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1 Introduction
The purpose of this paper is to study the existence of T-periodic solutions for second-
order singular damped differential equation

u′′(t) + q(t)u′(t) + f
(
u(t)

)
= g(t), (.)

where q, g ∈ C(R/TZ,R) with
∫ T

 q(t) dt = , and the nonlinearity f ∈ C((,∞),R) admits
a repulsive singularity at u = , which means that

lim
u→+

f (u) = –∞.

Second-order singular differential equations have attracted many researchers? attention
because of the wide applications in applied sciences. For example, they can describe the
dynamics of particles under the action of Newtonian-type forces caused by compressed
gases []. If q(t) ≡ , then Eq. (.) reduces to the following singular differential equation:

u′′(t) + f
(
u(t)

)
= g(t). (.)

The existence of periodic solutions for Eq. (.) has attracted the attention of many re-
searchers, and some classical tools have been used in the literature, including the method
of upper and lower solutions [, ], degree theory [], some fixed point theorems in cones
for completely continuous operators [, ], Schauder?s fixed point theorem [], a nonlinear
Leray-Schauder alternative principle [, ] and variational methods [–].

Recently, Eq. (.) has also been investigated by several authors; see, for instance, [, ]
(application of Leray-Schauder alternative principle) and [] (using Schauder?s fixed point
theorem). In general cases, it is very difficult or impossible to apply variational methods to
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Eq. (.) when
∫ T

 q(t) dt > . In this paper, we consider the case
∫ T

 q(t) dt =  and under
some reasonable assumptions, we establish the corresponding variational framework of
T-periodic solutions for Eq. (.) on an appropriate Sobolev space and give a new criterion
to guarantee the existence of at least one nontrivial T-periodic solution of Eq. (.) using a
variant of the mountain pass theorem. We refer the reader to [–] for the details about
variational methods.

In order to state our main result, we need the following assumptions:
(H) q, g ∈ C(R/TZ) with

∫ T
 q(t) dt = ;

(H) f ∈ C((,∞),R) has a repulsive singularity at u = , i.e.,

lim
u→+

f (u) = –∞;

(H) limu→+ F(u) = +∞, where F(u) =
∫ u

 f (s) ds;
(H) M = sup{f (s) :  < s < +∞} is bounded;
(H) limu→+∞(F(u) – ḡu) = +∞, where ḡ is defined by

ḡ def=


∫ T
 exp(

∫ t
 q(s) ds) dt

∫ T


g(t) exp

(∫ T


q(s) ds

)
dt.

Theorem . Assume that (H)-(H) are satisfied. Then Eq. (.) has at least one nontrivial
T-periodic solution.

The existence of T-periodic solutions for the following singular damped differential
equation

u′′(t) + q(t)u′(t) + p(t)u(t) + f
(
u(t)

)
= g(t) (.)

was discussed in [–] by using the Leray-Schauder alternative principle or Schauder?s
fixed point theorem. However, all of them required that the Green function associated to
the linear equation problem

{
u′′(t) + q(t)u′(t) + p(t)u(t) = ,
u() = u(T), u′() = u′(T)

is positive for all (t, s) ∈ [, T] × [, T]. For example, in [] and [] it is supposed that

∫ T


q(t) dt > . (.)

In [], two criteria to make the Green function positive were given. In particular, one
criterion was proved when

∫ T
 q(t) dt =  and

∫ T


p(t)e

∫ t
 q(s) ds dt > . (.)

Note that in Theorem ., conditions (.) and (.) do not hold because p(t) ≡  and
∫ T

 q(t) dt =  in our case.
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From (H), it is obvious that

e–‖q‖L ≤ eQ(t) ≤ e‖q‖L , (.)

where Q(t) =
∫ t

 q(s) ds. In addition, it is easy to find the functions f (u) and g(t) which
satisfy assumptions (H)-(H). For example, if we take

f (u) = –
e

uγ
, (.)

where e >  and γ ≥  are constants and choose g ∈ C(R/TZ,R) such that

∫ T


g(t) dt < , (.)

then (H)-(H) are satisfied.

Remark  If we take q(t) ≡  in (.) and e =  in (.), then (.) reduces to the following
repulsive-type equation:

u′′(t) –


uγ (t)
= g(t). (.)

It was proved in [] that Eq. (.) (with γ ≥ ) has a positive T-periodic solution if and
only if (.) holds. One open problem is whether we can obtain the sufficient and necessary
conditions to guarantee the existence of positive T-periodic solutions for the following
special form of Eq. (.) with γ ≥ :

u′′(t) + q(t)u′(t) –


uγ (t)
= g(t).

The remaining part of this paper is organized as follows. Some preliminaries are pre-
sented in Section . In Section , the proof of Theorem . is given.

2 Preliminary results
In this section, we present some auxiliary results, which will be used in the proof of our
main result. First, we define the truncation function fλ : R →R,  < λ < , by

fλ(u) =

{
f (u), u ≥ λ,
f (λ), u < λ.

Note that condition (H) implies that fλ is continuous with respect to u ∈R.
In what follows, for λ ∈ (, ), we consider the following modified equation:

u′′(t) + q(t)u′(t) + fλ
(
u(t)

)
= g(t). (.)

Let

Q(t) =
∫ t


q(s) ds and Fλ(u) =

∫ u


fλ(s) ds.
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Then the problem of the existence of T-periodic solutions for Eq. (.) has a variational
structure with corresponding functional �λ given by

�λ(u) =
∫ T


eQ(t)

[



u′(t) – Fλ

(
u(t)

)
+ g(t)u(t)

]
dt, (.)

and defined on the Hilbert space

H
T =

{
u : [, T] →R is absolutely continuous; u() = u(T), u′ ∈ L([, T];R

)}
,

equipped with the norm

‖u‖ =
(∫ T


u(t) dt +

∫ T


u′(t) dt

) 


for u ∈ H
T .

Lemma . [, Proposition .] (Wirtinger?s inequality) If u ∈ H
T and

∫ T
 u(t) dt = , then

∫ T


u(t) dt ≤ T

π

∫ T


u̇(t) dt.

Under the conditions of Theorem ., similar to [, Theorems . and .], it is easy to
verify that �λ is continuously differentiable, weakly lower semicontinuous on H

T and

�′
λ(u)v =

∫ T


eQ(t)[u′(t)v′(t) – fλ

(
u(t)

)
v(t) + g(t)v(t)

]
dt. (.)

Moreover, critical points of �λ on H
T are T-periodic solutions of Eq. (.).

In order to obtain the existence of T-periodic solutions of Eq. (.), the following version
of the mountain pass theorem will be used in our argument.

Lemma . [, Theorem .] Let X be a Banach space, and let ϕ ∈ C(X,R). Assume
that there exist x, x ∈ X and a bounded open neighborhood � of x such that x ∈ X\�
and

max
{
ϕ(x),ϕ(x)

}
< inf

x∈∂�
ϕ(u).

Let

	 =
{

h ∈ C
(
[, ], X

)
: h() = x, h() = x

}

and

c = inf
h∈	

max
s∈[,]

ϕ
(
h(s)

)
.

If ϕ satisfies the (PS)-condition (that is, a sequence {un} in X satisfying ϕ(un) is bounded
and ϕ′(un) →  as n → +∞ has a convergent subsequence), then c is a critical value of ϕ

and c > max{ϕ(x),ϕ(x)}.
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3 Proof of Theorem 1.1
In this section, we give the proof of Theorem ..

Proof The proof will be divided into four steps.
Step . �λ satisfies the (PS)-condition.
Let {un}n∈N be a sequence in H

T such that {�′
λ(un)}n∈N is bounded and �′

λ(un) →  as
n → +∞. Then there exist a constant c >  and a sequence {εn}n∈N ⊂ R

+ with εn →  as
n → +∞ such that, for all n,

∣
∣∣∣

∫ T


eQ(t)

[



u′
n(t) – Fλ

(
un(t)

)
+ g(t)un(t)

]
dt

∣
∣∣∣ ≤ c, (.)

and for every v ∈ H
T ,

∣∣
∣∣

∫ T


eQ(t)[u′

n(t)v′(t) – fλ
(
un(t)

)
v(t) + g(t)v(t)

]
dt

∣∣
∣∣ ≤ εn‖v‖H

T
. (.)

Using a standard argument, it is sufficient to show that {un}n∈N is bounded in H
T , and this

will be enough to derive the (PS)-condition.
Taking v(t) ≡ – in (.), we obtain that

∣∣∣
∣

∫ T


eQ(t)[fλ

(
un(t)

)
– g(t)

]
dt

∣∣∣
∣ ≤ εn

√
T .

So that
∣∣
∣∣

∫ T


eQ(t)fλ

(
un(t)

)
dt

∣∣
∣∣ ≤ εn

√
T +

∣∣
∣∣

∫ T


eQ(t)g(t) dt

∣∣
∣∣

≤ εn
√

T + e‖q‖L

∫ T



∣∣g(t)
∣∣dt

= εn
√

T + e‖q‖L ‖g‖L := c. (.)

Let

I,n =
{

t ∈ [, T] : fλ
(
un(t)

) ≥ 
}

,

and

I,n =
{

t ∈ [, T] : fλ
(
un(t)

)
< 

}
.

It follows from (.) that

∣∣
∣∣

∫

I,n

eQ(t)fλ
(
un(t)

)
dt

∣∣
∣∣ ≤ c +

∫

I,n

eQ(t)fλ
(
un(t)

)
dt ≤ c + TMe‖q‖L ,

where M is defined in (H). Hence, there exists c >  such that

∫ T


eQ(t)∣∣fλ

(
un(t)

)∣∣dt ≤ c for all n. (.)
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On the other hand, if we take, in (.), v(t) ≡ wn(t) := un(t) – ūn, where ūn is the average
of un over the interval [, T], we get (taking into account (.))

c‖wn‖H
T

≥
∣∣
∣∣

∫ T


eQ(t)

[



w′
n(t) – fλ

(
un(t)

)
wn(t) + g(t)wn(t)

]
dt

∣∣
∣∣

≥ e–‖q‖L


∥
∥w′

n
∥
∥

L –
(
c + e‖q‖L ‖g‖L

)‖wn‖L∞

≥ e–‖q‖L


∥∥w′

n
∥∥

L – c‖wn‖H
T

.

Using the Poincaré-Wirtinger inequality for zero mean functions in the Sobolev space H
T ,

we know that there exists c >  such that

∥∥u′
n
∥∥

L ≤ ‖wn‖H
T

≤ c. (.)

Now suppose that

‖un‖H
T

→ +∞ as n → +∞.

Since (.) holds, we have, passing to a subsequence if necessary, that either

mn = min un → –∞ as n → +∞, or

Mn = max un → +∞ as n → +∞.

(i) Assume that the second possibility occurs. We have

∫ T


eQ(t)[Fλ

(
un(t)

)
– g(t)un(t)

]
dt

=
∫ T


eQ(t)

[(∫ un(t)


fλ(s) ds

)
– g(t)un(t)

]
dt

=
∫ T


eQ(t)

[(∫ Mn


fλ(s) ds –

∫ Mn

un(t)
fλ(s) ds

)
– g(t)un(t)

]
dt

=
∫ T


eQ(t)[Fλ(Mn) – Mng(t)

]
dt –

∫ T



[∫ Mn

un(t)
eQ(t)(fλ(s) – g(t)

)
ds

]
dt

≥
∫ T


eQ(t)[Fλ(Mn) – Mng(t)

]
dt – e‖q‖L ‖M – g‖L‖Mn – un‖C .

Thus, using the Sobolev and Poincaré inequalities to Mn – un(·), we have, from (.),

∫ T


eQ(t)[Fλ(Mn) – Mng(t)

]
dt ≤

∫ T


eQ(t)[Fλ

(
un(t)

)
– g(t)un(t)

]
dt

+ e‖q‖L ‖M – g‖L‖Mn – un‖C

≤
∫ T


eQ(t)[Fλ

(
un(t)

)
– g(t)un(t)

]
dt

+ e‖q‖L ‖M – g‖L
√

Tc.
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In view of (.), we see that

∫ T


eQ(t)[Fλ(Mn) – Mng(t)

]
dt

is bounded, which contradicts (H).
(ii) Assume that the first possibility occurs, i.e., mn → –∞ as n → +∞. We replace Mn

by –mn in the preceding arguments, and we also get a contradiction.
Therefore, �λ satisfies the (PS) condition. This completes the proof of the claim.
Step . In what follows, let

� =
{

u ∈ H
T : min u > 

}
,

and

∂� =
{

u ∈ H
T : u(t) ≥  for all t ∈ [, T],∃tu ∈ (, T) such that u(tu) = 

}
.

We show that there exists m >  such that infu∈∂� �λ(u) ≥ –m whenever λ ∈ (, ).
For any u ∈ ∂�, we have min u = u(tu) =  for some tu. By (.), we obtain that

�λ(u) =
∫ tu+T

tu

eQ(t)
[




u′(t) – Fλ

(
u(t)

)
+ g(t)u(t)

]
dt

≥
∫ tu+T

tu




eQ(t)u′(t) dt –
[∫ tu+T

tu

eQ(t)(M – g(t)
)(

u(t) – 
)

dt

–
∫ tu+T

tu

eQ(t)g(t) dt
]

.

The Hölder inequality and the fact that u′(t) = (u(·) – )′(t) imply that

�λ(u) ≥ e–‖q‖L


∥
∥(

u(·) – 
)′∥∥

L – e‖q‖L ‖M – g‖L
∥
∥(

u(·) – 
)∥∥

L

– e‖q‖L ‖g‖L .

Applying the Poincaré inequality to u(·) – , we get

�λ(u) ≥ e–‖q‖L


∥∥u′∥∥

L – T

 e‖q‖L ‖M – g‖L

∥∥u′∥∥
L – e‖q‖L ‖g‖L .

The above inequality shows that

�λ(u) → +∞ as
∥∥u′∥∥

L → +∞.

Since min u = , we have that ‖u(·) – ‖H
T

→ +∞ is equivalent to ‖u′‖L → +∞. Hence

�λ(u) → +∞ as ‖u‖H
T

→ +∞, u ∈ ∂�,
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which yields that �λ is coercive. Thus it has a minimizing sequence. The weak lower semi-
continuity of �λ implies that

inf
u∈∂�

�λ(u) > –∞.

It follows that there exists m >  such that infu∈∂� �λ(u) ≥ –m for all λ ∈ (, ).
Step . We show that there exists λ ∈ (, ) with the property that, for every λ ∈ (,λ),

any solution u of Eq. (.) satisfying �λ(u) ≥ –m is such that min u ≥ λ, and hence u is a
solution of Eq. (.).

On the contrary, assume that there are sequences {λn}n∈N and {un}n∈N such that
(i) λn ≤ 

n ;
(ii) un is a solution of Eq. (.) with λ = λn;

(iii) �λn (un) ≥ –m;
(iv) min un < 

n .
Since

∫ T


eQ(t)[fλn

(
un(t)

)
– g(t)

]
dt = , (.)

we have

∥∥eQ(·)fλn

(
un(·))∥∥L ≤ c for some constant c > .

On the other hand, since un() = un(T), there exists τn ∈ (, T) such that

u′
n(τn) = .

Therefore, we obtain that

eQ(t)u′
n(t) – eQ(τn)u′

n(τn) =
∫ t

τn

eQ(s)[fλ
(
un(s)

)
– g(s)

]
ds,

which, from (.), yields that

∥∥u′
n
∥∥

L∞ ≤ c for some constant c > . (.)

Since �λn (un) > –m, it follows that there exist two constants R and R with  < R < R

such that

max
{

un(t) : t ∈ [, T]
} ∈ [R, R].

If not, un would tend uniformly to  or +∞. In both cases, in view of (H), (H) and (.),
we have

�λn (un) → –∞ as n → +∞,

which contradicts the fact that �λn (un) ≥ –m.
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Let τ 
n , τ 

n be such that, for n large enough,

un
(
τ 

n
)

=

n

< R = un
(
τ 

n
)
.

Multiplying Eq. (.) by u′
n and integrating the resulting equation on [τ 

n , τ 
n ] (or [τ 

n , τ 
n]),

we get

J :=
∫ τ

n

τ 
n

u′′
n(t)u′

n(t) dt +
∫ τ

n

τ 
n

q(t)u′
n(t) dt +

∫ τ
n

τ 
n

fλn

(
un(t)

)
u′

n(t) dt

=
∫ τ

n

τ 
n

g(t)u′
n(t) dt.

It is clear that

J = J +


[
u′

n
(
τ 

n
)

– u′
n
(
τ 

n
)]

+
∫ τ

n

τ 
n

q(t)u′
n (t) dt,

where

J =
∫ τ

n

τ 
n

fλn

(
un(t)

)
u′

n(t) dt.

Since q is bounded, g is integrable and ‖u′
n‖L∞ ≤ c (see (.)), it follows that J is

bounded, and consequently, J is bounded. On the other hand, we have

fλn

(
un(t)

)
u′

n(t) =
d
dt

[
Fλn

(
un(t)

)]
,

which yields that

J = Fλn (R) – Fλn

(

n

)
.

However, due to (H), it follows that J is unbounded. This is a contradiction.
Step . We prove that �λ has a mountain pass geometry for λ ≤ λ.
Fix λ ∈ (,λ] such that f (λ) < . It is possible because of (H). Therefore, we have

Fλ() =
∫ 


fλ(s) ds = –

∫ 


fλ(s) ds

= –
∫ λ


fλ(s) ds –

∫ 

λ

fλ(s) ds

= –
∫ λ


f (λ) ds –

∫ 

λ

fλ(s) ds

= –λf (λ) –
∫ 

λ

fλ(s) ds.

This implies that

Fλ() > –
∫ 

λ

fλ(s) ds =
∫ λ


fλ(s) ds = Fλ(λ).
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Hence

�λ() = –
∫ T


eQ(t)Fλ() dt +

∫ T


eQ(t)g(t) dt

≤ –
∫ T


eQ(t)Fλ(λ) dt. (.)

By (H), choose λ ∈ (,λ] such that

Fλ(λ) >
m
T

e‖q‖L for all t ∈ [, T].

It follows from (.) that �λ() < –m.
Also, using (H), we can find R large enough such that R >  and

–
∫ T


eQ(t)[Fλ(R) – g(t)R

]
dt < –m,

which implies that

�λ(R) < –m.

Since � is a neighborhood of R,  /∈ � and

max
{
�λ(),�λ(R)

}
< inf

u∈∂�
�λ(u).

Step  and Step  imply that �λ has a critical point uλ such that

�λ(uλ) = inf
η∈	

max
≤s≤

�λ

(
η(s)

) ≥ inf
u∈∂�

�λ(u),

where 	 = {η ∈ C([, ], H
T ) : η() = ,η() = R}.

Since infu∈∂� �λ(u) ≥ –m, it follows from Step  that uλ is a solution of Eq. (.). Now
the proof is finished. �
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3. Rachunková, I, Tvrdý, M, Vrkoč, I: Existence of nonnegative and nonpositive solutions for second order periodic
boundary value problems. J. Differ. Equ. 176, 445-469 (2001)

4. Zhang, MR: Periodic solutions of damped differential systems with repulsive singular forces. Proc. Am. Math. Soc. 127,
401-407 (1999)

5. Franco, D, Webb, JRL: Collisionless orbits of singular and nonsingular dynamical systems. Discrete Contin. Dyn. Syst.
15, 747-757 (2006)

6. Torres, PJ: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii
fixed point theorem. J. Differ. Equ. 190, 643-662 (2003)

7. Chu, JF, Torres, PJ: Applications of Schauder?s fixed point theorem to singular differential equations. Bull. Lond. Math.
Soc. 39, 653-660 (2007)

8. Jiang, DQ, Chu, JF, Zhang, MR: Multiplicity of positive periodic solutions to superlinear repulsive singular equations.
J. Differ. Equ. 211, 282-302 (2005)

9. Boucherif, A, Daoudi-Merzagui, N: Periodic solutions of singular nonautonomous second differential equations.
Nonlinear Differ. Equ. Appl. 15, 147-158 (2008)

10. Daoudi-Merzagui, N, Derrab, F, Boucherif, A: Subharmonic solutions of nonautonomous second order differential
equations with singular nonlinearities. Abstr. Appl. Anal. 2012, Article ID 903281 (2012)

11. Fonda, A, Manásevich, R, Zanolin, F: Subharmonic solutions for some second-order differential equations with
singularities. SIAM J. Math. Anal. 24, 1294-1311 (1993)

12. Chu, JF, Fan, N, Torres, PJ: Periodic solutions for second order singular damped differential equations. J. Math. Anal.
Appl. 388, 665-675 (2012)

13. Chen, ZB, Ren, JL: Studies on a damped differential equation with repulsive singularity. Math. Methods Appl. Sci. 36,
983-992 (2013)

14. Li, X, Zhang, ZH: Periodic solutions for damped differential equations with a weak repulsive singularity. Nonlinear
Anal. 70, 2395-2399 (2009)

15. Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)
16. Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg.

Conf. Ser. in. Math., vol. 65. Am. Math. Soc., Providence (1986)
17. Schechter, M: Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999)
18. Lazer, AC, Solimini, S: On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc.

99, 109-114 (1987)
19. Wu, X, Chen, SX, Teng, KM: On variational methods for a class of damped vibration problems. Nonlinear Anal. 68,

1432-1441 (2008)


	Periodic solutions for a singular damped differential equation
	Abstract
	MSC
	Keywords

	Introduction
	Preliminary results
	Proof of Theorem 1.1
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


