :RN ×R → R satisfies a
Carathéodory condition. The purpose of this paper is to show the existence of at least
one solution, and under suitable assumptions, infinitely many solutions for the
problem above by using mountain pass theorem and fountain theorem.
MSC: 35D30; 35J60; 35J90; 35P30; 46E35
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1 Introduction
The differential equations and variational problems with p(x)-growth conditions have
been much interest in recent years since they can model physical phenomena which arise
in the study of elastic mechanics, electro-rheological fluid dynamics and image process-
ing, etc. We refer the readers to [–] and references therein.
In this paper, we establish some results about the existence andmultiplicity of nontrivial

weak solution to nonlinear elliptic equations of the p(x)-Laplacian type,

–div
(
ϕ(x,∇u)

)
+ |u|p(x)–u = λf (x,u) in R

N , (B)

where the function ϕ(x, v) is of type |v|p(x)–v with continuous function p : RN → (,∞)
and f : RN × R → R satisfies a Carathéodory condition. The essential interest in study-
ing problem (B) starts from the presence of the p(x)-Laplace type operator div(ϕ(x,∇u)),
which is small perturbation of the p(x)-Laplace operator div(|∇u|p(x)–∇u). The study for
the p(x)-Laplacian problems has been extensively considered by several authors in vari-
ous ways; see for example [–] and references therein. Fan and Zhang [] established the
existence of solutions for the p(x)-Laplacian Dirichlet problems on bounded domains by
using the variational method. For the case of the entire domainRN , the existence andmul-
tiplicity results of solutions for the p(x)-Laplacian equations have been discussed in [].
Concerning the p(x)-Laplace type operator, Mihăilescu and Rădulescu in [] investigated
a multiplicity result for quasilinear nonhomogeneous problems with Dirichlet boundary
conditions by adequate variationalmethods and a variant ofmountain pass theoremwhich
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are crucial tools for finding solutions to elliptic problems. In particular, in order to obtain
the existence of solutions for equations like (B) in [], they assume that the functional �
induced by ϕ is uniform convex, that is, there exists a constant k >  such that

�

(
x,

ξ + η



)
≤ 


�(x, ξ ) +



�(x,η) – k|ξ – η|p(x),

for all x ∈ � and ξ ,η ∈ R
N , where � is a bounded domain in R

N . When p(x) ≡ p and
 < p < , it is well known that this condition is not applicable for the p-Laplacian problems
because the function �(x, t) = tp is not uniformly convex for t > . Recently the authors in
[] have studied the existence of infinitely many solutions for a class of quasilinear elliptic
problems involving the p(x)-Laplace type operator with nonlinear boundary conditions
without using the uniform convexity of �.
The aim of this paper is to show the existence of at least one nontrivial solution and

infinitely many nontrivial solutions for problem (B) without the assumption of the uni-
form convexity of the functional � as in []; see also []. We give our main results in a
more general setting than those of [, ] because (B) is a problem which involves the usual
p(x)-Laplacian operator. Especially, our proof as regards the existence of infinitely many
nontrivial solutions for (B) is different from those of [, , ].
This paper is organized as follows. In Section , we state some basic results for the vari-

able exponent Lebesgue-Sobolev spaces. In Section , under certain conditions on ϕ and f ,
we establish several existence results of nontrivial weak solutions for problem (B) by em-
ploying as the main tools the variational principle.

2 Preliminaries
In this section, we recall some definitions and basic properties of the variable exponent
Lebesgue spaces Lp(·)(RN ) and the variable exponent Lebesgue-Sobolev spacesW ,p(·)(RN )
which will be treated in the next sections. For a deeper treatment on these spaces, we refer
to [–].
Set

C+
(
R

N)
=

{
h ∈ C

(
R

N)
: inf
x∈RN

h(x) > 
}
.

For any h ∈ C+(RN ), we define

h+ = sup
x∈RN

h(x) and h– = inf
x∈RN

h(x).

For any p ∈ C+(RN ), we introduce the variable exponent Lebesgue space

Lp(·)
(
R

N)
:=

{
u : u is a measurable real-valued function,

∫

RN

∣∣u(x)
∣∣p(x) dx <∞

}
,

endowed with the Luxemburg norm

‖u‖Lp(·)(RN ) = inf

{
λ >  :

∫

RN

∣
∣∣
∣
u(x)
λ

∣
∣∣
∣

p(x)

dx ≤ 
}
.

The dual space of Lp(·)(RN ) is Lp′(·)(RN ), where /p(x) + /p′(x) = .
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The variable exponent Sobolev spaceW ,p(·)(RN ) is defined by

W ,p(·)(
R

N)
=

{
u ∈ Lp(·)

(
R

N)
: |∇u| ∈ Lp(·)

(
R

N)}
,

where the norm is

‖u‖W ,p(·)(RN ) = ‖u‖Lp(·)(RN ) + ‖∇u‖Lp(·)(RN ). (.)

It has the following equivalent norm:

‖u‖W ,p(·)(RN ) = inf

{
λ >  :

∫

RN

∣∣∣
∣
u(x)
λ

∣∣∣
∣

p(x)

+
∣∣∣
∣
∇u(x)

λ

∣∣∣
∣

p(x)

dx ≤ 
}
.

Lemma . ([]) The space Lp(·)(RN ) is a separable, uniformly convex Banach space, and
its conjugate space is Lp′(·)(RN ) where /p(x) + /p′(x) = . For any u ∈ Lp(·)(RN ) and v ∈
Lp′(·)(RN ), we have

∣∣
∣∣

∫

RN
uvdx

∣∣
∣∣ ≤

(

p–

+


(p′)–

)
‖u‖Lp(·)(RN )‖v‖Lp′(·)(RN ) ≤ ‖u‖Lp(·)(RN )‖v‖Lp′(·)(RN ).

Lemma . If /p(x) + /q(x) + /r(x) = , then for any u ∈ Lp(·)(RN ), v ∈ Lq(·)(RN ), and
w ∈ Lr(·)(RN ),

∣
∣∣∣

∫

RN
uvwdx

∣
∣∣∣ ≤

(

p–

+

q–

+

r–

)
‖u‖Lp(·)(RN )‖v‖Lq(·)(RN )‖w‖Lr(·)(RN )

≤ ‖u‖Lp(·)(RN )‖v‖Lq(·)(RN )‖w‖Lr(·)(RN ).

Lemma . ([]) Denote

ρ(u) =
∫

RN
|u|p(x) dx, for all u ∈ Lp(·)

(
R

N)
.

Then
() ρ(u) >  (= ; < ) if and only if ‖u‖Lp(·)(RN ) >  (= ; < ), respectively;
() if ‖u‖Lp(·)(RN ) > , then ‖u‖p–Lp(·)(RN ) ≤ ρ(u)≤ ‖u‖p+Lp(·)(RN );
() if ‖u‖Lp(·)(RN ) < , then ‖u‖p+Lp(·)(RN ) ≤ ρ(u)≤ ‖u‖p–Lp(·)(RN ).

Remark . ([]) Denote

ρ(u) =
∫

RN

(|u|p(x) + |∇u|p(x))dx, for all u ∈ X.

Then
() ρ(u) >  (= ; < ) if and only if ‖u‖W ,p(·)(RN ) >  (= ; < ), respectively;
() if ‖u‖W ,p(·)(RN ) > , then ‖u‖p–W ,p(·)(RN ) ≤ ρ(u)≤ ‖u‖p+W ,p(·)(RN );
() if ‖u‖W ,p(·)(RN ) < , then ‖u‖p+W ,p(·)(RN ) ≤ ρ(u) ≤ ‖u‖p–W ,p(·)(RN ).

Lemma . ([]) Let q ∈ L∞(RN ) be such that  ≤ p(x)q(x)≤ ∞, for almost all x ∈R
N . If

u ∈ Lq(·)(RN ) with u 
= , then
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() if ‖u‖Lp(·)q(·)(RN ) > , then ‖u‖q–Lp(·)q(·)(RN ) ≤ ‖|u|q(x)‖Lp(·)(RN ) ≤ ‖u‖q+Lp(·)q(·)(RN );
() if ‖u‖Lp(·)q(·)(RN ) < , then ‖u‖q+Lp(·)q(·)(RN ) ≤ ‖|u|q(x)‖Lp(·)(RN ) ≤ ‖u‖q–Lp(·)q(·)(RN ).

Lemma . ([, ]) Let � ⊂ R
N be an open, bounded set with Lipschitz boundary and

let p ∈ C+(�) with  < p– ≤ p+ < ∞. If q ∈ L∞(�) with q– >  satisfies

q(x)≤ p∗(x) :=

⎧
⎨

⎩

Np(x)
N–p(x) if N > p(x),

+∞ if N ≤ p(x),

for all x ∈ �, then we have

W ,p(·)(�) ↪→ Lq(·)(�)

and the imbedding is compact if infx∈�(p∗(x) – q(x)) > .

Lemma . ([]) Suppose that p : RN → R is Lipschitz continuous with  < p– ≤ p+ <N .
Let q ∈ L∞(RN ) and p(x) ≤ q(x) ≤ p∗(x), for almost all x ∈ R

N . Then there is a continuous
embedding W ,p(·)(RN ) ↪→ Lq(·)(RN ).

In what follows, let p ∈ C+(RN ) be Lipschitz continuouswith  < p– ≤ p+ <N .We denote
by the space X :=W ,p(·)(RN ), and X∗ be a dual space of X. Furthermore, 〈·, ·〉 denotes the
pairing of X and its dual X∗ and Euclidean scalar product on R

N , respectively.

3 Existence of solutions
In this section, we shall give the proof of the existence of nontrivial weak solutions for
problem (B), by applying the mountain pass theorem, fountain theorem, and the basic
properties of the spaces Lp(·)(RN ) andW ,p(·)(RN ).

Definition . We say that u ∈ X is a weak solution of problem (B) if

∫

RN
ϕ(x,∇u) · ∇vdx +

∫

RN
|u|p(x)–uvdx = λ

∫

RN
f (x,u)vdx,

for all v ∈ X.

We assume that ϕ(x, v) :RN ×R
N →R

N is the continuous derivative with respect to v of
the mapping � : RN × R

N → R, � = �(x, v), that is, ϕ(x, v) = d
dv�(x, v). Suppose that

ϕ and � satisfy the following assumptions:
(J) The equalities

�(x, ) =  and �(x, v) = �(x, –v)

hold, for almost all x ∈R
N and for all v ∈R

N .
(J) ϕ :RN ×R

N → R
N satisfies the following conditions: ϕ(·, v) is measurable, for all

v ∈R
N , and ϕ(x, ·) is continuous, for almost all x ∈ R

N .
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(J) There are a function a ∈ Lp′(·)(RN ) and a nonnegative constant b such that

∣∣ϕ(x, v)
∣∣ ≤ a(x) + b|v|p(x)–,

for almost all x ∈R
N and for all v ∈R

N .
(J) �(x, ·) is strictly convex in R

N , for all x ∈R
N .

(J) The relation

d|v|p(x) ≤ ϕ(x, v) · v ≤ p+�(x, v)

holds, for all x ∈R
N and v ∈R

N , where d is a positive constant.
Let us define the functional � : X →R by

�(u) =
∫

RN
�(x,∇u)dx +

∫

RN


p(x)

|u|p(x) dx.

The analog of the following lemma can be found in []. However, we will give the proof
of those because our growth condition is slightly different from that of [].

Lemma. Assume that (J)-(J) and (J) hold.Then the functional� is well defined on X,
� ∈ C(X,R) and its Fréchet derivative is given by

〈
�′(u), v

〉
=

∫

RN
ϕ(x,∇u) · ∇vdx +

∫

RN
|u|p(x)–uvdx. (.)

Proof A simple calculation as in [] implies that the functional � is well defined on X.
For a fixed x ∈ R

N , it is clear that � ∈ C(RN ,R). Let u, v ∈ X, then given x ∈ R
N and

 < |t| < , by the classical mean value theorem, there exist θ, θ ∈R with  < |θ| < |t| and
 < |θ| < |t| such that

∣
∣∣∣
�(x,∇u + t∇v) –�(x,∇u)

t

∣
∣∣∣ =

∣∣ϕ(x,∇u + θ∇v) · ∇v
∣∣

and
∣∣
∣∣


p(x)

|u + tv|p(x) – |u|p(x)
t

∣∣
∣∣ =

∣
∣|u + θv|p(x)–(u + θv)v

∣
∣.

Since

∣
∣ϕ(x,∇u + θ∇v) · ∇v

∣
∣ ≤ ∣

∣a(x) + b|∇u + θ∇v|p(x)–∣∣|∇v|
≤ ∣

∣a(x) + b
(|∇u| + |∇v|)p(x)–∣∣|∇v|,

it is easy to obtain

∫

RN

∣∣a(x) + b
(|∇u| + |∇v|)p(x)–∣∣|∇v|dx

≤ ‖a‖Lp′(·)(RN )‖∇v‖Lp(·)(RN ) + b
∫

RN

∣
∣(|∇u| + |∇v|)p(x)–|∇v|∣∣dx
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≤ ‖a‖Lp′(·)(RN )‖∇v‖Lp(·)(RN ) + b
∥∥(|∇u| + |∇v|)p(x)–∥∥Lp′(·)(RN )‖∇v‖Lp(·)(RN )

≤ C
[
‖a‖Lp′(·)(RN ) + b

{
 +

(∫

RN

(|∇u| + |∇v|)p(x) dx
) 

(p′)–
}]

‖v‖X

≤ C
[
‖a‖Lp′(·)(RN ) + b

{
 + 

p+–
(p′)–

(∫

RN

(|∇u|p(x) + |∇v|p(x))dx
) 

(p′)–
}]

‖v‖X

for a positive constantC. Hence |a+b(|∇u|+ |∇v|)p(·)–||∇v| ∈ L(RN ). Since t →  implies
θ →  and θ → , it follows from the Lebesgue dominated convergence theorem that

lim
t→


t
(
�(u + tv) –�(u)

)
= lim

t→

∫

RN

�(x,∇u + t∇v) –�(x,∇u)
t

dx

+ lim
t→

∫

RN


p(x)

|u + tv|p(x) – |u|p(x)
t

dx

=
∫

RN
lim
θ→

ϕ(x,∇u + θ∇v) · ∇vdx

+
∫

RN
lim

θ→

(|u + θv|p(x)–(u + θv)v
)
dx

=
∫

RN
ϕ(x,∇u) · ∇vdx +

∫

RN
|u|p(x)–uvdx

=
〈
�′(u), v

〉
.

Let � : X → Lp′(·)(RN ;RN ) and � : X → Lp′(·)(RN ) be an operators defined by

�(u)(x) := ϕ
(
x,∇u(x)

)
and �(u)(x) :=

∣∣u(x)
∣∣p(x)–u(x).

Then the operators � and � are continuous on X. In fact, for any u ∈ X, let un → u
in X as n → ∞. Then there exist a subsequence {unk } and functions v, wj in Lp(·)(RN ) for
j = i, . . . ,N such that unk (x) → u(x) as k → ∞, and |unk (x)| ≤ v(x) and |(∂unk /∂xj)(x)| ≤
wj(x), for all k ∈ N and for almost all x ∈ R

N . Without loss of generality, we assume that
‖�(unk ) –�(u)‖Lp′(·)(RN ;RN ) <  and ‖�(unk ) –�(u)‖Lp′(·)(RN ) < . Then we have

∥∥�(unk ) –�(u)
∥∥(p′)+
Lp′(·)(RN ;RN ) ≤

∫

RN

∣∣ϕ(x,∇unk ) – ϕ(x,∇u)
∣∣p′(x) dx

and

∥∥�(unk ) –�(u)
∥∥(p′)+
Lp′(·)(RN ) ≤

∫

RN

∣∣∣∣unk (x)
∣∣p(x)–unk (x) –

∣∣u(x)
∣∣p(x)–u(x)

∣∣p′(x) dx.

Hence (J) implies that the integrands at the right-hand sides in the above estimates are
dominated by integrable functions. Since the function ϕ satisfies (J) and unk → u in X as
k → ∞, we obtain ϕ(x,∇unk (x)) → ϕ(x,∇u(x)) and |unk (x)|p(x)–unk (x) → |u(x)|p(x)–u(x)
as k → ∞, for almost all x ∈ R

N . Therefore, the Lebesgue dominated convergence theo-
rem tells us that �(unk ) → �(u) in Lp′(·)(RN ;RN ) and �(unk ) → �(u) in Lp′(·)(RN ) as
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k → ∞. Thus, � and � are continuous on X. From the Hölder inequality, we have

∣∣〈�′(un) –�′(u), v
〉∣∣

=
∣∣
∣∣

∫

RN

(
ϕ(x,∇un) – ϕ(x,∇u)

) · ∇vdx +
∫

RN

(|un|p(x)–un – |u|p(x)–u)
vdx

∣∣
∣∣

≤ 
∥
∥ϕ(x,∇un) – ϕ(x,∇u)

∥
∥
Lp′(·)(RN ;RN )‖∇v‖Lp(·)(RN )

+ 
∥
∥|un|p(x)–un – |u|p(x)–u∥

∥
Lp′(·)(RN )‖v‖Lp(·)(RN ),

for all v ∈ X, and thus

∥∥�′(un) –�′(u)
∥∥
X∗ = sup

‖v‖X≤

∣∣〈�′(un) –�′(u), v
〉∣∣

≤ 
{∥∥ϕ(x,∇un) – ϕ(x,∇u)

∥∥
Lp′(·)(RN ;RN )

+
∥∥|un|p(x)–un – |u|p(x)–u∥∥

Lp′(·)(RN )

} →  as n→ ∞.

Consequently, the operator �′ is continuous on X. �

Now we will show that the operator �′ is a mapping of type (S+), which plays a key role
in obtaining our main results. To do this, we first prove the following useful result.

Lemma . Assume that (J)-(J) hold. If the sequence {vn} in R
N such that

〈
ϕ(x, vn) – ϕ(x, v), vn – v

〉 → 

as n→ ∞, for v ∈R
N and for almost all x ∈R

N , then vn → v in R
N as n→ ∞.

Proof Let {vnk } be a subsequence of the sequence {vn} in R
N satisfied

〈
ϕ(x, vnk ) – ϕ(x, v), vnk – v

〉 →  (.)

as k → ∞ for any v ∈R
N . Then there existsM >  such that, for almost all x ∈R

N ,

〈
ϕ(x, vnk ), vnk

〉 ≤ M +
∣
∣ϕ(x, vnk )

∣
∣|v| + ∣

∣ϕ(x, v)
∣
∣|vnk | +

∣
∣ϕ(x, v)

∣
∣|v|.

This together with assumptions (J), (J), and Young?s inequality imply that

d|vnk |p(x) ≤
〈
ϕ(x, vnk ), vnk

〉

≤ M +
∣∣ϕ(x, vnk )

∣∣|v| + ∣∣ϕ(x, v)
∣∣|vnk | +

∣∣ϕ(x, v)
∣∣|v|

≤ M +
(
a(x) + b|vnk |p(x)–

)|v| + ∣
∣ϕ(x, v)

∣
∣|vnk | +

∣
∣ϕ(x, v)

∣
∣|v|

≤ M + a(x)|v| + d

|vnk |p(x) + bp(x)

(

d

) p(x)
p′(x) |v|p(x)

+
d

|vnk |p(x) +

(

d

) p′(x)
p(x) ∣

∣ϕ(x, v)
∣
∣p′(x) +

∣
∣ϕ(x, v)

∣
∣|v|,
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for almost all x ∈R
N , and hence

d

|vnk |p(x) ≤ M + a(x)|v| + bp(x)

(

d

) p(x)
p′(x) |v|p(x) +

(

d

) p′(x)
p(x) ∣

∣ϕ(x, v)
∣
∣p′(x) +

∣
∣ϕ(x, v)

∣
∣|v|,

for almost all x ∈R
N , where d is the positive constant from (J). Since d > , the sequence

{|vnk |} is bounded, and then the sequence {vnk } is bounded in R
N . By passing to a sub-

sequence, we can assume that vnk → ξ as k → ∞, for some ξ ∈ R
N . Then we obtain

ϕ(x, vnk ) → ϕ(x, ξ ) as k → ∞ and the relation (.) implies that

 = lim
k→∞

〈
ϕ(x, vnk ) – ϕ(x, v), vnk – v

〉
=

〈
ϕ(x, ξ ) – ϕ(x, v), ξ – v

〉
.

Since it follows from assumption (J) and Proposition . in [] that ϕ is monotone
on X, this relation occurs only if ξ = v, that is, vn → v in R

N as n → ∞. Since these argu-
ments hold for any subsequence of the sequence {vn}, we conclude that vn → v in R

N as
n→ ∞. �

Next we give the following assertion, which is based on the idea of the proof in []; see
[] for the case of bounded domain in R

N .

Lemma . Assume that (J)-(J) hold. Then the functional � : X → R is convex and
weakly lower semicontinuous on X . Moreover, the operator �′ is a mapping of type (S+),
i.e., if un ⇀ u in X as n→ ∞ and lim supn→∞〈�′(un) –�′(u),un – u〉 ≤ , then un → u in
X as n→ ∞.

Proof Let {un} be a sequence in X such that un ⇀ u in X as n→ ∞ and

lim sup
n→∞

〈
�′(un) –�′(u),un – u

〉 ≤ . (.)

It follows from un ⇀ u in X as n → ∞ that 〈�′(u),un – u〉 →  as n → ∞. Since � is
strictly convex by (J), it is obvious that the operator �′ is monotone, that is,

〈
�′(un) –�′(u),un – u

〉 ≥ . (.)

By (.) and (.), we have

lim
n→∞

∫

RN

〈
ϕ(x,∇un) – ϕ(x,∇u),∇un –∇u

〉
dx

+ lim
n→∞

∫

RN

(|un|p(x)–un – |u|p(x)–u)
(un – u)dx

= lim
n→∞

〈
�′(un) –�′(u),un – u

〉
= .

Hence the sequences {〈ϕ(x,∇un)–ϕ(x,∇u),∇un–∇u〉} and {(|un|p(x)–un – |u|p(x)–u)(un–
u)} converge to  in L(RN ;RN ) and L(RN ) as n→ ∞, respectively. By Lemma., we have
∇un(x)→ ∇u(x) inR

N and un(x)→ u(x) inR as n→ ∞, for almost all x ∈R
N . Then (.)
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holds in the stronger form

lim
n→∞

〈
�′(un) –�′(u),un – u

〉
= . (.)

It follows from the convexity of � that

�(u) +
〈
�′(un),un – u

〉 ≥ �(un),

and hence we obtain �(u) ≥ lim supn→∞ �(un) by (.). Since the functional � is strictly
convex and C-functional on X, it follows that � is weakly lower semicontinuous on X.
Then it is immediate that �(u)≤ lim infn→∞ �(un). Thus it implies

�(u) = lim
n→∞�(un). (.)

Consider the sequence {hn} in L(RN ) defined pointwise by

hn(x) =


{
�(x,∇un) +�(x,∇u)

}
–�

(
x,

∇un –∇u


)

+


p(x)
(∣∣un(x)

∣
∣p(x) +

∣
∣u(x)

∣
∣p(x)) –


p(x)

∣∣
∣∣
un(x) – u(x)



∣∣
∣∣

p(x)

.

From (J) and (J), it is clear that the sequence hn ≥ . Since �(x, ·) is continuous, for
almost all x ∈ R

N , we obtain hn(x) → �(x,∇u) + (/p(x))|u(x)| as n → ∞, for almost all
x ∈R

N . Hence, by the Fatou lemma and (.), we have

�(u) ≤ lim inf
n→∞

∫

RN
hn(x)dx

= �(u) – lim sup
n→∞

∫

RN

(
�

(
x,

∇un –∇u


)
+


p(x)

∣∣
∣∣
un – u



∣∣
∣∣

p(x))
dx.

Thus we get

lim sup
n→∞

∫

RN

(
�

(
x,

∇un –∇u


)
+


p(x)

∣
∣∣
∣
un – u



∣
∣∣
∣

p(x))
dx ≤ ,

that is,

lim
n→∞

∫

RN

(
�

(
x,

∇un –∇u


)
+


p(x)

∣∣
∣∣
un – u



∣∣
∣∣

p(x))
dx = .

Then by assumption (J), limn→∞ ‖un – u‖X = , we conclude that un → u in X as
n→ ∞. �

Until now, we considered some properties for the integral operator corresponding to
the divergence part in problem (B). To deal with our main results in this section, we need
the following assumptions for f . Denoting F(x, t) =

∫ t
 f (x, s)ds, we assume that

(H) p,q ∈ C+(RN ), p(x) <N , and  < p– ≤ p+ < q– ≤ q+ < p∗(x), for all x ∈R
N .
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(H) m ∈ L
r(·)

r(·)–q(·) (RN )∩ L∞(RN ), for some r ∈ C+(RN ) with q(x) < r(x) < p∗(x) and
meas{x ∈R

N :m(x) > } > , for all x ∈R
N .

(F) f :RN ×R→ R satisfies the Carathéodory condition in the sense that f (·, t) is
measurable, for all t ∈R, and f (x, ·) is continuous, for almost all x ∈ R

N .
(F) f satisfies the following growth condition: For all (x, t) ∈R

N ×R,

∣∣f (x, t)
∣∣ ≤ ∣∣m(x)

∣∣|t|q(x)–,

where q andm are given in (H) and (H), respectively.
(F) There exists a positive constant θ such that θ > p+ and

 < θF(x, t)≤ f (x, t)t, for all t ∈R \ {} and x ∈ R
N .

(F) f (x, t) = o(|t|p+–), as |t| →  uniformly, for all x ∈R
N .

Then it follows from assumption (F) that

(F′) |F(x, t)| ≤ |m(x)|
q(x) |t|q(x), for all (x, t) ∈R

N ×R.

Define the functional � : X →R by

�(u) =
∫

RN
F(x,u)dx.

Then it is easy to check that � ∈ C(X,R) and its Fréchet derivative is

〈
� ′(u), v

〉
=

∫

RN
f (x,u)vdx (.)

for any u, v ∈ X. Next we define the functional Iλ : X →R by

Iλ(u) = �(u) – λ�(u).

Then it follows that the functional Iλ ∈ C(X,RN ) and its Fréchet derivative is

〈
I ′λ(u), v

〉
=

∫

RN
ϕ(x,∇u) · ∇vdx +

∫

RN
|u|p(x)–uvdx – λ

∫

RN
f (x,u)vdx

for any u, v ∈ X.

Lemma . Assume that (H)-(H) and (F) hold. Then � and � ′ are weakly strongly
continuous on X.

Proof Proceeding the argument analogous to Lemma . of [], it implies that the func-
tionals � and � ′ are weakly strongly continuous on X. �

With the aid of Lemma ., we prove that the energy functional Iλ satisfies the Palais-
Smale condition ((PS)-condition for short). This plays a key role in obtaining the existence
of a nontrivial weak solution for the given problem.
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Lemma. Assume that (J)-(J), (H)-(H), and (F)-(F) hold.Then Iλ satisfies the (PS)-
condition, for all λ > .

Proof Note that � ′ is of the type (S+), since � ′ is weakly strongly continuous. Let {un} be
a (PS)-sequence in X, i.e., Iλ(un) → c and I ′λ(un) →  as n → ∞. Since I ′λ is of type (S+)
and X is reflexive, it suffices to verify that the sequence {un} is bounded in X. Suppose that
‖un‖X → ∞, in the subsequence sense. By assumption (J), we deduce that

Iλ(un) –

θ

〈
I ′λ(un),un

〉
=

∫

RN

(
�(x,∇un) –


θ
ϕ(x,∇un) · ∇un

)
dx

+
∫

RN

(


p(x)
|u|p(x) – 

θ
|u|p(x)

)
dx

+ λ

∫

RN

(

θ
f (x,un)un – F(x,un)

)
dx

≥
(
 –

p+
θ

)(∫

RN
�(x,∇un)dx +

∫

RN


p(x)

|u|p(x) dx
)

+ λ

∫

RN

(

θ
f (x,un)un – F(x,un)

)
dx,

where θ is a positive constant from (F). By condition (F), we have
(
 –

p+
θ

)(∫

RN
�(x,∇un)dx +

∫

RN


p(x)

|u|p(x) dx
)

≤ Iλ(un) –

θ

〈
I ′λ(un),un

〉
.

For n large enough, we may assume that ‖un‖X > . Then it follows from (J) and Re-
mark .() that

(
 –

p+
θ

)

p+

‖un‖p–X ≤ Iλ(un) +

θ

∥
∥I ′λ(un)

∥
∥
X∗‖un‖X .

Since θ > p+ and p– > , this is a contradiction. �

We are now prepared to prove our main results for the existence of at least one solu-
tion and infinitely many solutions for problem (B), following the basic idea in []. The
following consequence can be established by applying the mountain pass theorem with
Lemmas . and ..

Theorem . Assume that (J)-(J), (H)-(H) and (F)-(F) hold. Then problem (B) has
a nontrivial weak solution, for all λ > .

Proof Note that Iλ() = . Since Iλ satisfies the (PS)-condition, it is enough to show the
geometric conditions in the mountain pass theorem, i.e.,
() there is a positive constant R such that

inf‖u‖X=R
Iλ(u) > ;

() there exists an element v in X satisfying

Iλ(tv)→ –∞ as t → ∞.
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Let us prove the condition (). By Lemma ., there exists a positive constant d such
that ‖u‖Lp+ (RN ) ≤ d‖u‖X . Let ε >  be small enough such that λεdp+

 ≤ min{d, }/(p+) for
the positive constant d from (J). By assumptions (F) and (F), for any ε > , there exists
a positive constant denoted by C(ε) such that

∣∣F(x, t)
∣∣ ≤ ε|t|p+ +C(ε)

∣∣m(x)
∣∣|t|q(x),

for all (x, t) ∈ R
N × R. Assume that ‖u‖X < . Then it follows from (J) and Lemmas .,

.(), ., and Remark . that

Iλ(u) =
∫

RN
�(x,∇u)dx +

∫

RN


p(x)

|u|p(x) dx – λ

∫

RN
F(x,u)dx

≥ min{d, }
p+

(∫

RN
|∇u|p(x) dx +

∫

RN
|u|p(x) dx

)

– λ

∫

RN

(
ε|u|p+ +C(ε)

∣∣m(x)
∣∣|u|q(x))dx

≥ min{d, }
p+

‖u‖p+X – λεdp+
 ‖u‖p+X – λC(ε)‖m‖

L
r(·)

r(·)–q(·) (RN )
‖u‖q–Lr(·)(RN )

≥ min{d, }
p+

‖u‖p+X – λεdp+
 ‖u‖p+X – λC(ε)C‖u‖q–X

for a positive constant C. Then it follows that

Iλ(u) ≥ min{d, }
p+

‖u‖p+X –C(λ, ε)C‖u‖q–X .

Since q– > p+, there exist R >  small enough and δ >  such that Iλ(u) ≥ δ >  when
‖u‖X = R.
Next we show the condition (). Meanwhile, observe that (J) implies that, for all s ≥ ,

x ∈R
N , and ξ ∈R

N ,

�(x, sξ )≤ sp+�(x, ξ ). (.)

Indeed, let us define g(k) = �(x,kξ ). Then we have

g ′(k) = ϕ(x,kξ )ξ =

k
ϕ(x,kξ ) · kξ ≤ p+

k
�(x,kξ ) =

p+
k
g(k).

It implies that

g ′(k)
g(k)

≤ p+
k
.

Integrating this inequality over (, s), we have

ln g(s) – ln g() ≤ p+ ln s

and so

g(s)
g()

≤ sp+ .



Lee et al. Boundary Value Problems  (2014) 2014:261 Page 13 of 17

Hence we find that (.) holds. In a similar way, we find that condition (F) implies

F(x, sη)≥ sθF(x,η), (.)

for all η ∈ R, x ∈R
N , and s ≥ .

Take v ∈ X \ {}. Then it follows from (.) and (.) that

Iλ(tv) =
∫

RN
�(x, t∇v)dx +

∫

RN


p(x)

|tv|p(x) dx – λ

∫

RN
F(x, tv)dx

≤ tp+
(∫

RN
�(x,∇v)dx +

∫

RN


p(x)

|v|p(x) dx
)
– λtθ

∫

RN
F(x, v)dx,

where t ≥ . Since θ > p+, we see that Iλ(tv) → –∞ as t → ∞. Therefore Iλ satisfies the
geometry of the mountain pass theorem. �

Now, adding the oddity on f and using the fountain theorem in Theorem . in [], we
shall demonstrate infinitely many pairs of weak solutions for problem (B). To employ the
fountain theorem, we consider the following situation. This lemma holds for a reflexive
and separable Banach space.

Lemma . ([]) Let W be a reflexive and separable Banach space. Then there are {en} ⊆
W and {f ∗

n } ⊆W ∗ such that

W = span{en : n = , , . . .}, W ∗ = span
{
f ∗
n : n = , , . . .

}
,

and

〈
f ∗
i , ej

〉
=

{
 if i = j,
 if i 
= j.

Let us denoteWn = span{en}, Yk =
⊕k

n=Wn, and Zk =
⊕∞

n=k Wn.

Theorem . Assume that (J)-(J), (H)-(H), and (F)-(F) hold. If f (x, –t) = –f (x, t)
holds, for all (x, t) ∈R

N ×R, then Iλ has a sequence of critical points {±un} in X such that
Iλ(±un)→ ∞ as n→ ∞.

Proof Obviously, Iλ is an even functional and satisfies (PS)-condition. It is enough to show
that there exist ρk > δk >  such that
() bk := inf{Iλ(u) : u ∈ Zk ,‖u‖X = δk} → ∞ as n→ ∞;
() ak := max{Iλ(u) : u ∈ Yk ,‖u‖X = ρk} ≤ ,

for k large enough.
Denote

αk := sup
u∈Zk ,‖u‖X=

(∫

RN


r(x)

|u|r(x) dx
)
.
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Then αk →  as k → ∞. In fact, suppose that it is false. Then there exist ε >  and the
sequence {uk} in Zk such that

‖uk‖X = ,
∫

RN


r(x)

|uk|r(x) dx ≥ ε,

for all k ≥ k. Since the sequence {uk} is bounded in X, there exists u ∈ X such that uk ⇀ u
in X as n→ ∞ and

〈
f ∗
j ,u

〉
= lim

k→∞
〈
f ∗
j ,uk

〉
= 

for j = , , . . . . Hence we get u = . But we have

ε ≤ lim
k→∞

∫

RN


r(x)

|uk|r(x) dx =
∫

RN


r(x)

|u|r(x) dx = ,

which provides a contradiction.
For any u ∈ Zk , it follows from (F′), (J) and Lemmas . and ., and Remark . that

Iλ(u) =
∫

RN
�(x,∇u)dx +

∫

RN


p(x)

|u|p(x) dx – λ

∫

RN
F(x,u)dx

≥ min{d, }
p+

(∫

RN
|∇u|p(x) dx +

∫

RN
|u|p(x) dx

)
–

λ

q–

∫

RN

∣
∣m(x)

∣
∣|u|q(x) dx

≥ min{d, }
p+

‖u‖p–X –
λ
q–

‖m‖
L

r(·)
r(·)–q(·) (RN )

‖u‖q+Lr(·)(RN )

≥ min{d, }
p+

‖u‖p–X –
λ
q–

C‖u‖q+Lr(·)(RN )

≥ min{d, }
p+

‖u‖p–X –
λ
q–

α
q+
k C‖u‖q+X , (.)

where C = ‖m‖
L

r(·)
r(·)–q(·) (RN )

and C is a positive constant. Choose δk = (λq+Cα
q+
k /

(q– min{d, })) 
p––q+ . Then δk → ∞ as k → ∞ since p– < q+ and αk →  as k → ∞. Hence,

if u ∈ Zk and ‖u‖X = δk , we deduce that

Iλ(u) ≥ min{d, }
(


p+

–

q+

)
δ
p–
k –C → ∞ as k → ∞,

for a positive constant C, which implies ().
To show (), from (F) we see that, for ε = , there exists δ >  such that

f (x, s)≤ |s|p+–, (.)

for all x ∈ R
N and for all |s| < δ. Then we know that there exists ω ∈ L∞(RN ) such that

ω(x) > , for almost all x ∈R
N , and

F(x, s)≥ ω(x)|s|θ , (.)
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for almost all x ∈R
N and all |s| ≥ δ. In fact, by (F), we have, for all t ≥ δ,

θ

t
≤ f (x, t)

F(x, t)
=

d
dt F(x, t)
F(x, t)

.

Then it follows that

∫ s

δ

θ

t
dt ≤

∫ s

δ

d
dt F(x, t)
F(x, t)

dt,

and thus

ln

(
s
δ

)θ

≤ ln
F(x, s)
F(x, δ)

.

Hence we get

F(x, s)≥ sθ

δθ
F(x, δ).

Similarly, we obtain

F(x, s)≥ |s|
δ
F(x, –δ),

for all s ≤ –δ. Thus, F(x, s) ≥ ω(x)|s|θ , for almost all x ∈ R
N and all |s| ≥ δ, where ω(x) =

min {F(x, δ)/δθ ,F(x, –δ)/δθ }. Also assumptions (F) and (F) imply that ω ∈ L∞(RN ) and
ω > .
Assume that ‖u‖X > . For any u ∈ Yk , by (J), (F), (.), (.), Lemmas ., ., .,

and Remark ., we have

Iλ(u) =
∫

RN
�(x,∇u)dx +

∫

RN


p(x)

|u|p(x) dx – λ

∫

RN
F(x,u)dx

≤
∫

RN

∣
∣a(x)

∣
∣|∇u|dx + b

p–

∫

RN
|∇u|p(x) dx + 

p–

∫

RN
|u|p(x) dx

– λ

(∫

{x∈RN :|u(x)|≥δ}
ω(x)|u|θ dx –

∫

{x∈RN :|u(x)|<δ}

p+

|u|p+ dx
)

≤ ‖a‖Lp′(·)(RN )‖∇u‖Lp(·)(RN ) +
max{b, }

p–
‖u‖p+X +

λ

p+

∫

{x∈RN :|u(x)|<δ}
|u|p+ dx

+ λ

∫

{x∈RN :|u(x)|<δ}
θ min

{
F(x, δ)

δθ
,
F(x, –δ)

δθ

} |u|θ
θ

dx – λ

∫

RN
ω(x)|u|θ dx

≤ ‖a‖Lp′(·)(RN )‖u‖X +
(

max{b, }
p–

+
λ

p+

)
‖u‖p+X

+ λ

∫

{x∈RN :|u(x)|<δ}
min {f (x, δ)δ, f (x, –δ)(–δ)}

δθ

|u|θ–p+
θ

|u|p+ dx

– λ

∫

RN
ω(x)|u|θ dx

≤ ‖a‖Lp′(·)(RN )‖u‖X +
(

max{b, }
p–

+
λ

p+

)
‖u‖p+X
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+ λ

∫

{x∈RN :|u(x)|<δ}
δp+–

δθ–
δθ–p+

θ
|u|p+ dx – λ

∫

RN
ω(x)|u|θ dx

≤ ‖a‖Lp′(·)(RN )‖u‖X +
(

max{b, }
p–

+
λ

p+

)
‖u‖p+X +

λ

θ

∫

RN
|u|p+ dx

– λ

∫

RN
ω(x)|u|θ dx. (.)

By Hölder?s inequality and Lemma., we deduce that

∫

RN
ω(x)|u|θ dx ≤ ‖ω‖L∞(RN )

∫

RN
|u|θ dx ≤ C‖u‖θ

X

for a positive constant C. Notice that in the finite dimensional subspace X, the norm
‖ · ‖Lθ (RN ) is equivalent to the norm ‖ · ‖X . Therefore, it follows from (.) that

Iλ(u) ≤ ‖a‖Lp′(·)(RN )‖u‖X +
(

max{b, }
p–

+
λ

p+
+

λ

θ

)
‖u‖p+X – λC‖u‖θ

X

for a positive constant C. Since θ > p+, we obtain

Iλ(u) → –∞ as ‖u‖X → ∞

and thus we can choose ρk > δk > . This completes the proof. �

The following consequence is the other way to show the existence of infinitely many
pairs of weak solutions for the given problem (B) without assumption (F).

Theorem . Assume that (J)-(J), (H)-(H), and (F)-(F) hold. In addition, suppose
that there exist γ ∈ L(RN ) and γ ∈ L∞(RN ) with γ(x) > , for almost all x ∈ R

N , such
that

F(x, s)≥ γ(x)|s|θ – γ(x), (.)

for almost all x ∈R
N and for all s ∈R where θ > p+. If f (x, –t) = –f (x, t) holds, for all (x, t) ∈

R
N × R, then Iλ has a sequence of critical points {±un} in X such that Iλ(±un) → ∞ as

n→ ∞.

Proof Obviously, Iλ is an even functional and satisfies (PS)-condition. It is enough to show
that there exist ρk > δk >  such that
() bk := inf{Iλ(u) : u ∈ Zk ,‖u‖X = δk} → ∞ as n→ ∞;
() ak := max{Iλ(u) : u ∈ Yk ,‖u‖X = ρk} ≤ ,

for k large enough. The same argument in Theorem . implies ().
To show (), for k = , , . . . , write

σk = inf
u∈Yk ,‖u‖X=

(∫

RN
γ(x)|u|θ dx

)
.
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It is easy to see that σk > . For u ∈ Yk with ‖u‖X =  and t > , by (.) we have

Iλ(tu) =
∫

RN
�(x, t∇u)dx +

∫

RN


p(x)

|tu|p(x) dx – λ

∫

RN
F(x, tu)dx

≤ Ctp+ – λσktθ + λ

∫

RN
γ(x)dx (.)

for a positive constant C. Since θ > p+, it follows from (.) that

Iλ(tu) → –∞ as t → ∞

and thus we can choose ρk > δk > . This completes the proof. �
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1. Diening, L, Harjulehto, P, Hästö, P, Ru̇žička, M: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes

in Mathematics, vol. 2017. Springer, Berlin (2011)
2. Edmunds, DE, Rákosník, J: Density of smooth functions inWk,p(x) (�). Proc. R. Soc. Lond. Ser. A 437, 229-236 (1992)
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