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Abstract
This paper deals with the blow-up of the solution to a non-local reaction diffusion
problem in R

N for N ≥ 3 under nonlinear boundary conditions. Utilizing the
technique of a differential inequality, lower bounds for the blow-up time are derived
when the blow-up does occur under some suitable assumptions.
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1 Introduction
There is a vast literature on the question of blow-up of solutions to nonlinear parabolic
equations and systems. Readers can refer to the books of Straughan [] and Quittner and
Souple [], as well as to the survey paper of Bandle and Brunner []. Formore recent work,
one can refer to [–].
In practical situations, one would like to know among other things whether the solution

blows up. In this paper, we consider the blow-up for the solution of the following nonlinear
non-local reaction diffusion problems, which have been studied by Song in []:

∂u
∂t

= �u +
∫

�

up dx – kuq in � × (
, t∗

)
, (.)

u =  in ∂� × (
, t∗

)
, (.)

u(x, ) = f (x) ≥  in �, (.)

where � is the Laplace operator, ∂� the boundary of � and t∗ the possible blow-up time,
p,q > . In [, –], the authors have studied the question of blow-up for the solution
of parabolic problems by imposing two different nonlinear boundary conditions: homo-
geneous Dirichlet boundary conditions or homogeneous Neumann boundary conditions.
They determine, for solutions that blow up, a lower bound for the blow-up time t∗ in a
bounded domain � ⊂ R

N for N = . Besides, some authors have also started to consider
the blow-up phenomena of those problems under Robin boundary conditions (see [–
]). However, for the caseN ≥ , the Sobolev inequality, which is important for the result
obtained in [], is no longer applicable. Recently, some papers begin to pay attentions to
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the study of the blow-up phenomena of solution to an equation in � ⊂R
N , forN ≥  (see

[–]).
In the present paper, for convenience, we set p = s + , s >  and rewrite (.) as follows:

∂u
∂t

= �u +
∫

�

us+ dx – kuq in � × (
, t∗

)
. (.)

As indicated in [], it is well known that if p ≤ q the solution will not blow up in finite
time. Also it is well known that if the initial data are small enough the solution will actually
decay exponentially as t −→ ∞ (see e.g. [, ]). Since we are interested in a lower bound
for t, in the case of blow-up, we are only concerned with the case q < p.
We see by the parabolic maximum principles [, ] that u is nonnegative in x for

t ∈ [, t∗).
In Section , we derive the lower bound for the blow-up time of the system (.)-(.) in

R
N . The obtained results extend the corresponding conclusions in the literature toRN for

any N ≥ .

2 A lower bound for the blow-up time
In this section we seek the lower bound for the blow-up time t∗ and establish the following
theorem.

Theorem  Let u(x, t) be the classical nonnegative solution of problem (.)-(.) in a
bounded star-shaped domain � ∈R

N (N ≥ ) and assume that q < p. Then the quantity

ϕ(t) =
∫

�

uns dx (.)

satisfies the differential inequality

dϕ

dt
≤ kϕ+β , (.)

from which follows that the blow-up time t∗ is bounded from below; i.e., we have

t∗ ≥
∫ ∞

ϕ()


kη+β

dη =


kβ
ϕ–β (), (.)

where k, β are positive constants which will be defined later.

Proof Firstly we compute

ϕ′(t) = ns
∫

�

uns–
[
�u +

∫
�

us+ dx – kuq
]
dx

≤ –
(ns – )

ns

∫
�

∣∣∇u
ns

∣∣ dx + ns|�|

∫
�

us(n+) dx – kns
∫

�

uns+q– dx. (.)

For convenience, we now set

v = us, α =
q – 
s

. (.)
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Since q < s + , α < . Thus, we obtain

ϕ′(t) ≤ –
(ns – )

ns

∫
�

∣∣∇v
n

∣∣ dx + ns|�|

∫
�

v(n+) dx – kns
∫

�

vn+α dx. (.)

By the Hölder inequality, we have

∫
�

vn+ dx≤
(∫

�

vn+α dx
) γ–

γ–α
(∫

�

vn+γ dx
) –α

γ–α

(.)

for positive constant γ > . By the inequality

ar + b–r ≤ ra + ( – r)b, a,b > , < r < , (.)

we have
∫

�

vn+ dx≤ γ – 
γ – α

ε

∫
�

vn+α dx +
 – α

γ – α
ε
– γ–
–α



∫
�

vn+γ dx, (.)

where ε is a positive constant. If we insert (.) into (.) and choose

ε =
k(γ – α)
|�|(γ – )

,

then (.) yields

ϕ′(t) ≤ –
(ns – )

ns

∫
�

∣∣∇v
n

∣∣ dx + ns|�|  – α

γ – α
ε
– γ–
–α



∫
�

vn+γ dx. (.)

By the Hölder inequality again, we have

∫
�

vn+γ dx ≤
(∫

�

vn dx
) n–γ (N–)

n
(∫

�

v
n
 · N

N– dx
) γ (N–)

n
, (.)

where we have chosen n > γN . Now let c be the best imbedding constant defined in [].
Using the Sobolev inequality forW ,

 ↪→ L
N
N– for N ≥ , we have

∫
�

v
n
 · N

N– dx ≤ c
N
N–


(∫
�

∣∣∇v
n

∣∣ dx

) N
N–

.

Therefore, (.) may be rewritten as

∫
�

vn+γ dx ≤ c
γN
n


(∫
�

vn dx
) n–γ (N–)

n
(∫

�

∣∣∇v
n

∣∣ dx

)Nγ
n
. (.)

Using (.) again, we have

∫
�

vn+γ dx ≤ n –Nγ

n
c

γN
n
 ε

– N
n–γ (N–)



(∫
�

vn dx
) n–γ (N–)

n

+
Nγ

n
c

γN
n–Nγ

 ε

∫
�

∣∣∇v
n

∣∣ dx, (.)
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where ε is a positive constant to be chosen as follows:

ε =
(ns – )(γ – α)
Nγ |�|ns( – α)

ε
γ–
–α
 c–

γN
n

 , (.)

and inserting (.) back into (.), we have

ϕ′(t) ≤ kϕ
n–γ (N–)
n–Nγ , (.)

where

k = ns|�|  – α

γ – α
ε
– γ–
–α


n –Nγ

n
c

γN
n
 ε

– N
n–γ (N–)

 . (.)

If we set

β =
γ

n –Nγ
> , (.)

then (.) can be written as

ϕ′(t) ≤ kϕ+β , (.)

or

dϕ

kϕ+β
≤ . (.)

Upon integration we have for t < t∗,

t∗ ≥
∫ ∞

ϕ()


kη+β

dη =


kβ
ϕ–β (), (.)

where ϕ() = ϕ(t) =
∫
�
uns dx. �
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