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Abstract
This paper considers the asymptotic stability of standing waves of a coupled
nonlinear Schrödinger system with an attractive potential. Meanwhile, the existence
of a center manifold is obtained.
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1 Introduction and main results
The two-component system of time-dependent nonlinear Schrödinger equations arises
in the binary mixture of Bose-Einstein condensates with two different hyperfine states
(see []):

i�∂tu +
�



m
�u – V(x)u – a|u|u – a|v|u = ,

i�∂tv +
�



m
�v – V(x)v – a|v|v – a|u|v = ,

where u(x, t) and v(x, t) denote the wave functions, � is the Planck constant divided by π ,
m is atom mass, Vi is the trapping potential for the ith hyperfine state, ai ≥ , i = , , , ,
is the associated axial frequency.

By rescaling and some simple assumptions, the above system could be viewed as the
coupled nonlinear Schrödinger system:

i∂tu + �u – V(x)u – a|u|u – a|v|u = , (.)

i∂tv + �v – V(x)v – a|v|v – a|u|v = , x ∈R
, t > , (.)

with initial data

u(, x) = u(x), v(, x) = v(x).

In the present paper, we assume that a = a.
In the last decades, there has been a lot of interest in the study of localized modes in

the coupled nonlinear Schrödinger system. In particular, for the existence of standing
wave (periodic in time and exponentially localized in space) for various coupled nonlinear
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Schrödinger system, one may refer to [–] for more details. As we know, there are few re-
sults on the asymptotic stability of standing waves for the coupled nonlinear Schrödinger
system (.)-(.).

Assume that the standing wave of system (.)-(.) has the form as follows:

uE (t, x) = e–iEtψE (x), vE (t, x) = e–iEtφE (x),

where E, E ∈R and ψE ,φE ∈ H(R) satisfy the time independent equations:

[–� + V]ψE + a|ψE |ψE + a|φE |ψE = EψE , (.)

[–� + V]φE + a|φE |φE + a|ψE |φE = EφE . (.)

Here, we give some notations. Assume that 〈x〉 = ( + |x|) 
 . For σ ∈ R, the Sobolev

space L
σ with the norm ‖f (x)‖L

σ
= ‖〈x〉σ f (x)‖L denotes the space of functions f (x) such

that 〈x〉σ f (x) are square integrable. Ca,b,... denotes a constant depending on a, b, . . . .
Define

X = (ψ ,φ)T ,

F(ψE ,φE ) =
(
a|ψE |ψE + a|φE |ψE , a|φE |φE + a|ψE |φE

)T ,

A =

(
–� + V 

 –� + V

)

,

and

E =

(
E 
 E

)

.

Then the system (.)-(.) can be rewritten as

AX – EX = F . (.)

It is obvious that X ≡  is a trivial solution of (.). In order to make a bifurcation with a
nontrivial, one parameter family of solutions, we need (iii) in the following assumptions:

(A) Assume that:
(i) There exist C and α such that

∣∣Vi(x)
∣∣ ≤ C〈x〉–α , i = , ,∀x ∈R

.

Note that potential V, V could be different in our paper.
(ii)  is a regular point of the spectrum of the linear operator –� + Vi acting on L,

i = , .
(iii) For i = , , –� + Vi acting on L has exactly two negative eigenvalues ωi with

corresponding normalized eigenvectors ψ and φ, respectively. It is well
known that ψ and φ are exponentially decaying as |x| → ∞, and they could
be chosen strictly positive.
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The main result of this paper is the following.

Theorem . Assume that hypothesis (A) holds. Then there exists an ε >  such that for
any fixed σ >  and the initial data u, v satisfying

max
{‖u‖L

σ
,‖u‖H

} ≤ ε,

max
{‖v‖L

σ
,‖v‖H

} ≤ ε,

the initial value problem (.)-(.) is globally well-posed in H × H.
Moreover, the solution of the initial value problem (.)-(.) has the form

u(t, x) = a(t)ψ(x) + h
(
a(t)

)
+ r(t, x), (.)

v(t, x) = b(t)φ(x) + h
(
b(t)

)
+ r(t, x), (.)

with

∥
∥ri(t)

∥
∥

L–σ
≤ Cpε

(
 + |t|)p–

 –,

∥
∥ri(t)

∥
∥

Lp ≤ Cp,pε
(
 + |t|)p–

 –
log

–p–


–p–


(
 + |t|), i = , ,

where  ≤ p ≤ p.

This paper is organized as follows. In the next section, we show the existence of a cen-
ter manifold of the coupled nonlinear Schrödinger system (.)-(.). We investigate the
asymptotic stability of the system (.)-(.) in Section .

2 The center manifold
This section is devoted to the proof of the existence of a center manifold. The method of
constructing the center manifold is based on the standard bifurcation argument in Banach
spaces for (.)-(.) at (ω,ω)T (see []). Since the spectrum of the operator –� + Vi has
a discrete and continuous part, we follow the idea of [, ] and decompose the solution of
(.) in its projection onto the discrete and continuous part:

ψE = aψ + h, a = 〈ψ,ψE〉, h = PcψE ,

φE = bφ + h, b = 〈φ,φE〉, h = PcφE ,

where Pc denotes the projector onto the continuous spectrum of –� + Vi in L.
Now, projecting (.) onto X = (ψ,φ)T and its orthogonal complement, i.e. range Pc,

we have

X = (A – E)–PcF(a, b, X), (.)

E – E = –B–F(a, b, X), (.)

where

X =

(
h

h

)

, B =

(
a 
 b

)

, E =

(
ω 
 ω

)

, E =

(
E 
 E

)

,
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and

F(a, b, X) = F(aψ + h, bφ + h),

F(a, b, X) =
(〈
ψ, a|aψ + h|(aψ + h) + a|bφ + h|(aψ + h)

〉
,

〈
φ, a|bφ + h|(bφ + h) + a|aψ + h|(bφ + h)

〉)T .

Now we have the following result on the center manifold of the system (.)-(.):

Theorem . Let δE , δE , δ > . Then for |E – ω| < δE , |E – ω| < δE , ‖ψE‖L
σ ∩H < δ,

and ‖φE‖L
σ ∩H < δ, there exist C functions

h :
{

a ∈C : |a| < δ
} �→ L

σ ∩ H,

h :
{

b ∈C : |b| < δ
} �→ L

σ ∩ H

such that the eigenvalue problem (.)-(.) has a unique solution up to multiplication with
eiθ , θ ∈ (, π ), which can be represented as

ψE = aψ + h(a), 〈ψ, h〉 = , |a| < δ,

φE = bφ + h(b), 〈φ, h〉 = , |b| < δ.

Proof We follow the idea of [, ] and use the implicit function theorem to solve (.)-(.).
We define a C function F : (–∞, ) ×C

 × (L
σ ∩ H) as

F (E , a, b, X) = X + (A – E)–PcF.

It is easy to see that

F (E, , , ) = , DXF (E, , , ) = I.

Therefore, from the implicit function theorem, we know that (.) has a unique solution
X = X̄(E , a, b) with ‖X‖(L

σ ∩H) < δ, where X̄(E , a, b) is a C function from (ω – δ,ω +
δ)×(ω –δ,ω +δ)×{(a, b) ∈C

 : |a|, |b| < δ} to (L
σ ∩H) for δ > . By direct computa-

tion, we know that (eiθ a, eiθ b, eiθ X) is also a solution of (.) for θ ∈ (, π ). By uniqueness,
we have X̄(E , a, b) = ÃX̄(E , |a|, |b|), where Ã = diag( a

|a| ,
b
|b| ).

Substituting X = X̄(E , a, b) into (.). From X̄(E , a, b) = ÃX̄(E , |a|, |b|), we have

E – E = –B̄–F
(|a|, |b|, X̄

(
E , |a|, |b|)),

where

B̄ =

(
|a| 
 |b|

)

.

Define a C function G on (ω – δ,ω + δ) × (ω – δ,ω + δ) × (–δ, δ) as follows:

G(E , a, b) = E – E + B̄–F
(|a|, |b|, X̄

(
E , |a|, |b|)).
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We can see that

G(E, , ) = , DEF (E, , ) = –I.

From the implicit function theorem, we find that (.) has a unique solution E = Ẽ(|a|, |b|)
with X = X̄(E , a, b), where Ẽ(|a|, |b|) is a C function from (–δ, δ) × (–δ, δ) to (ω – δE ,ω +
δE ) × (ω – δE ,ω + δE ) for  < δ ≤ δ and  < δE , δE ≤ δ. �

3 Proof of Theorem 1.1
We consider the asymptotic stability of the coupled Schrödinger system (.)-(.) in this
section. The global well-posedness for the system (.)-(.) with small initial data is ob-
tained by Cazenave [].

Define

a(t) = 〈ψ, u〉, b(t) = 〈φ, v〉, for t ∈R.

By Theorem ., we can define h(a(t)) and h(b(t)) ∈C by choosing ε < δ. Therefore,

r(t) = u(t) – h
(
a(t)

)
– a(t)ψ,

〈
ψ, r(t)

〉 ≡ ,

r(t) = v(t) – h
(
b(t)

)
– b(t)φ,

〈
φ, r(t)

〉 ≡ .

We can see that the solution is described by the scalar a(t), b(t) ∈ C and r(t), r(t) ∈
C(R, H). More precisely, from (.)-(.), we have

i
da
dt

ψ + iDh

∣∣
∣
a

da
dt

+ i
dr

dt

= Eaψ + Eh(a) + (–� + V)r + a
(
|ψE |r + ψ

E r̄

+ ψE |r| + ψE r
 + |r|r

)
+ a

(
φEψE r̄ + |φE |r

+ φE rr̄ + ψE φ̄E r + |r|ψE + φ̄E rr + |r|r
)
, (.)

i
db
dt

φ + iDh

∣∣
∣
b

db
dt

+ i
dr

dt

= Ebφ + Eh(b) + (–� + V)r + a
(
|φE |r + φ

E r̄

+ φE |r| + φE r
 + |r|r

)
+ a

(
φEψE r̄ + |ψE |r

+ ψE rr̄ + φEψ̄E r + |r|φE + ψ̄E rr + |r|r
)
. (.)

Note that h, h, and Dh, Dh have range orthogonal to ψ, φ. r, r and dr
dt , dr

dt are
orthogonal to ψ, φ, respectively. Therefore, from (.)-(.), we get

i
da
dt

= E
(|a|)a + a

〈
ψ, |ψE |r + ψ

E r̄ + ψE |r|

+ ψE r
 + |r|r

〉
+ a

〈
ψ,φEψE r̄ + |φE |r

+ φE rr̄ + ψE φ̄E r + |r|ψE + φ̄E rr + |r|r
〉
, (.)
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i
db
dt

= E
(|b|)b + a

〈
φ, |φE |r + φ

E r̄ + φE |r|

+ φE r
 + |r|r

〉
+ a

〈
φ,φEψE r̄ + |ψE |r

+ ψE rr̄ + φEψ̄E r + |r|φE + ψ̄E rr + |r|r
〉
. (.)

Using Dh|a(iEa) = –Eih(a) and Dh|b(iEb) = –Eih(b), we have

i
dr

dt
= (–� + V)r + aPc

(
|ψE |r + ψ

E r̄

+ ψE |r| + ψE r
 + |r|r

)
+ aPc

(
φEψE r̄ + |φE |r

+ φE rr̄ + ψE φ̄E r + |r|ψE + φ̄E rr + |r|r
)
,

– Dh|a
(
a

〈
ψ, |ψE |r + ψ

E r̄ + ψE |r|

+ ψE r
 + |r|r

〉
+ a

〈
ψ,φEψE r̄ + |φE |r

+ φE rr̄ + ψE φ̄E r + |r|ψE + φ̄E rr + |r|r
〉)

, (.)

i
dr

dt
= (–� + V)r + aPc

(
|φE |r + φ

E r̄

+ φE |r| + φE r
 + |r|r

)
+ aPc

(
φEψE r̄ + |ψE |r

+ ψE rr̄ + φEψ̄E r + |r|φE + ψ̄E rr + |r|r
)

– Dh|b
(
a

〈
φ, |φE |r + φ

E r̄ + φE |r|

+ φE r
 + |r|r

〉
+ a

〈
φ,φEψE r̄ + |ψE |r

+ ψE rr̄ + φEψ̄E r + |r|φE + ψ̄E rr + |r|r
〉)

. (.)

The linear part of (.)-(.) is

i
dr′


dt

= (–� + V)r′
 + aPc

(
|ψE |r′

 + ψ
E r̄′


)

+ aPc
(
φEψE r̄′

 + |φE |r′
 + ψE φ̄E r′


)

– Dh|a
〈
ψ, a

(
|ψE |r′

 + ψ
E r̄′


)

+ a
(
φEψE r̄′

 + |φE |r′
 + ψE φ̄E r′


)〉

, (.)

i
dr′


dt

= (–� + V)r′
 + aPc

(
|φE |r′

 + φ
E r̄′


)

+ aPc
(
φEψE r̄′

 + |ψE |r′
 + φEψ̄E r′


)

– Dh|a
〈
φ, a

(
|φE |r′

 + φ
E r̄′


)

+ a
(
φEψE r̄′

 + |ψE |r + φEψ̄E r′

)〉

. (.)

Define the operator S(t, s)Y as the solution of the linear equation (.)-(.):

S(t, s)Y = R′ with R′ =
(
r′

, r′

)T .

The following lemma can be obtained by a small modification of the proof of Theorem .
in [], so we omit the proof.
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Lemma . There exists ε >  such that if

∥∥〈x〉σ ψE

∥∥
H < ε,

∥∥〈x〉σ φE

∥∥
H < ε,

then there exist C, Cp >  with the property that for any t, s ∈R, we have

∥∥S(t, s)
∥∥

L
σ ×L

σ →L–σ ×L–σ
≤ C

(
 + |t – s|)–

log–( + |t – s|), (.)
∥
∥S(t, s)

∥
∥

Lp′×Lp′→L–σ ×L–σ
≤ Cp|t – s|– 

p , (.)
∥
∥S(t, s)

∥
∥

L
σ ×L

σ →Lp×Lp ≤ Cp|t – s|– 
p , (.)

where p ≥  and 
p′ + 

p = .

By Duhamel?s principle, it follows from (.)-(.) that

R(t) = S(t, )R() – i
∫ t


S(t, s)PcG ds + i

∫ t


S(t, s)(DH)G ds, (.)

where R = (r, r)T , G = (g, g)T , G = (g, g)T , and DH = diag(Dh|a, Dh|b) with

g = a
(
ψE |r| + ψE r

 + |r|r
)

+ a
(
φE rr̄ + |r|ψE + φ̄E rr + |r|r

)
, (.)

g = a
(
φE |r| + φE r

 + |r|r
)

+ a
(
ψE rr̄ + |r|φE + ψ̄E rr + |r|r

)
, (.)

g = a
〈
ψ, ψE |r| + ψE r

 + |r|r
〉

+ a
〈
ψ,φE rr̄ + |r|ψE + φ̄E rr + |r|r

〉
, (.)

g = a
〈
φ, φE |r| + φE r

 + |r|r
〉

+ a
〈
φ,ψE rr̄ + |r|φE + ψ̄E rr + |r|r

〉
. (.)

For fixed p ≥ , we define the Banach space

B =
{

u : R → L
–σ ∩ Lp ∩ L

∣
∣∣ sup

t≥
( + t)– 

p ‖u‖L–σ
,

sup
t≥

( + |t|)– 
p

log( + |t|)‖u‖Lp , sup
t≥

‖u‖L < ∞
}

endowed with the norm

‖u‖B = max

{
sup
t≥

(
 + |t|)– 

p ‖u‖L–σ
, sup

t≥

( + |t|)– 
p

log( + |t|)‖u‖Lp , sup
t≥

‖u‖L

}
.

Consider the nonlinear part in (.):

(NR)(t) := –i
∫ t


S(t, s)PcG ds + i

∫ t


S(t, s)(DH)G ds. (.)
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Lemma .
() For R ∈ B×B, the nonlinear operator N : B×B → B×B is well defined.
() We have

‖NR – NR‖B×B ≤ Ca,a,a,a,p
(‖R‖B×B + ‖R‖B×B + ‖R‖

B×B
+ ‖R‖

B×B

)

× (‖R – R‖B×B

)
.

Proof It is obvious that the part () can be obtained by part () choosing R = . Now, we
only need to prove (). This proof is based on these estimates ofNR –NR: the L

–σ ×L
–σ

estimate, the Lp × Lp estimate and the L × L estimate. In fact, with a similar argument
of getting the L

–σ × L
–σ estimate, we could obtain the Lp × Lp estimate and the L × L

estimate from (.) and (.). Here, we consider the L
–σ × L

–σ estimate.
Let R = (r, r)T , R = (r̃, r̃)T ∈ B×B. One obtains

(NR – NR)(t)

= –i
∫ t


S(t, s)Pc(G – G̃) ds + i

∫ t


S(t, s)(DH)(G – G̃) ds, (.)

where G – G̃ = (g – g̃, g – g̃)T and G – G̃ = (g – g̃, g – g̃)T with

g – g̃ = aψE

(|r| – |r̃|
)(|r| + |r̃|

)
+ aψE (r – r̃)(r + r̃)

+ a
(|r|(r – r̃) +

(|r| – |r̃|
)(

r̃|r| + r̃|r̃|
))

+ aφE

(
(r – r̃)r̄ + r̃(r̄ – ˜̄r)

)
+ aψE

(|r| – |r̃|
)(|r| + |r̃|

)

+ aφ̄E

(
(r – r̃)r + r̃(r – r̃)

)

+ a
((|r| – |r̃|

)(|r| + |r̃|
)
r + |r̃|(r – r̃)

)
, (.)

g – g̃ = aφE

(|r| – |r̃|
)(|r| + |r̃|

)
+ aφE (r – r̃)(r + r̃)

+ a
(|r|(r – r̃) +

(|r| – |r̃|
)(

r̃|r| + r̃|r̃|
))

+ aψE

(
(r – r̃)r̄ + r̃(r̄ – ˜̄r)

)
+ aφE

(|r| – |r̃|
)(|r| + |r̃|

)

+ aψ̄E

(
(r – r̃)r + r̃(r – r̃)

)

+ a
((|r| – |r̃|

)(|r| + |r̃|
)
r + |r̃|(r – r̃)

)
, (.)

g – g̃ = a
〈
ψ, ψE

(|r| – |r̃|
)(|r| + |r̃|

)
+ ψE (r – r̃)(r + r̃)

〉

+ a
〈
ψ, |r|(r – r̃) +

(|r| – |r̃|
)(

r̃|r| + r̃|r̃|
)〉

+ a
〈
ψ,φE

(
(r – r̃)r̄ + r̃(r̄ – ˜̄r)

)
+ ψE

(|r| – |r̃|
)(|r| + |r̃|

)〉

+ a
〈
ψ, φ̄E

(
(r – r̃)r + r̃(r – r̃)

)〉

+ a
〈
ψ,

(|r| – |r̃|
)(|r| + |r̃|

)
r + |r̃|(r – r̃)

〉
, (.)

g – g̃ = a
〈
φ, φE

(|r| – |r̃|
)(|r| + |r̃|

)
+ φE (r – r̃)(r + r̃)

〉

+ a
〈
φ, |r|(r – r̃) +

(|r| – |r̃|
)(

r̃|r| + r̃|r̃|
)〉

+ a
〈
φ,ψE

(
(r – r̃)r̄ + r̃(r̄ – ˜̄r)

)
+ φE

(|r| – |r̃|
)(|r| + |r̃|

)〉
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+ a
〈
φ, ψ̄E

(
(r – r̃)r + r̃(r – r̃)

)〉

+ a
〈
φ,

(|r| – |r̃|
)(|r| + |r̃|

)
r + |r̃|(r – r̃)

〉
. (.)

Let  < p < ∞ and 
p′ + 

p = . We have

‖NR – NR‖L–σ ×L–σ

≤
∫ t



∥∥S(t, s)
∥∥

L
σ ×L

σ →L–σ ×L–σ
‖A‖L×L ds

+
∫ t



∥
∥S(t, s)

∥
∥

Lp′
σ ×Lp′

σ →L–σ ×L–σ
‖B‖Lp′×Lp′ ds

+
∫ t



∥∥S(t, s)
∥∥

L
σ ×L

σ →L–σ ×L–σ
‖DH‖L

σ ×L
σ
|G – G̃|ds, (.)

where A = (A, A)T and B = (B, B)T with

A = aψE〈x〉σ (|r| – |r̃|
)(|r| + |r̃|

)
+ aψE〈x〉σ (r – r̃)(r + r̃)

+ aφE〈x〉σ (
(r – r̃)r̄ + r̃(r̄ – ˜̄r)

)
+ aψE〈x〉σ (|r| – |r̃|

)(|r| + |r̃|
)

+ aφ̄E〈x〉σ (
(r – r̃)r + r̃(r – r̃)

)
, (.)

A = aφE〈x〉σ (|r| – |r̃|
)(|r| + |r̃|

)
+ aφE〈x〉σ (r – r̃)(r + r̃)

+aψE〈x〉σ (
(r – r̃)r̄ + r̃(r̄ – ˜̄r)

)
+ aφE〈x〉σ (|r| – |r̃|

)(|r| + |r̃|
)

+aψ̄E〈x〉σ (
(r – r̃)r + r̃(r – r̃)

)
, (.)

B = a
(|r|(r – r̃) +

(|r| – |r̃|
)(

r̃|r| + r̃|r̃|
))

+a
((|r| – |r̃|

)(|r| + |r̃|
)
r + |r̃|(r – r̃)

)
, (.)

B = a
(|r|(r – r̃) +

(|r| – |r̃|
)(

r̃|r| + r̃|r̃|
))

+a
((|r| – |r̃|

)(|r| + |r̃|
)
r + |r̃|(r – r̃)

)
. (.)

In what follows, we consider the integral terms on A, B, and |G – G̃| in (.). We first
estimate the integral term on A. For 

α
+ 

p = 
 , we have

∥
∥ψE〈x〉σ (|r| – |r̃|

)(|r| + |r̃|
)∥∥

L ≤ ∥
∥ψE〈x〉σ∥

∥
Lα

∥
∥|r| – |r̃|

∥
∥

L

∥
∥|r| + |r̃|

∥
∥

L .

From (.) in Lemma ., we have

∫ t



∥∥S(t, s)
∥∥

L
σ ×L

σ →L–σ ×L–σ
‖A‖L×L ds

≤ Ca,a,a,a

∫ t



(
 + |t – s|)–

log–( + |t – s|)

× ∥
∥ψE〈x〉σ ∥

∥
Lα

∥
∥φE〈x〉σ∥

∥
Lα

(∥∥|r| – |r̃|
∥
∥

L

∥
∥|r| + |r̃|

∥
∥

L

+
∥∥|r| – |r̃|

∥∥
L

∥∥|r| + |r̃|
∥∥

L
)

ds

≤ Ca,a,a,a C

∫ t



log( + |s|)
( + |t – s|) log( + |t – s|)

‖|r| – |r̃|‖B + ‖|r| – |r̃|‖B
( + |s|)– 

p
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× ‖|r| + |r̃|‖B + ‖|r| + |r̃|‖B
( + |s|)– 

p
ds

≤ Ca,a,a,a CC
(‖r‖B + ‖r̃‖B + ‖r‖B + ‖r̃‖B

)

× ‖r – r̃‖B + ‖r – r̃‖B
( + |t|) log( + |t|) , (.)

where the constants

C = max
{

sup
t>

∥
∥ψE〈x〉σ ∥

∥
Lα , sup

t>

∥
∥φE〈x〉σ ∥

∥
Lα

}

and

C = sup
t>

(
 + |t|) log( + |t|)

∫ t



log( + |s|)
( + |t – s|) log( + |t – s|)( + |s|)– 

p
ds < ∞.

Using the interpolate inequality ‖r‖Lα ≤ ‖r‖–b
L ‖r‖b

Lp for 
α

= –b
 + b

p with p ≥  and
 ≤ α ≤ p, one obtains

∥
∥|r|(r – r̃)

∥
∥

Lp′ ≤ ‖r – r̃‖Lp‖r‖
Lα

≤ ‖r – r̃‖Lp‖r‖(–b)
L ‖r‖b

Lp , (.)
∥∥(|r| – |r̃|

)(|r| + |r̃|
)
r

∥∥
Lp′

≤ ‖r – r̃‖Lp
(‖r‖Lα + ‖r̃‖Lα

)‖r‖Lα

≤ ‖r – r̃‖Lp
(‖r‖–b

L ‖r‖b
Lp + ‖r̃‖–b

L ‖r̃‖b
Lp

)‖r‖–b
L ‖r‖b

Lp , (.)
∥∥(|r| – |r̃|

)(
r̃|r| + r̃|r̃|

)∥∥
Lp′

≤ ‖r – r̃‖Lp‖r̃‖Lα

(‖r‖Lα + ‖r̃‖Lα

)

≤ ‖r – r̃‖Lp
(‖r‖–b

L ‖r‖b
Lp + ‖r̃‖–b

L ‖r̃‖b
Lp

)‖r̃‖–b
L ‖r̃‖b

Lp , (.)

where 
α

+ 
p = 

p′ and (–b)
 + b

p + 
p = 

p′ with ( – 
p )( + b) =  + 

p > .
Note that ( – 

p )( + b) > . Therefore, from (.), we have

∫ t



∥
∥S(t, s)

∥
∥

Lp′
σ ×Lp′

σ →L–σ ×L–σ
‖B‖Lp′×Lp′ ds

≤ Cp,a,a,a,a

(‖r‖
B

+ ‖r̃‖
B

+ ‖r‖
B

+ ‖r̃‖
B

)

× (‖r – r̃‖B + ‖r – r̃‖B
)∫ t



log( + |s|)+b

|t – s|– 
p ( + |s|)(– 

p )(+b)
ds

≤ Cp,a,a,a,a C
(‖r‖

B
+ ‖r̃‖

B
+ ‖r‖

B
+ ‖r̃‖

B

)‖r – r̃‖B + ‖r – r̃‖B
( + |s|)– 

p
,

where the constant

C = sup
t>

(
 + |t|)– 

p

∫ t



log( + |s|)+b

|t – s|– 
p ( + |s|)(– 

p )(+b)
ds < ∞.
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It is easy to obtain

∣∣〈ψ, ψE

(|r| – |r̃|
)(|r| + |r̃|

)〉∣∣ ≤ ‖ψ‖L∞‖ψE‖Lα‖r – r̃‖Lp
(‖r‖Lp + ‖r̃‖Lp

)
,

∣∣〈ψ, |r|(r – r̃)
〉∣∣ ≤ ∥∥ψ〈x〉σ∥∥

Lα‖r – r̃‖L–σ
‖r‖

Lp

for 
α

+ 
p = 

 . From (.) in Lemma ., we get

∫ t



∥
∥S(t, s)

∥
∥

L
σ ×L

σ →L–σ ×L–σ
|G – G̃|ds

≤ Ca,a,a,a

(‖r‖B + ‖r̃‖B + ‖r‖B + ‖r̃‖B + ‖r‖
B

+ ‖r̃‖
B

+ ‖r‖
B

+ ‖r̃‖
B

)

× (‖r – r̃‖B + ‖r – r̃‖B
)∫ t



(‖ψ〈x〉σ‖Lα + ‖φ〈x〉σ‖Lα )
( + |t – s|) log( + |t – s|) · log( + |s|)

( + |s|)– 
p

ds

≤ Ca,a,a,a C
(‖r‖B + ‖r̃‖B + ‖r‖B + ‖r̃‖B + ‖r‖

B
+ ‖r̃‖

B
+ ‖r‖

B
+ ‖r̃‖

B

)

× ‖r – r̃‖B + ‖r – r̃‖B
( + |t|) log( + |t|) ,

where we have the constant

C =
(∥∥ψ〈x〉σ∥∥

Lα +
∥∥φ〈x〉σ∥∥

Lα

)∫ t



log( + |s|)
( + |s|)– 

p ( + |t – s|) log( + |t – s|)
ds < ∞.

Hence, we conclude that

‖NR – NR‖B×B

≤ Ca,a,a,a,p
(‖r‖B + ‖r̃‖B + ‖r‖B + ‖r̃‖B + ‖r‖

B
+ ‖r̃‖

B

+ ‖r‖
B

+ ‖r̃‖
B

) × (‖r – r̃‖B + ‖r – r̃‖B
)
.

This completes the proof. �

Proof of Theorem . Define a closed ball B(R, r) ⊂ B×B with center R = S(t, )R() and
radius r = L‖R‖B×B

–Lip . By Lemma ., there exists a constant C such that

‖R‖B×B ≤ C
∥∥R()

∥∥
L

σ ×L
σ

.

Choose ε such that Cε < 
 (

√
 + C–

a,a,a,a,p –). Then there exists a constant  < Lip <
 such that

‖R‖B×B ≤  – Lip



(√
 +  Lip C–

a,a,a,a,p – 
)

.

It is easy to conclude that the right hand side of (.) leaves B(R, r) invariant, and it
is a contraction with Lipschitz constant Lip on B(R, r). From the contraction mapping
theorem, (.) has a unique solution in B(R, r). If we have two solutions of (.), one
in C(R, H × H) from classical well-posedness theory and one in C(R, (L

–σ ∩ L ∩ Lp) ×
(L

–σ ∩ L ∩ Lp)) from the above argument for p ≥ . By uniqueness and the continuous
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embedding of H in L
–σ ∩L ∩Lp, we infer that the two solutions must coincide. Therefore,

the time decaying estimates also hold for the H × H solutions. This completes the proof
of Theorem .. �
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