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Abstract
The main purpose of this paper is to establish the existence, uniqueness and positive
solution of a system of second-order boundary value problem with integral
conditions. Using Banach’s fixed point theorem and the Leray-Schauder nonlinear
alternative, we discuss the existence and uniqueness solution of this problem, and we
apply Guo-Krasnoselskii’s fixed point theorem in cone to study the existence of
positive solution. We also give some examples to illustrate our results.
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1 Introduction
The systems of second-order ordinary differential equations arise from many fields in
physics, biology and chemistry; for example, in the theory of nonlinear diffusion gener-
ated by nonlinear sources, in thermal ignition of gases, and in concentration in chemical
or biological problems (see [–] and the references therein). The main purpose of the
present paper is to investigate sufficient conditions for the existence, uniqueness and pos-
itive solution of the following problem:

u′′
i (t) + fi

(
t,u(t), . . . ,un(t)

)
= ,  < t < , (.)

with integral conditions

{
ui() – k,iu′

i() =
∫ 
 gi(s,u(s), . . . ,un(s))ds,

ui() + k,iu′
i() =

∫ 
 hi(s,u(s), . . . ,un(s))ds,

(.)

where for all i ∈ {, . . . ,n}, fi : [, ]×R
n →R, gi : [, ]×R

n →R and hi : [, ]×R
n →R

are given functions satisfying some assumptions that will be specified later. k,i and k,i
are nonnegative constants. The integral conditions have physical significations such as to-
tal mass, moment, etc. Sometimes it is better to impose integral conditions to get a more
accurate measure than a local condition (see []). Various types of boundary value prob-
lems involving integral condition have been studied by many authors using fixed point

© 2014 Jebari and Boukricha; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://www.boundaryvalueproblems.com/content/2014/1/262
mailto:rjebari@yahoo.fr


Jebari and Boukricha Boundary Value Problems 2014, 2014:262 Page 2 of 13
http://www.boundaryvalueproblems.com/content/2014/1/262

theorems on cones, fixed point index theory, the generalized quasilinearization method,
the Leray-Schauder nonlinear alternative and the Leggett-Williams fixed point theorem
[–]. In [] Yang and Sun considered the boundary value problem of the following dif-
ferential equations:

⎧
⎪⎨

⎪⎩

–u′′(t) = f (t, v(t)) = ,  < t < ,
–v′′(t) = g(t,u(t)) = ,  < t < ,
u() = u() = , v() = v() = 

(.)

and by using the degree theory, the existence of a positive solution of (.) is established.
In [], Ma considered the following system involving second-order ordinary differential
equations:

⎧
⎪⎨

⎪⎩

u′′(t) + a(t)f (u(t), v(t)) = ,  < t < ,
v′′(t) + b(t)g(u(t), v(t)) = ,  < t < ,
u() = u() = , v() = v() = ,

(.)

where a(·) and b(·) are continuous functions on [, ]. By the use of a fixed point theorem
on cone, Ma established the existence of one positive solution of (.) in which f and g
satisfy appropriate growth and boundedness conditions. In [, ] Khan and Ahmed et al.
considered respectively the following second-order ordinary differentials equations:

⎧
⎪⎨

⎪⎩

u′′(t) = f (t,u(t)),  < t < ,
u() – ku′() =

∫ 
 h(u(s))ds,

u() + ku′() =
∫ 
 h(u(s))ds,

(.)

and

⎧
⎪⎨

⎪⎩

u′′(t) + σu′(t) + f (t,u(t)) = ,  < t < ,
u() – ku′() =

∫ 
 h(u(s))ds,

u() + ku′() =
∫ 
 h(u(s))ds,

(.)

where σ ∈ R\{}. The generalized method of quasilinearization is applied to obtain by
iteration amonotone sequence converging uniformly and rapidly to a solution of (.) and
(.). In [] Benchohra studied the existence and uniqueness of a solution of the following
second-order boundary value problem:

⎧
⎪⎨

⎪⎩

u′′(t) + f (t,u(t)) = ,  < t < ,
u() = ,
u() =

∫ 
 g(s)u(s)ds,

(.)

where g : [, ] → R is an integrable function. Benchohra et al. used the Leray-Schauder
nonlinear alternative to investigate the existence of solutions of (.) under the conditions
f is L-Carathéodory and |f (t,u)| ≤ p(t)|u|α + q(t), α ∈ [, [, p,q ∈ L([, ],R+). In []
Belarbi et al. used the Leggett-Williams fixed point theorem to study the multiple positive
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solutions for the nonlinear boundary value problem with integral boundary conditions:

⎧
⎪⎨

⎪⎩

u′′(t) + f (u(t)) = ,  < t < ,
u() – ku′() =

∫ 
 h(u(s))ds,

u() + ku′() =
∫ 
 h(u(s))ds.

(.)

For more knowledge about the boundary value problems, we refer the reader to [–].
Our aim is to use the Banach contraction principle and the Leray-Schauder nonlinear
alternative to prove the existence and uniqueness solutions of our problem. For this, we
formulate the boundary value problem as the fixed point problem. However, the Schauder
fixed point theorem cannot ensure the solutions to be positive. Since only positive solu-
tions are useful formany applications, motivated by the above works, the existence of pos-
itive solution is obtained by Guo-Krasnoselskii’s fixed point theorem. Our work is more
general than [–, , ]; for example, (.) investigated in the case n = , k, = k, = ,
g ≡ , h(s,u(s)) = g(s)u(s) and (.) in the case n = , k, = k, = k, = k, = , g ≡ g ≡
h ≡ h ≡ . To the best of our knowledge, no one has studied the existence and positive-
ness of solutions for system (.)-(.).
This paper is organized as follows. In Section , we present some preliminaries that

will be used to prove our results. In Section , we discuss the existence and uniqueness
of a solution for problem (.)-(.) by using the Leray-Schauder nonlinear alternative and
Banach’s fixed point theorem. In Section , the study of the positivity of a solution is based
on Guo-Krasnoselskii’s fixed point theorem in cone. Finally, we shall give three examples
to illustrate our main results.

2 Preliminaries and lemmas
The Cartesian product of C([, ];R) can be defined as E = (C([, ];R))n equipped with
the norm

‖u‖ =
n∑

i=

‖ui‖∞,

where u = (u, . . . ,un) ∈ E. The space E is a Banach space. We define, for all x ∈R
n,

‖x‖ =
n∑

i=

|xi|.

For all f ∈ L([, ]),

‖f ‖L =
∫ 



∣∣f (s)
∣∣ds

and for all g ∈ L([, ]),

‖g‖L =
(∫ 



∣
∣g(s)

∣
∣ ds

) 

.

We define the set Rn
+ by Rn

+ = {(x, . . . ,xn) ∈R
n;x ∈R+, . . . ,xn ∈R+}.
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Definition .
. The function u = (u, . . . ,un) is called a nonnegative solution of system (.)-(.) if

and only if u satisfies (.)-(.) and for all i ∈ {, . . . ,n}, ui(t)≥  for t ∈ [, ].
. The function u = (u, . . . ,un) is called a positive solution of system (.)-(.) if and

only if u satisfies (.)-(.) and for all i ∈ {, . . . ,n}, ui(t) >  for t ∈], [.

Lemma . Let i ∈ {, . . . ,n}, fi, gi and hi are continuous functions. Then u = (u, . . . ,un) is
a solution of (.)-(.) if and only if for all i ∈ {, . . . ,n},

ui(t) = Pi(t) +
∫ 


Gi(t, s)fi

(
s,u(s), . . . ,un(s)

)
ds,

where

Pi(t) =
( – t + k,i)
k,i + k,i + 

∫ 


gi

(
s,u(s), . . . ,un(s)

)
ds

+
(t + k,i)

k,i + k,i + 

∫ 


hi

(
s,u(s), . . . ,un(s)

)
ds (.)

is the unique solution of the problem

⎧
⎪⎨

⎪⎩

u′′
i (t) = ,  < t < ,

ui() – k,iu′
i() =

∫ 
 gi(s,u(s), . . . ,un(s))ds,

ui() + k,iu′
i() =

∫ 
 hi(s,u(s), . . . ,un(s))ds,

and

Gi(t, s) =


k,i + k,i + 

{
(k,i + t)( – s + k,i) if  ≤ t ≤ s,
(k,i + s)( – t + k,i) if s≤ t ≤ 

(.)

is the Green functions of the corresponding homogeneous problem.

For details of the proof of this lemma, we refer the reader to [, , ]. Now, let Ti be the
operator defined by

Ti : E → C
(
[, ];R

)

u 
→ Ti(u),

where for all t ∈ [, ],

Ti(u)(t) = Pi(t) +
∫ 


Gi(t, s)fi

(
s,u(s), . . . ,un(s)

)
ds,

and we denote by T the operator defined by

T : E → E
u 
→ (

T(u), . . . ,Tn(u)
)
.

We can write Lemma . in the following form: u = (u, . . . ,un) is a solution of (.)-(.) if
and only if u is a fixed point of the operator T .
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3 Existence and uniqueness results
Lemma . For all i ∈ {, . . . ,n}, (t, s) ∈ [, ]× [, ],

 ≤ Gi(t, s)≤ G(s), (.)

where

G(s) =
(maxi∈{,...,n} k,i + s)( – s + maxi∈{,...,n} k,i)

mini∈{,...,n} k,i + mini∈{,...,n} k,i + 
. (.)

Proof Let i ∈ {, . . . ,n}. If t ≤ s, then

(k,i + t)( – s + k,i) ≤ (k,i + s)( – s + k,i).

This implies that


k,i + k,i + 

(k,i + t)( – s + k,i) ≤ 
k,i + k,i + 

(k,i + s)( – s + k,i).

If s ≤ t, then –t ≤ –s and

(k,i + s)( – t + k,i) ≤ (k,i + s)( – s + k,i).

This implies that


k,i + k,i + 

(k,i + s)( – t + k,i) ≤ 
k,i + k,i + 

(k,i + s)( – s + k,i).

We deduce that for all i ∈ {, . . . ,n}, for all s ∈ [, ] and for all t ∈ [, ],  ≤ Gi(t, s) ≤


k,i+k,i+
(k,i + s)( – s + k,i). Since for all i ∈ {, . . . ,n}, mini∈{,...,n} k,i ≤ k,i ≤ maxi∈{,...,n} k,i

and mini∈{,...,n} k,i ≤ k,i ≤ maxi∈{,...,n} k,i. We obtain for all (t, s) ∈ [, ] × [, ], i ∈
{, . . . ,n},  ≤ Gi(t, s)≤ G(s), where G(s) is given by (.). �

Now, we prove the existence and uniqueness of solutions in the Banach space E. The
uniqueness result is based on Banach’s contraction principle [].

Theorem . Let i, j ∈ {, . . . ,n}, assume that the functions fi, gi and hi are continu-
ous and there exist nonnegative functions θi,j,ϕi,j,ψi,j ∈ L([, ],R+) such that for all x =
(x, . . . ,xn), y = (y, . . . , yn) ∈R

n and t ∈ [, ],
. |fi(t,x, . . . ,xn) – fi(t, y, . . . , yn)| ≤ ∑n

j= θi,j(t)|xj – yj|;
. |gi(t,x, . . . ,xn) – gi(t, y, . . . , yn)| ≤ ∑n

j= ϕi,j(t)|xj – yj|;
. |hi(t,x, . . . ,xn) – hi(t, y, . . . , yn)| ≤ ∑n

j= ψi,j(t)|xj – yj|;
. C

∑n
i=

∑n
j= ‖ψi,j‖L +K

∑n
i=

∑n
j= ‖ϕi,j‖L +

∑n
i=

∑n
j= ‖G‖L‖θi,j‖L < ,

where

C =
( + maxi∈{,...,n} k,i)

mini∈{,...,n} k,i + mini∈{,...,n} k,i + 
and K =

( + maxi∈{,...,n} k,i)
mini∈{,...,n} k,i + mini∈{,...,n} k,i + 

.

Then problem (.)-(.) has a unique solution u in E.
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Proof We shall use Banach’s fixed point theorem. For this we need to verify that T is a
contraction function. For all i ∈ {, . . . ,n}, u = (u, . . . ,un), v = (v, . . . , vn) ∈ E, for each t ∈
[, ], we have

∣
∣Ti(u)(t) – Ti(v)(t)

∣
∣ ≤ C

∫ 



∣
∣gi

(
s,u(s)

)
– gi

(
s, v(s)

)∣∣ds

+K
∫ 



∣
∣hi

(
s,u(s)

)
– hi

(
s, v(s)

)∣∣ds

+
∫ 


G(s)

∣∣fi
(
s,u(s)

)
– fi

(
s, v(s)

)∣∣ds

≤ C
n∑

j=

∫ 


ϕi,j(s)

∣
∣uj(s) – vj(s)

∣
∣ds

+K
n∑

j=

∫ 


ψi,j(s)

∣∣uj(s) – vj(s)
∣∣ds

+
n∑

j=

∫ 


G(s)θi,j(s)

∣∣uj(s) – vj(s)
∣∣ds

≤
[

C
n∑

j=

∫ 


ϕi,j(s)ds +K

n∑

j=

∫ 


ψi,j(s)ds

+
n∑

j=

∫ 


G(s)θi,j(s)ds

]

‖u – v‖.

Then by the Cauchy-Schwarz inequality, for all i ∈ {, . . . ,n},

∥∥Ti(u) – Ti(v)
∥∥∞ ≤

[

C
n∑

j=

‖ϕi,j‖L +K
n∑

j=

‖ψi,j‖L +
n∑

j=

‖G‖L‖θi,j‖L
]

× ‖u – v‖

we deduce that

∥∥T(u) – T(v)
∥∥ ≤

n∑

i=

[

C
n∑

j=

‖ϕi,j‖L +K
n∑

j=

‖ψi,j‖L +
n∑

j=

‖G‖L‖θi,j‖L
]

× ‖u – v‖.

Since C
∑n

i=
∑n

j= ‖ψi,j‖L +K
∑n

i=
∑n

j= ‖ϕi,j‖L +
∑n

i=
∑n

j= ‖G‖L‖θi,j‖L < , then T is a
contraction, hence it has a unique fixed point which is the unique solution of (.)–(.).
The proof is completed. �

We establish an existence result using the nonlinear alternative of Leray-Schauder type.

Lemma . (Leray-Schauder nonlinear alternative (see [])) Let F be a Banach space
and � be a bounded open subset of F ,  ∈ �. Let T : � → F be a completely continuous
operator. Then there exists x ∈ ∂�, λ >  such that T(x) = λx, or there exists a fixed point
x∗ ∈ �.

http://www.boundaryvalueproblems.com/content/2014/1/262
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From this theorem we have the following result.

Theorem . Let i ∈ {, . . . ,n}, assume that the functions fi ∈ C([, ] × R
n,R) gi ∈

C([, ] × R
n,R) and hi ∈ C([, ] × R

n,R) are continuous such that there exist contin-
uous and nonnegative functions φ

f
i , φ

g
i , and φh

i ∈ L([, ],R+), ψ
f
i , ψ

g
i and ψh

i ∈ C(R+,R+)
nondecreasing on R+ and r >  such that for all (x, . . . ,xn) ∈ R

n, for all t ∈ [, ]

∣
∣fi(t,x, . . . ,xn)

∣
∣ ≤ φ

f
i (t)ψ

f
i
(‖x‖

)
, (.)

∣
∣gi(t,x, . . . ,xn)

∣
∣ ≤ φ

g
i (t)ψ

g
i
(‖x‖

)
, (.)

∣∣hi(t,x, . . . ,xn)
∣∣ ≤ φh

i (t)ψ
h
i
(‖x‖

)
, (.)

‖G‖L
n∑

i=

ψ
f
i (r)

∥
∥φ

f
i
∥
∥
L +C

n∑

i=

ψ
g
i (r)

∥
∥φ

g
i
∥
∥
L +K

n∑

i=

ψh
i (r)

∥
∥φh

i
∥
∥
L < r. (.)

Then the boundary value problem (.)-(.) has at least one nontrivial solution u∗ ∈ E.

Proof First let us prove that T is completely continuous.
(i) It is easy to see that for all i ∈ {, . . . ,n}, Ti are continuous since fi, gi, hi, and Gi are

continuous. T maps bounded sets into bounded sets in E; to establish this step, we use the
Arzelà-Ascoli theorem []. Let Bη = {u ∈ E;‖u‖ ≤ η} be a bounded subset in E. We shall
prove that T(Bη) is relatively compact.
For u ∈ Bη and using (.), (.), (.) and Lemma ., we get for all i ∈ {, . . . ,n}, for all

t ∈ [, ],

∣∣Ti(u)(t)
∣∣ ≤

∫ 


G(s)φ

f
i (s)ψ

f
i
(∥∥u(s)

∥∥


)
ds +C

∫ 


φ
g
i (s)ψ

g
i
(∥∥u(s)

∥∥


)
ds

+K
∫ 


φh
i (s)ψ

h
i
(∥∥u(s)

∥∥


)
ds. (.)

Since ψ
f
i , ψ

g
i , and ψh

i are nondecreasing, then (.) becomes for all i ∈ {, . . . ,n}, for all
t ∈ [, ],

∣∣Ti(u)(t)
∣∣ ≤

∫ 


G(s)φ

f
i (s)ψ

f
i
(‖u‖)ds +C

∫ 


φ
g
i (s)ψ

g
i
(‖u‖)ds

+K
∫ 


φh
i (s)ψ

h
i
(‖u‖)ds

≤ ψ
f
i (η)

∫ 


G(s)φ

f
i (s)ds +Cψ

g
i (η)

∫ 


φ
g
i (s)ds

+Kψh
i (η)

∫ 


φh
i (s)ds.

Using the Cauchy-Schwarz inequality, we have for all i ∈ {, . . . ,n}, for all t ∈ [, ],

∣∣Ti(u)(t)
∣∣ ≤ ψ

f
i (η)‖G‖L

∥∥φ
f
i
∥∥
L +Cψ

g
i (η)

∥∥φ
g
i
∥∥
L +Kψh

i (η)
∥∥φh

i
∥∥
L .

Then, for all i ∈ {, . . . ,n},
∥∥Ti(u)

∥∥∞ ≤ ψ
f
i (η)‖G‖L

∥∥φ
f
i
∥∥
L +Cψ

g
i (η)

∥∥φ
g
i
∥∥
L +Kψh

i (η)
∥∥φh

i
∥∥
L .
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Consequently,

∥∥T(u)
∥∥ ≤ ‖G‖L

n∑

i=

ψ
f
i (η)

∥∥φ
f
i
∥∥
L +C

n∑

i=

ψ
g
i (η)

∥∥φ
g
i
∥∥
L +K

n∑

i=

ψh
i (η)

∥∥φh
i
∥∥
L .

We deduce that T maps bounded sets into bounded sets in E. It is easy to show that T
maps bounded sets into equicontinuous sets of E. By means of the Arzelà-Ascoli theorem
[], we deduce that T is completely continuous.
(ii) Now, we apply the Leray-Schauder nonlinear alternative to prove that T has at least

a nontrivial solution in E. We define � = {u ∈ E;‖u‖ < r}. Then, for u ∈ ∂� such that
u = λT(u),  < λ < , we have

‖u‖ = λ
∥
∥T(u)

∥
∥ ≤ ∥

∥T(u)
∥
∥ ≤ ‖G‖L

n∑

i=

ψ
f
i (r)

∥
∥φ

f
i
∥
∥
L +C

n∑

i=

ψ
g
i (r)

∥
∥φ

g
i
∥
∥
L

+K
n∑

i=

ψh
i (r)

∥
∥φh

i
∥
∥
L .

Using (.) we deduce that

‖u‖ ≤ ‖G‖L
n∑

i=

ψ
f
i (r)

∥
∥φ

f
i
∥
∥
L +C

n∑

i=

ψ
g
i (r)

∥
∥φ

g
i
∥
∥
L +K

n∑

i=

ψh
i (r)

∥
∥φh

i
∥
∥
L < r,

which is a contradiction to the fact that u ∈ ∂�. Lemma . allows us to conclude that T
has a fixed point u∗ ∈ �, and then problem (.)-(.) has a nontrivial solution u∗ ∈ E. This
achieves the proof. �

4 Existence of a positive solution
In this section, we will give some preliminary considerations and some lemmas which are
essential to establish sufficient conditions for the existence of at least one positive solution
for our problem. We make the following additional assumption.
(H) The functions fi : [, ]×R

n
+ →R+, gi : [, ]×R

n
+ →R+ and hi : [, ]×R

n
+ →R+

are continuous.
(H) For all i ∈ {, . . . ,n}, there exist [αi,βi] ⊂ ], [ and m,i >  such that fi(t,u) ≥ m,i

for all t ∈ [αi,βi], u ∈R
n
+.

(H) For all i ∈ {, . . . ,n}, there existM,i > ,M,i >  andM,i >  such that
fi(t,u) ≤ M,i, hi(t,u) ≤ M,i and gi(t,u) ≤ M,i for all u ∈R

n
+.

Now, we need some properties of the Green functions Gi(t, s) for i ∈ {, . . . ,n}.

Lemma . Let a ∈ ], [, b ∈ ], [, then for all (t, s) ∈ [a,b]× [a,b], for all i ∈ {, . . . ,n},we
have

Gi(t, s)≥ L(a,b),

where

L(a,b) =
(a + mini∈{,...,n} k,i)( – b + mini∈{,...,n} k,i)

maxi∈{,...,n} k,i + maxi∈{,...,n} k,i + 
.

http://www.boundaryvalueproblems.com/content/2014/1/262
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The proof of Lemma . is similar to that of Lemma ..

Definition . Let E be a Banach space. A nonempty closed convexC ⊂ E is called a cone
if it satisfies the following two conditions:
. x ∈ C, λ ≥  implies λx ∈ C;
. x ∈ C, –x ∈ C implies x = .

Remark .

C =
{
u = (u, . . . ,un) ∈ E,ui(t)≥ , t ∈ [, ], i ∈ {, . . . ,n}}

is a cone of E.

Theorem . (Guo-Krasnoselskii’s fixed point theorem in cone []) Let E be a Banach
space, and let K ⊂ E be a cone. Assume that � and � are two bounded open subsets of E
with  ∈ � and � ⊂ �. Let A : K ∩ (�\�) → K be a completely continuous operator
such that:
. ‖A(u)‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖A(u)‖ ≥ ‖u‖, u ∈ K ∩ ∂� or
. ‖A(u)‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖A(u)‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then A has a fixed point in K ∩ (�\�).

We employ Guo-Krasnoselskii’s fixed point theorem in cone to prove the existence of a
positive solution of our problem, we have the following theorem.

Theorem . Assume that conditions (H), (H) and (H) hold. Then equation (.)-(.)
has at least one positive solution.

Proof Remark . shows that C is a cone subset of E. Lemma . and (H) show that T :
C →C. In addition, a standard argument involving theArzelà-Ascoli theorem implies that
T is a completely continuous operator.
Let i ∈ {, . . . ,n}. From (H) and (H) there exist [αi,βi]⊂], [ such that for all s ∈ [αi,βi],

fi(s,u) ≥ m,i for all u ∈R
n
+. Then, for all t ∈ [, ], Ti(u)(t) ≥ (βi – αi)m,iL(αi,βi). Now, we

choose a positive constant R such that R ≤ ∑n
i=(βi – αi)m,iL(αi,βi) and define � =

{u ∈ E : ‖u‖ < R}. For any u ∈ C ∩ ∂�, from the condition ‖Ti(u)‖∞ ≥ Ti(u)(t) ≥ (βi –
αi)m,iL(αi,βi) we get ‖T(u)‖ ≥ ∑n

i=(βi – αi)m,iL(αi,βi) ≥ R = ‖u‖. Thus, for any u ∈
C∩ ∂�, we find that

∥
∥T(u)

∥
∥ ≥ ‖u‖. (.)

Let R = max{∑n
i=M,i

∫ 
 G(s)ds +KM,i +CM,i, R} and we define � = {u ∈ E : ‖u‖ <

R}. Clearly, � ⊂ � and for any u ∈ C ∩ ∂�, we obtain ‖Ti(u)‖∞ ≤ M,i
∫ 
 G(s)ds +

KM,i + CM,i, then ‖T(u)‖ ≤ ∑n
i=M,i

∫ 
 G(s)ds + KM,i + CM,i ≤ R = ‖u‖. Thus, for

any u ∈C∩ ∂�, it implies that

∥∥T(u)
∥∥ ≤ ‖u‖. (.)
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Based on Theorem ., we get from (.) and (.) that the operator T has at least one
fixed point. Thus, it follows that (.)-(.) has at least one nonnegative solution and from
(H) and (H), (.)-(.) has at least one positive solution. �

Finally, we give some examples to illustrate the results obtained in this paper.

Example . Consider the following system of boundary value problem:

⎧
⎪⎨

⎪⎩

u′′
i (t) + fi(t,u(t),u(t),u(t)) = ,  < t < , i ∈ {, , },

ui() – k,iu′
i() =

∫ 
 gi(s,u(s),u(s),u(s))ds,

ui() + k,iu′
i() =

∫ 
 hi(s,u(s),u(s),u(s))ds,

with

fi(t,x,x,x) =
(t + i)


x +

(t + i + )


x +


i

cos(x),

gi(t,x,x,x) =
ti


x +

(t + )i


x +




cos(x),

hi(t,x,x,x) =
(
√
t + )i


x +

(t + )


x +




x,

k, = 
, , k, =


, , k, =


, , k, =


, , k, =


, and k, = 

, . We have

∣
∣fi(t,x,x,x) – fi(t, y, y, y)

∣
∣ ≤ θi,(t)|x – y| + θi,(t)|x – y| + θi,(t)|x – y|,

∣∣gi(t,x,x,x) – fi(t, y, y, y)
∣∣ ≤ ϕi,(t)|x – y| + ϕi,(t)|x – y| + ϕi,(t)|x – y|,

∣∣hi(t,x,x,x) – fi(t, y, y, y)
∣∣ ≤ ψi,(t)|x – y| +ψi,(t)|x – y| +ψi,(t)|x – y|,

where θi,(t) = (t+i)
 , θi,(t) = (t+i+)

 , θi,(t) = 
i , ϕi,(t) = ti

 , ϕi,(t) = (t+)i
 , ϕi,(t) = 

 ,
ψi,(t) = (

√
t+)i
 , ψi,(t) = (t+)

 , ψi,(t) = 
 , C = . and K = ..

C
∑

i=

∑

j=

‖ψi,j‖L +K
∑

i=

∑

j=

‖ϕi,j‖L +
∑

i=

∑

j=

‖G‖L‖θi,j‖L = . < .

Then from Theorem . we conclude that the system of boundary value problem has a
unique solution u∗ ∈ E.

Example . Consider the following system of boundary value problem:

⎧
⎪⎨

⎪⎩

u′′
i (t) + fi(t,u(t),u(t),u(t)) = ,  < t < , i ∈ {, , },

ui() – k,iu′
i() =

∫ 
 gi(s,u(s),u(s),u(s))ds,

ui() + k,iu′
i() =

∫ 
 hi(s,u(s),u(s),u(s))ds,

with

fi(t,x,x,x) =
(


 + t

)


i + ei(|x|+|x|+|x|) ,

http://www.boundaryvalueproblems.com/content/2014/1/262
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gi(t,x,x,x) =
(


 + eit

)


( + ei(|x|+|x|+|x|))
,

hi(t,x,x,x) =
(


 + t

)


 + i(|x| + |x| + |x|) ,

k, = 
, , k, =


, , k, =


, , k, =


 , k, =


 , k, =


 , C = . and K =

.. In this case we have

∣∣fi(t,x,x,x)
∣∣ ≤ φ

f
i (t)ψ

f
i
(|x| + |x| + |x|

)
,

where

φ
f
i (t) =


 + t

, ψ
f
i (r) =


i + eir

,
∣
∣gi(t,x,x,x)

∣
∣ ≤ φ

g
i (t)ψ

g
i
(|x| + |x| + |x|

)
,

where

φ
g
i (t) =


 + eit

, ψ
g
i (r) =


( + eir)

,

∣∣hi(t,x,x,x)
∣∣ ≤ φh

i (t)ψ
h
i
(|x| + |x| + |x|

)
,

where

φh
i (t) =


 + t

, ψh
i (r) =


 + ir

.

For r = , we find

‖G‖L
∑

i=

ψ
f
i (r)

∥
∥φ

f
i
∥
∥
L +C

∑

i=

ψ
g
i (r)

∥
∥φ

g
i
∥
∥
L +K

∑

i=

ψh
i (r)

∥
∥φh

i
∥
∥
L = . < .

Then from Theorem . we conclude that the system of boundary value problem has at
least one solution u∗ ∈ E.

Example . Consider the following system of boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
 (t) +  + 


√
+t

e–((u(t))+(u(t)))+
√
t+ = ,  < t < ,

u′′
(t) +  + 


√
+t

e–((u(t))+(u(t))) = ,  < t < ,
u() – k,u′

() =
∫ 


sin(s(|u(s)|+|u(s)|))
(|u(s)|+|u(s)|)+ ds,

u() + k,u′
() =

∫ 


s(|u(s)|+|u(s)|)e–s(|u(s)|+|u(s)|)√
(|u(s)|+|u(s)|)+

ds,

u() – k,u′
() =

∫ 


cos(s(|u(s)|+|u(s)|))
(|u(s)|+|u(s)|)+ ds,

u() + k,u′
() =

∫ 


e–s(|u(s)|+|u(s)|)
(|u(s)|+|u(s)|)+ ds,

where ki,j ≥  for all i, j ∈ {, }. Let

f(t,x,x) =  +



√
 + t

e–(x

+x


)+

√
t+,

http://www.boundaryvalueproblems.com/content/2014/1/262
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f(t,x,x) =  +



√
 + t

e–(x

+x


),

g(t,x,x) =
sin(t(|x| + |x|))
(|x| + |x|) + 

,

h(t,x,x) =
t(|x| + |x|)e–t(|x|+|x|)

√
(|x| + |x|) + 

,

g(t,x,x) =
cos(t(|x| + |x|))
(|x| + |x|) + 

and

h(t,x,x) =
e–t(|x|+|x|)

(|x| + |x|) + 
.

We can easily show that conditions (H), (H) and (H) are satisfied. Hence, by Theo-
rem . this problem has at least one positive solution.
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