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Abstract
In this paper, we study the existence of multi-bump solutions for the semilinear
Schrödinger equation –�u + (1 + λa(x))u = (1 – λb(x))|u|p–2u, ∀u ∈ H1(RN), where
N ≥ 1, 2 < p < 2N/(N – 2) if N ≥ 3, p > 2 if N = 2 or N = 1, a(x) ∈ C(RN) and a(x) > 0,
b(x) ∈ C(RN) and b(x) > 0. For any n ∈ N, we prove that there exists λ(n) > 0 such that,
for 0 < λ < λ(n), the equation has an n-bump positive solution. Moreover, the
equation has more and more multi-bump positive solutions as λ → 0.
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1 Introduction and main results
In this paper we study the following time independent semilinear Schrödinger equation:

(Sλ) – �u +
(
 + λa(x)

)
u =

(
 – λb(x)

)|u|p–u, ∀u ∈ H(
R

N)
,

where N ≥ ,  < p < ∗, ∗ is the critical Sobolev exponent defined by ∗ = N
N– if N ≥ 

and ∗ = ∞ if N =  or N = , and λ >  is a parameter.
This kind of equation arises in many fields of physics. For the following nonlinear

Schrödinger equation:

i�
∂ϕ

∂t
= –

�


m
�ϕ + N(x)ϕ – f

(
x, |ϕ|)ϕ, (.)

where i is the imaginary unit, � is the Laplacian operator, and � >  is the Planck constant.
A standing wave solution of (.) is a solution of the form

ϕ(x, t) = u(x)e– iEt
� , u(x) ∈ R.

Thus, ϕ(x, t) solves (.) if and only if u(x) solves the equation

–��u + V (x)u = g(x, u), (.)
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where V (x) = N(x) – E and g(x, u) = f (x, |u|)u. The function V is called the potential of
(.). If g(x, u) = ( – λb(x))|u|p–u, then (.) can be written as

–��u + V (x)u =
(
 – λb(x)

)|u|p–u. (.)

If � =  and V (x) =  + λa(x), then (.) is reduced to (Sλ).
The nonlinear Schrödinger equation (Sλ) models some phenomena in physics, for ex-

ample, in nonlinear optics, in plasma physics, and in condensed matter physics, and the
nonlinear term simulates the interaction effect, called the Kerr effect in nonlinear optics,
among a large number of particles; see, for example, [, ]. The case of p =  and N =  is
of particular physical interest, and in this case the equation is called the Gross-Pitaevskii
equation; see [].

The limiting equation of (Sλ) is

–�u + u = |u|p–u, u ∈ H(
R

N)
, (.)

as λ → . It is well known that (.) has a unique positive radial solution z, which decays
exponentially at ∞. This z will serve as a building block to construct multi-bump solutions
of (Sλ). For n ∈N, let y, . . . , yn ∈R

N be the sufficiently separated points. The profile of the
function

∑n
i= z(x – yi) resembles n bumps and accordingly a solution of (Sλ) which is close

to
∑n

i= z(x – yi) in H(RN ) is called an n-bump solution.
As we know, multi-bump solutions arise as solutions of (.) as � → , under the as-

sumption that V has several critical points; see for example [–]. Particularly, in the in-
teresting paper [], the authors proved that the solutions of (.) have several peaks near
the point of a maximum of V . These peaks converge to the maximum of V as � → .
Actually, there have been enormous studies on the solutions of (.) as � → , which
exhibit a concentration phenomenon and are called semiclassical states. In the early re-
sults, most of the researchers focused on the case infx∈RN V (x) >  and g is subcritical.
Here and in the sequel, we say g is subcritical if g(x, u) ≤ C|u|p– for  ≤ p < ∗ with
∗ := N/(N – ) (N ≥ ), and g is critical or supercritical if c|u|∗– ≤ g(x, u) ≤ c|u|∗– or
only c|u|∗– ≤ g(x, u) for all large |u|. In the case of infx∈RN V (x) > , Floer and Weinstein
in [] first considered N = , g(u) = u. Using the Lyapunov-Schmidt reduction argument,
they proved that the system (.) has spike solutions, which concentrate near a nonde-
generate critical point of the potential V . This result was extended to the high dimension
case with N ≥  and for g(u) = |u|p–u by Oh [, ]. If the potential V has a nondegen-
erate critical point, Rabinowitz [] obtained the existence result for (.) with � small,
provided that  < infx∈RN V (x) < lim inf|x|→∞ V (x). Using a global variational argument,
Del Pino and Felmer [, ] established the existence of multi-peak solutions having ex-
actly k maximum points provided that there are k disjoint open bounded sets �i such that
infx∈∂�i V (x) > infx∈�i V (x), each �i having one peak concentrating at its bottom. For the
subcritical case, Refs. [, , –] also proved that the solutions of (.) are concentrated
at critical points of V . There have also been recent results on the existence of solutions
concentrating on manifolds; for instance, see [–] and the references therein.

If g is subcritical, Refs. [, ] first obtained the semiclassical solutions of (.) with
critical frequency, i.e., inf∈RN V (x) = . They exhibited new concentration phenomena
for bound states and their results were extended and generalized in [, , ]. Later,
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if inf∈RN V (x) = , Ding and Lin [] obtained semiclassical states of (.) when the
nonlinearity g is of the critical case. Recently, if the potentials V change sign, that is,
infx∈RN V (x) < , Refs. [, ] proved that the system (.) has semiclassical states.

Some researchers had also obtained multi-bump solutions for the equation

–�u + V (x)u = f (x, u), u ∈ H(
R

N)
, (.)

where V and f are Ti periodic in xi. Coti Zelati and Rabinowitz [] first constructed
multi-bump solutions for the Schrödinger equation (.). The building blocks are one-
bump solutions at the mountain pass level and the existence of such solutions as well as
multi-bump solutions is guaranteed by a nondegeneracy assumption of the solutions near
the mountain pass level. Later, under the same nondegeneracy assumption, Coti Zelati and
Rabinowitz in [] constructed multi-bump solutions for periodic Hamiltonian systems.
Multi-bump solutions have also been obtained for asymptotically periodic Schrödinger
equations by Alama and Li []. For subsequent studies in this direction, for example, see
[–] and the references therein. Recently, Refs. [–] also proved the existence of
multi-bump solutions in other elliptic equations.

In this paper, we are interested in constructing multi-bump solutions of (Sλ) with λ small
enough. Similar results have been obtained in [, ] for the equations

–�u +
(
 + λa(x)

)
u = |u|p–u, u ∈ H(

R
N)

(.)

and

–�u + u =
(
 – λa(x)

)|u|p–u, u ∈ H(
R

N)
. (.)

To state the main result for (Sλ), we need the following conditions on the functions a
and b:

(R) a(x) >  and a(x) ∈ C(RN ), b(x) >  and b(x) ∈ C(RN ), and

lim|x|→∞ a(x) = lim|x|→∞ b(x) = .

(R) One of the following holds: (i) lim|x|→∞ ln(a(x))
|x| = ; (ii) lim|x|→∞ ln(b(x))

|x| = .

Theorem . Suppose that the assumptions (R) and (R) hold. Then for any positive
integer n there exists λ(n) >  such that, for  < λ < λ(n), the system (Sλ) has an n-bump
positive solution. As a consequence, for any positive integer n, there exists λ(n) >  such
that, for  < λ < λ(n), the system (Sλ) has at least n positive solutions.

Similar to [, ], the solutions in Theorem . do not concentrate near any point in the
space. Instead, the bumps of the solutions we obtain are separated far apart and the dis-
tance between any pair of bumps goes to infinity as λ → . The size of each bump does not
shrink and is fixed as λ → . This is in sharp contrast to the concentration phenomenon
described above. This phenomenon has been observed by D’Aprile and Wei in [] for a
Maxwell-Schrödinger system.
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We shall use the variational reduction method to prove the main results. Our argument
is partially inspired by [–]. This paper is organized as follows. In Section , prelimi-
nary results are revisited. We prove Theorem . in Section .

2 Some preliminary works
2.1 Variational framework
In this section, we shall establish a variational framework for the system (Sλ). For conve-
nience of notation, let C and Ci denote various positive constants which may be variant
even in the same line. In the Hilbert space H(RN ), we shall use the usual inner product,

〈u, v〉 =
∫

RN
∇u · ∇v + uv,

and the induced norm ‖u‖ = 〈u, u〉 
 . Let | · |q denote the usual Lq(RN )-norm and (·, ·)

be the usual L(RN )-inner product. Let n ∈ N . We shall use
∑

i<j and
∑

i=j to represent
summation over all subscripts i and j satisfying  ≤ i < j ≤ n and  ≤ i = j ≤ n, respectively.
Let us first introduce some basic inequalities which will be used later.

The following four lemmas are taken from [, ].

Lemma . For q > , there exists C >  such that, for any real numbers a and b,

∣
∣|a + b|q – |a|q – |b|q∣∣ ≤ C|a|q–|b| + C|b|q–|a|.

Lemma . For q ≥ , there exists C >  such that, for any a >  and b ∈R,

∣
∣|a + b|q – aq – qaq–b

∣
∣ ≤ C

(
aq–|b| + |b|q).

Lemma . For q ≥ , n ∈ N , and ai ≥ , i = , . . . , n,

( n∑

i=

ai

)q

≥
n∑

i=

aq
i + (q – )

n∑

i=j

aq–
i aj

and
( n∑

i=

ai

)q

≥
n∑

i=

aq
i + q

n∑

≤i<j≤n

aq–
i aj.

Lemma . For q ≥ , there exists C >  such that, for any ai ≥ , i = , . . . , n,

[( n∑

i=

ai

)q–

–
n∑

i=

aq–
i

] q
q–

≤ C
∑

i=j

aq–
i aj.

Recall that, for  < p < ∗, the unique positive solution of the equation

–�u + u = |u|p–u, u ∈ H(
R

N)
(.)

has the following properties; see, for example, [, –].
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Lemma . If  < p < ∗, then every positive solution of (.) has the form zy := z(· – y)
for some y ∈ R

N , where z ∈ C∞(RN ) is the unique positive radial solution of (.) which
satisfies, for some c > ,

z(r)r
N–

 er → c > , z′(r)r
N–

 er → –c > , as r = |x| → ∞.

Furthermore, if β ≤ · · · ≤ βn ≤ · · · are the eigenvalues of the problem

–�v + v = βzp–v, v ∈ H(
R

N)
, (.)

then β = , β = p – , and the eigenspaces corresponding to β and β are spanned by z
and {∂z/∂xα | α = , . . . , N}, respectively.

We shall use zy as building blocks to construct multi-bump solutions of (Sλ). For yi, yj ∈
R

N , the identity
∫

RN
zp–

yi
zyj = 〈zyi , zyj〉 =

∫

RN
zyi z

p–
yj

will be frequently used in the sequel. The following lemma is a consequence of Lemma .
in [] (see also Lemma II. of []).

Lemma . There exists a positive constant c >  such that, as |yi – yj| → ∞,
∫

RN
zp–

yi
zyj ∼ c|yi – yj|– N–

 e–|yi–yj|.

For h > , n ≥ , and n ∈N, define

Dh =
{

(y, . . . , yn) ∈ (
R

N)n | |yi – yj| > h for i = j
}

.

For convenience, we make the convention

Dh = R
N , if n = .

For y = (y, . . . , yn) ∈Dh, denote

uy(x) =
n∑

i=

z(x – yi),

Ty =
{

∂z(· – yi)
∂xα

∣
∣∣ α = , . . . , N , i = , . . . , n

}

and

Wy =
{

v ∈ H(
R

N) | 〈v, u〉 = ,∀u ∈ Ty
}

.

Then H(RN ) = Ty ⊕Wy. Set Pλ(x) =  – λb(x), Vλ(x) =  + λa(x), Nλ = (p – )(–� + Vλ)–,
and N = N . For y ∈Dh and ϕ ∈ H(RN ), define

Ky = ϕ –
n∑

i=

N
(
zp–(· – yi)ϕ

)
+

n∑

i=

Liϕ,
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where

n∑

i=

Liϕ =
∑

i=j

N∑

α=

〈
N

(
zp–(· – yj)ϕ

)
,
∂z(· – yi)

∂xα

〉∥∥
∥∥
∂z(· – yi)

∂xα

∥∥
∥∥

–
∂z(· – yi)

∂xα

.

Noting that Ky|Wy : Wy →Wy has the form identity-compact.

Lemma . (See Lemma . of []) If h → ∞, then

|uy|p– –
n∑

i=

zp–(· – yi) → 

in Lp/(p–)(RN ) uniformly in y ∈Dh.

Lemma . (See Lemma . of []) Let u, v ∈ H(RN ). If v → , then

|u + v|p– – |u|p– → 

in Lp/(p–)(RN ) uniformly in u in any bounded set.

Lemma . (See Lemma . of []) There exist h >  and η >  such that, for h > h

and y ∈Dh, Ky|Wy : Wy →Wy is invertible and

∥
∥(Ky|Wy )–∥∥ ≤ η.

Lemma . Let v ∈ H(RN ). If λ → , v → , and h → ∞, then

sup
y∈Dh ,ϕ∈H(RN ),‖ϕ‖=

∥∥Kyϕ –
(
ϕ – Nλ

(
Pλ|uy + v|p–ϕ

))∥∥ → 

and

sup
y∈Dh ,ϕ∈H(RN ),‖ϕ‖=

∥∥Kyϕ –
(
ϕ – N

(
Pλ|uy + v|p–ϕ

))∥∥ → .

Proof By the definition of Ky, one has

Kyϕ –
(
ϕ – Nλ

(
Pλ|uy + v|p–ϕ

))
= Nλ

(|uy + v|p–ϕ
)

–
n∑

j=

N
(
zp–(· – yi)ϕ

)

– λNλ

(
b(x)|uy + v|p–ϕ

)
+

n∑

i=

Liϕ. (.)

Obviously, Nλ → N in L(L
p

p– (RN ), H(RN )) as λ → . Therefore, if λ → , v ∈ H(RN )
with v → , and h → ∞, then for ψ ,ϕ ∈ H(RN ), and uniformly in y ∈Dh,

∣∣
∣∣
∣

〈

Nλ

(|uy + v|p–ϕ
)

–
n∑

j=

N
(
zp–(· – yi)ϕ

)
,ψ

〉∣∣
∣∣
∣

=
∣∣〈(Nλ – N )

(|uy + v|p–ϕ
)
,ψ

〉∣∣ +
∣∣〈N

((|uy + v|p– – |uy|p–)ϕ
)
,ψ

〉∣∣
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+

∣∣
∣∣
∣

〈

N
((

|uy|p– –
n∑

j=

zp–(· – yj)

)

ϕ

)

,ψ

〉∣∣
∣∣
∣

≤ ∥∥(Nλ – N )
(|uy + v|p–ϕ

)∥∥‖ψ‖ + C
∣∣(|uy + v|p– – |uy|p–)∣∣

L
p

p– (RN )
‖ϕ‖‖ψ‖

+ C

∣∣
∣∣
∣

(

|uy|p– –
n∑

j=

zp–(· – yj)

)∣∣
∣∣
∣
L

p
p– (RN )

‖ϕ‖‖ψ‖

→ , (.)

as a consequence of Lemmas . and .. Moreover, by Lemma ., for |yi – yj| → ∞ (i = j),
one sees that

sup
y∈Dh

∥∥
∥∥
∥

n∑

i=

Liϕ

∥∥
∥∥
∥

→ . (.)

For ψ ,ϕ ∈ H(RN ),

λ
∣∣〈Nλ

(
b(x)|uy + v|p–ϕ

)
,ψ

〉∣∣ = λ
∣∣〈(Nλ – N )

(
b(x)|uy + v|p–ϕ

)
,ψ

〉∣∣

+
∣∣〈N

(
b(x)|uy + v|p–ϕ

)
,ψ

〉∣∣

≤ cλ
∥
∥(Nλ – N )

(|uy + v|p–ϕ
)∥∥‖ψ‖

+ cλ‖uy + v‖‖ϕ‖‖ψ‖
→ , (.)

as λ → . We infer from (.)-(.) that, if λ → , v ∈ H(RN ) with v → , and h → ∞,

sup
y∈Dh ,ϕ∈H(RN ),‖ϕ‖=

∥∥Kyϕ –
(
ϕ – Nλ

(
Pλ|uy + v|p–ϕ

))∥∥ → .

Similar to above arguments, one can easily acquire the second conclusion of this lemma.
�

Clearly, the energy functional corresponding to the system (Sλ) is defined by

�λ(u) =



∫

RN

(|∇u| + Vλ|u|) –

p

∫

RN
Pλ|u|p for u ∈ H(

R
N)

,

where Vλ = ( +λa(x)) and Pλ = ( –λb(x)). It is easy to see that the critical points of �λ are
solutions of (Sλ). In the following, we shall use a Lyapunov-Schmidt reduction argument
to find critical points of �λ. The first procedure is to convert the problem of finding critical
points of �λ to a finite dimensional problem, which consists of the following two lemmas.

Lemma . There exist λ >  and H >  such that, for  < λ < λ and h > H, there
exists a C-map

vh,λ : Dh → H(
R

N)
,

depending on h and λ, such that
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(i) for any y ∈Dh, vh,λ ∈Wy;
(ii) for any y ∈Dh, Py∇�λ(uy + vh,λ) = , where Py : H(RN ) →Wy is the orthogonal

projection onto Wy;
(iii) limλ→,h→∞ ‖vh,λ,y‖ =  uniformly in y ∈Dh; lim|y|→∞ ‖vh,λ,y‖ =  if n = .

Decreasing λ and increasing H if necessary, we have the following result.

Lemma . For  < λ < λ and h > H, if y = (y
 , . . . , y

n) is a critical point of �λ(uy +
vh,λ,y), then uy + vh,λ,y is a critical point of �λ.

Using Lemmas . and ., repeating the arguments of Lemmas . and . in [],
one can easily prove Lemmas . and ..

2.2 Estimates on �λ(uy + vh,λ,y) and vh,λ,y

In order to prove Theorem . in the next section. We need first to estimate �λ(uy + vh,λ,y)
and vh,λ,y. Denote c = �(z), where � is the functional �λ with λ = . Then

c = �(z) =



∫

RN

(|∇z| + |z|) –

p

∫

RN
|z|p.

In the following, we first estimate �λ(uy + vh,λ,y). Note that

�λ(uy + vh,λ,y) =



∫

RN
|∇uy + ∇vh,λ,y| +




∫

RN

(
 + λa(x)

)|uy + vh,λ,y|

–

p

∫

RN
|uy + vh,λ,y|p +

λ

p

∫

RN
b(x)|uy + vh,λ,y|p. (.)

A direct computation shows that

�λ(uy + vh,λ,y)

=



n∑

i=

∫

RN

∣∣∇z(x – yi)
∣∣ +

n∑

i=

∫

RN
∇z(x – yi) · ∇(vh,λ,y) +




∫

RN

∣∣∇(vh,λ,y)
∣∣

+
∑

i<j

∫

RN
∇z(x – yi) · ∇z(x – yj) +




n∑

i=

∫

RN

∣∣z(x – yi)
∣∣ +




∫

RN
|vh,λ,y|

+
n∑

i=

∫

RN
z(x – yi) · vh,λ,y +

∑

i<j

∫

RN
z(x – yi) · z(x – yj)

+
λ



∫

RN
a(x)u

y + λ

∫

RN
a(x)uyvh,λ,y +

λ



∫

RN
a(x)(vh,λ,y)

–

p

∫

RN
|uy + vh,λ,y|p +

λ

p

∫

RN
b(x)|uy + vh,λ,y|p. (.)

By Lemma ., we may assume that ‖vh,λ,y‖ ≤ . Taking a = uy and b = vh,λ,y in Lemma .,
we have


p

∫

RN
|uy + vh,λ,y|p =


p

∫

RN
|uy|p +

∫

RN
(uy)p–vh,λ,y + O

(‖vh,λ,y‖) (.)
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and


p

∫

RN
b(x)|uy + vh,λ,y|p =


p

∫

RN
b(x)|uy|p +

∫

RN
b(x)(uy)p–vh,λ,y + O

(‖vh,λ,y‖). (.)

Here and in what follows, O(‖vh,λ,y‖) satisfies

∣
∣O

(‖vh,λ,y‖)∣∣ ≤ C‖vh,λ,y‖

for some positive constant C independent of h, λ, y. Therefore, substituting (.) and (.)
into (.), it follows that

�λ(uy + vh,λ,y)

=



n∑

i=

∫

RN

∣∣∇z(x – yi)
∣∣ +

n∑

i=

∫

RN
∇z(x – yi) · ∇(vh,λ,y) +




∫

RN

∣∣∇(vh,λ,y)
∣∣

+
∑

i<j

∫

RN
∇z(x – yi) · ∇z(x – yj) +




n∑

i=

∫

RN

∣∣z(x – yi)
∣∣ +




∫

RN
|vh,λ,y|

+
n∑

i=

∫

RN
z(x – yi) · vh,λ,y +

∑

i<j

∫

RN
z(x – yi) · z(x – yj)

+
λ



∫

RN
a(x)u

y + λ

∫

RN
a(x)uyvh,λ,y +

λ



∫

RN
a(x)(vh,λ,y)

–

p

∫

RN
(uy)p –

∫

RN
(uy)p–vh,λ,y +

λ

p

∫

RN
b(x)(uy)p

+
∫

RN
b(x)(uy)p–vh,λ,y + O

(‖vh,λ,y‖).

Denote

Ky = –
n∑

i=

∫

RN
∇z(x – yi) · ∇(vh,λ,y) –




∫

RN

∣∣∇(vh,λ,y)
∣∣

–
∑

i<j

∫

RN
∇z(x – yi) · ∇z(x – yj)

–



∫

RN
(vh,λ,y) –

n∑

i=

∫

RN
z(x – yi) · vh,λ,y –

∑

i<j

∫

RN
z(x – yi) · z(x – yj)

– λ

∫

RN
a(x)uyvh,λ,y –

λ



∫

RN
a(x)(vh,λ,y) +


p

∫

RN
(uy)p +

∫

RN
(uy)p–vh,λ,y

– λ

∫

RN
b(x)(uy)p–vh,λ,y –


p

n∑

i=

∫

RN
zp(x – yi) + O

(‖vh,λ,y‖).

Then

�λ(uy + vh,λ,y) = nc +
λ



∫

RN
a(x)u

y +
λ

p

∫

RN
b(x)up

y – Ky. (.)
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Thus, in order to estimate the functional �λ(uy + vh,λ,y), it suffices to get the estimations
for Ky. Since

∫

RN
∇z(x – yi) · ∇v +

∫

RN
z(x – yi)v =

∫

RN
zp–(x – yi)v, ∀v ∈ H(

R
N)

,

Ky can be rewritten as

Ky = –
n∑

i=

∫

RN
zp–(x – yi)vh,λ,y –

∑

i<j

∫

RN
zp–(x – yi)z(x – yj)

– λ

∫

RN
a(x)uyvh,λ,y –

λ



∫

RN
a(x)(vh,λ,y) +


p

∫

RN
(uy)p +

∫

RN
(uy)p–vh,λ,y

– λ

∫

RN
b(x)(uy)p–vh,λ,y –


p

n∑

i=

∫

RN
zp(x – yi) + O

(‖vh,λ,y‖) + λO
(‖vh,λ,y‖).

Moreover, by the Hölder inequality one has

λ

∣∣
∣∣

∫

RN
a(x)uyvh,λ,y

∣∣
∣∣ ≤ λC

(∫

RN
a(x)u

y

) 
 ‖vh,λ,y‖

≤ Cλ
∫

RN
a(x)u

y + C‖vh,λ,y‖

and

λ

∣
∣∣∣

∫

RN
b(x)(uy)p–vh,λ,y

∣
∣∣∣ ≤ Cλ

(∫

RN
b(x)up

y

) p–
p

‖vh,λ,y‖

≤ Cλ
∫

RN
b(x)up

y + C‖vh,λ,y‖.

Therefore, we have

Ky =
∫

RN
(uy)p–vh,λ,y –

n∑

i=

∫

RN
zp–(x – yi)vh,λ,y –

∑

i<j

∫

RN
zp–(x – yi)z(x – yj)

+

p

∫

RN
(uy)p –


p

n∑

i=

∫

RN
zp(x – yi) + O

(‖vh,λ,y‖) + λO
(‖vh,λ,y‖)

+ O
(

λ
(∫

RN
a(x)u

y +
∫

RN
b(x)up

y

))
. (.)

Lemma . There exist h > , λ > , and Ci >  (i = , , ) such that, if  < λ ≤ λ,
h ≥ h, and y ∈Dh, then Ky satisfies

Ky ≥ C
∑

i<j

∫

RN
zp–(x – yi)z(x – yj) – C‖vh,λ,y‖ – λC‖vh,λ,y‖ – Cλ

,

Ky ≤ C
(∑

i<j

∫

RN
zp–(x – yi)z(x – yj) + ‖vh,λ,y‖ + λ‖vh,λ,y‖ – λ

)
.
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Proof From Lemmas . and ., one sees that
∣∣
∣∣∣

∫

RN
(uy)p–vh,λ,y –

n∑

i=

∫

RN
zp–(x – yi)vh,λ,y

∣∣
∣∣∣

≤
(∫

RN

(

(uy)p– –
n∑

i=

zp–(x – yi)

) p
p–

) p–
p (∫

RN
|vh,λ,y|p

) 
p

≤ C
(∫

RN

∑

i=j

zp–(x – yi)z(x – yj)
) p–

p
‖vh,λ,y‖

≤ C
(∫

RN

∑

i=j

zp–(x – yi)z(x – yj)
) (p–)

p
+ C‖vh,λ,y‖

≤ C
(∫

RN

∑

i=j

zp–(x – yi)z(x – yj)
)

o() + C‖vh,λ,y‖. (.)

Moreover, by Lemma ., we have

∫

RN
up

y ≥
n∑

i=

∫

RN
zp(x – yi) + (p – )

∑

≤i<j≤n

∫

RN
zp–(x – yi)z(x – yj) (.)

and by Lemma ., one has

∫

RN
up

y ≤
n∑

i=

∫

RN
zp(x – yi) + C

∑

≤i<j≤n

∫

RN
zp–(x – yi)z(x – yj). (.)

Here the fact
∫

RN
zp–(x – yi)z(x – yj) =

∫

RN
z(x – yi)zp–(x – yj)

has been used. Substituting (.)-(.) into (.), one can easily get the desired conclu-
sion. �

Next, we are in a position to estimate ‖vh,λ,y‖.

Lemma . ‖vh,λ,y‖ satisfies

‖vh,λ,y‖ ≤ Cλ

(∫

RN
a(x)u

y

) 


+ Cλ

(∫

RN
b(x)up

y

) p–
p

+ C
(∑

i<j

∫

RN
zp–(x – yi)z(x – yj)

) p–
p

.

Proof By Lemma ., for v ∈Wy, one has

 =
〈∇�λ(uy + vh,λ,y), v

〉

=
n∑

i=

∫

RN
∇z(x – yi) · ∇v +

∫

RN
∇(vh,λ,y) · ∇v
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+
n∑

i=

∫

RN
z(x – yi)v +

∫

RN
vh,λ,yv + λ

n∑

i=

∫

RN
a(x)z(x – yi)v

+ λ

∫

RN
a(x)vh,λ,yv –

∫

RN
Pλ|uy + vh,λ,y|p–(uy + vh,λ,y)v. (.)

There exists θ ∈ (, ) such that
∫

RN
Pλ|uy + vh,λ,y|p–(uy + vh,λ,y)v

= (p – )
∫

RN
Pλ|uy + θvh,λ,y|p–vh,λ,yv +

∫

RN
Pλup–

y v. (.)

Substituting (.) into (.) yields
∫

RN
∇(vh,λ,y) · ∇v +

∫

RN
vh,λ,yv – (p – )

∫

RN
Pλ|uy + θvh,λ,y|p–vh,λ,yv

= –λ

∫

RN
a(x)vh,λ,yv – λ

n∑

i=

∫

RN
a(x)z(x – yi)v

+
∫

RN
Pλup–

y v –
n∑

i=

∫

RN
zp–(x – yi)v.

Using the operator N and Py defined in Section ., we have

〈
vh,λ,y – PyN

(
Pλ|uy + θvh,λ,y|p–vh,λ,y

)
, v

〉

= –λ

∫

RN
a(x)vh,λ,yv – λ

n∑

i=

∫

RN
a(x)z(x – yi)v

+
∫

RN
Pλup–

y v –
n∑

i=

∫

RN
zp–(x – yi)v. (.)

By Lemma ., one has
∣∣
∣∣
∣

∫

RN
Pλup–

y v –
n∑

i=

∫

RN
zp–(x – yi)v

∣∣
∣∣
∣

≤
(∫

RN

∣∣∣
∣∣
up–

y –
n∑

i=

zp–(x – yi)

∣∣∣
∣∣
|v|

)

+ λ

∫

RN
bup–

y |v|

≤ C
(∫

RN

∑

i=j

zp–(x – yi)z(x – yj)
) p–

p
‖v‖ + λC

(∫

RN
bup

y

) p–
p

‖v‖.

Therefore, choosing v = vh,λ,y –PyN (Pλ|uy +θvh,λ,y|p–vh,λ,y) ∈Wy in (.) and using Lem-
mas . and ., we obtain, for some η > ,

η‖vh,λ,y‖‖v‖ ≤ λ

∫

RN
a(x)|vh,λ,yv| – λ

n∑

i=

∫

RN
a(x)z(x – yi)|v|

+ C
(∫

RN

∑

i=j

zp–(x – yi)z(x – yj)
) p–

p
‖v‖ + λC

(∫

RN
bup

y

) p–
p

‖v‖,
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which implies, for λ >  sufficiently small,

‖vh,λ,y‖‖v‖ ≤ Cλ

(∫

RN
a(x)u

y

) 
 ‖v‖ + λC

(∫

RN
bup

y

) p–
p

‖v‖

+ C
(∫

RN

∑

i=j

zp–(x – yi)z(x – yj)
) p–

p
‖v‖.

Thus, we obtain the result. �

3 Proof of Theorem 1.1
The main purpose of this section is to prove Theorem .. For this, we shall prove that, for
λ >  small enough, we can choose μ(λ) large enough such that the function �λ(uy + vh,λ,y)
defined in Section . reaches its maximum in Dμ at some point y = (y

 , . . . , y
n). Then

uy + vh,λ,y is a solution of (Sλ) by Lemma ..
We shall mainly consider the case n ≥  since the case n =  is much easier. Define

γ = sup
y∈(RN )n

(∫

RN
b(x)up

y (x) +
∫

RN
a(x)u

y(x)
)

.

By Lemmas . and ., there exist λ′
 > , h′

 >, and C′
i >  (i = , , ) such that, if  < λ ≤

λ′
, h ≥ h′

, and y ∈Dh, then Ky satisfies

Ky ≥ C′


∑

i<j

∫

RN
zp–(x – yi)z(x – yj) – C′

λ
 – C′

λ
. (.)

Here and in the sequel, Ci, C′
i , and C are various positive constants independent of λ. We

choose a number k such that k > max{, γ /C′
}. Then, for any λ satisfying

 < λ < λ′ = min

{‖z‖Lp

k
,

kC′


C′


,

√
kC′


C′


,λ

}
, (.)

there exists μ∗ = μ∗(λ) > μ = μ(λ) >  such that, for w ∈R
N with |w| ∈ [μ∗,μ],

kλ ≤
∫

RN
zp–(x)z(x – w) ≤ kλ. (.)

Set

�λ =
{
�λ(uy + vh,λ,y) | y ∈Dμ

}
.

To obtain an n-bump solution of (Sλ), it suffices to prove that �λ is achieved in the interior
of Dμ.

Lemma . Assume n ≥ . Then there exists λ ∈ (,λ′) such that, for  < λ < λ,

�λ > sup
{
�λ(uy + vh,λ,y) | y ∈Dμ and |yi – yj| ∈

[
μ∗,μ

]
for some i = j

}
.



Fang and Wang Boundary Value Problems  (2015) 2015:9 Page 14 of 21

Proof Note that μ(λ) → ∞ as λ → . By Lemma . and (.) we see that, if y ∈ Dμ(λ),
then

‖vμ,λ,y‖ ≤ Cλ
p–

p . (.)

Suppose that y = (y, . . . , yn) ∈Dμ(λ) and |yi –yj| ∈ [μ(λ),μ∗(λ)] for some i = j. By (.)-(.),
one has

Ky ≥ C′
kλ – C′

λ
 – C′

λ
 ≥ 


C′

kλ – C′
λ

 ≥ 


C′
kλ ≥ γ λ. (.)

By (.) and (.), for λ >  small enough, we obtain

�λ(uy + vμ,λ,y) = nc +
λ



∫

RN
a(x)u

y +
λ

p

∫

RN
b(x)up

y – Ky

≤ nc + γ λ – γ λ = nc – γ λ (.)

for y = (y, . . . , yn) ∈ Dμ(λ) with |yi – yj| ∈ [μ(λ),μ∗(λ)] for some i = j. On the other hand, if
y = (y, . . . , yn) ∈Dμ(λ) and |yi – yj| → ∞ for some i = j, then by (.) and Lemmas . and
., we have

�λ(uy + vμ,λ,y) = nc +
λ



∫

RN
a(x)u

y +
λ

p

∫

RN
b(x)up

y – Ky

≥ nc +
λ

p

(∫

RN
a(x)u

y +
∫

RN
b(x)up

y

)
– Cλ

– Cλ‖vμ,λ,y‖ – C‖vμ,λ,y‖ + o()

≥ nc +
λ

p

(∫

RN
a(x)u

y +
∫

RN
b(x)up

y

)
– Cλ

– C′
‖vμ,λ,y‖ + o()

≥ nc +
λ

p

(∫

RN
a(x)u

y +
∫

RN
b(x)up

y

)
– Cλ

– λC′


(∫

RN
a(x)u

y +
∫

RN
b(x)up

y

)
+ o(),

where o() means some quantities which depend only on y and converge to  as |yi – yj| →
∞ for all i = j. Therefore, for λ small enough,

lim inf|yi–yj|→∞,∀i=j
�λ(uy + vh,λ,y) ≥ nc.

This inequality contradicts (.). Thus, we obtain the result. �

We choose yk(λ) = (yk
 (λ), . . . , yk

n(λ)) ∈Dμ(λ) such that

lim
k→∞

�λ(uyk (λ) + vμ,λ,yk (λ)) = �λ.

Then Lemma . implies that

inf
k

min
i=j

∣
∣yk

i (λ) – yk
j (λ)

∣
∣ ≥ μ∗(λ).
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Therefore, for any  ≤ i ≤ n, passing to a subsequence if necessary, we may assume either
limk→∞ yk

i (λ) = y
i (λ) with |y

i (λ) – y
j (λ)| ≥ μ∗ for i = j or limk→∞ yk

i (λ) = ∞. Define

U (λ) =
{

 ≤ i ≤ n | ∣∣yk
i (λ)

∣
∣ → ∞, as k → ∞}

.

In the following, we shall prove that U (λ) = ∅ for λ >  sufficiently small and thus �λ(uy +
vh,λ,y) attains its maximum at (y

 (λ), . . . , y
n(λ)) ∈Dμ(λ).

Lemma . Assume n ≥ . Then there exists λ(n) >  such that for λ ∈ (,λ(n)), U (λ) = ∅.

Proof We adopt an argument borrowed from Lin and Liu [, ]. We argue by contra-
diction and assume that U (λ) = ∅ along a sequence λm → . Without loss of generality, we
may assume U (λm) = {, . . . , jn} for all m ∈ N and for some  ≤ jn < n. The case in which
jn = n can be handled similarly. For convenience of notations, we shall denote λm = λ,
yk

i = yk
i (λm), yk = (yk

 , . . . , yk
n), yk∗ = (yk

jn+, . . . , yk
n), and y∗ = (y

jn+, . . . , y
n) for k = , , . . . . Then,

as k → ∞,

∣
∣yk


∣
∣ → ∞, . . . ,

∣
∣yk

jn

∣
∣ → ∞

and

yk
jn+ → y

jn+, . . . , yk
n → y

n.

Set

wk =
n∑

i=

z
(
x – yk

i
)
, wk, =

jn∑

i=

z
(
x – yk

i
)

and

wk, =
n∑

i=jn+

z
(
x – yk

i
)
, wy∗ =

n∑

i=jn+

z
(
x – y

i
)
.

Similar to (.), we have

‖vμ,λ,yk ‖ ≤ Cλ
p–

p , ‖v
μ,λ,yk∗‖ ≤ Cλ

p–
p , k = , , . . . . (.)

By (.), we obtain

�λ(wk + vμ,λ,yk ) = nc +
λ



∫

RN
a(x)w

k +
λ

p

∫

RN
b(x)wp

k – Kyk

= jnc +
λ



∫

RN
a(x)w

k, +
λ



∫

RN
a(x)w

k, + λ

∫

RN
a(x)wk,wk,

+ (n – jn)c +
λ

p

∫

RN
b(x)wp

k + Kyk∗ – Kyk – Kyk∗

= jnc +
λ



∫

RN
a(x)w

k, + λ

∫

RN
a(x)wk,wk, + Kyk∗ – Kyk

+
λ

p

∫

RN
b(x)

(
wp

k – wp
k,

)
+ �λ(wk, + v

μ,λ,yk∗ ). (.)
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By Lemma ., one sees

∫

RN
b(x)

(
wp

k – wp
k,

) ≤ C

jn∑

i=

∫

RN
b(x)zp–(x – yk

i
)
wk,

+ C

jn∑

i=

∫

RN
b(x)zp(x – yk

j
)

+ C

n∑

j=jn+

∫

RN
b(x)zp–(x – yk

j
)
wk,. (.)

Therefore, since |yk
i | → ∞, i = , . . . , jn, as k → ∞, we obtain

λ



∫

RN
a(x)w

k, + λ

∫

RN
a(x)wk,wk, → . (.)

Furthermore, by (.) and the condition (R), we have

λ

p

∫

RN
b(x)

(
wp

k – wp
k,

) → , as k → ∞. (.)

From (.), (.) and (.), we arrive at

�λ(wk + vμ,λ,yk ) ≤ �λ(wk, + v
μ,λ,yk∗ ) + jnc + Kyk∗ – Kyk + o(). (.)

Using Lemma ., (.), and (.), we obtain

∫

RN

∣∣
∣∣
∣

n∑

i=

zp–(x – yk
i
)

–

( n∑

i=

z
(
x – yk

i
)
)p–∣∣

∣∣
∣
|vμ,λ,yk |

≤ C
(∑

i<j

∫

RN
zp–(x – yk

i
)
z
(
x – yk

j
)
) p–

p
‖vμ,λ,yk ‖

≤ C′λ
(p–)

p . (.)

From Lemma ., (.), (.), and (.), one gets

Kyk =

p

∫

RN

( n∑

i=

z
(
x – yk

i
)
)p

–

p

n∑

i=

∫

RN
zp(x – yk

i
)

–
∑

i<j

∫

RN
zp–(x – yk

i
)
z
(
x – yk

j
)

+ O
(
λ

(p–)
p

)
. (.)

In the same way, we have

Kyk∗ =

p

∫

RN

( n∑

i=jn+

z
(
x – yk

i
)
)p

–

p

n∑

i=jn+

∫

RN
zp(x – yk

i
)

–
∑

jn<i<j

∫

RN
zp–(x – yk

i
)
z
(
x – yk

j
)

+ O
(
λ

(p–)
p

)
. (.)
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We infer from (.) and (.) that

Kyk∗ – Kyk =

p

∫

RN
(wk,)p –


p

∫

RN
(wk)p +


p

jn∑

i=

∫

RN
zp(x – yk

i
)

+
∑

i<j≤jn

∫

RN
zp–(x – yk

i
)
z
(
x – yk

j
)

+ O
(
λ

(p–)
p

)

+
jn∑

i=

∫

RN
zp–(x – yk

i
)
wk,. (.)

By Lemma ., the sum of the terms except O(λ
(p–)

p ) on the right side of (.) is negative.
Thus, one has

Kyk∗ – Kyk ≤ O
(
λ

(p–)
p

)
. (.)

Letting k → ∞, by (.), and using (.), we obtain

�λ ≤ jnc + �λ(wy∗ + vμ,λ,y∗ ) + C′
λ

(p–)
p . (.)

On the other hand, by Lemma . and (.), there exist C, C >  such that

Cλ ≤ μ– N–
 e–μ ≤ Cλ, (.)

which implies for λ small enough

( – δ) ln

λ

≤ μ = μ(λ) ≤ ( + δ) ln

λ

, (.)

where  < δ < 
p . We choose τ such that  < τ ≤ p–

np . By (R), there exists R >  such that

a(x) ≥ e–τ |x|, |x| ≥ R (.)

or

b(x) ≥ e–τ |x|, |x| ≥ R. (.)

For λ >  small enough, define

ŷλ
s =

(
n ln


λ

– sμ(λ), , . . . , 
)

∈R
N , s = , , . . . , n. (.)

The open balls B(ŷλ
s , μ(λ)) are mutually disjoint. Thus there are jn integers from {, . . . , n},

denoted by s < s < · · · < sjn , such that

∣∣ŷλ
si

– y
j
∣∣ ≥ μ(λ), i = , . . . , jn, j = jn + , . . . , n. (.)
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Denote ŷλ
si

by yλ
i for simplicity, i = , . . . , jn. By (.), (.), and (.), one has

R +  ≤ ∣∣yλ
i
∣∣ ≤ n ln


λ

, i = , . . . , jn, (.)
∣
∣yλ

i – yλ
j
∣
∣ ≥ μ(λ),  ≤ i < j ≤ jn, (.)

∣∣yλ
i – y

j
∣∣ ≥ μ(λ), i = , . . . , jn, j = jn + , . . . , n. (.)

Therefore,

(
yλ

 , . . . , yλ
jn , y

jn+, . . . , y
n
) ∈Dμ(λ).

Denote yλ = (yλ
 , . . . , yλ

jn , y
jn+, . . . , y

n). Set wλ, =
∑jn

i= z(x – yλ
i ), wy∗ =

∑n
i=jn+ z(x – y

i ), and
wλ = wλ, + wy∗ . Similar to (.), one has

�λ(wλ + vμ,λ,yλ ) = jnc +
λ



∫

RN
a(x)w

λ, + λ

∫

RN
a(x)wλ,wy∗ + Kyλ∗ – Kyλ

+
λ

p

∫

RN
b(x)

(
wp

λ – wp
y∗

)
+ �λ(wy∗ + vμ,λ,y∗ ). (.)

As in (.), we have

Kyλ∗ – Kyλ =

p

∫

RN
(wy∗ )p –


p

∫

RN
(wλ)p +


p

jn∑

i=

∫

RN
zp(x – yλ

i
)

+
∑

i<j≤jn

zp–(x – yλ
i
)
z
(
x – yλ

j
)

+ O
(
λ

(p–)
p

)

+
jn∑

i=

∫

RN
zp–(x – yk

i
)
wy∗

≥ 
p

∫

RN
(wy∗ )p +


p

jn∑

i=

∫

RN
zp(x – yλ

i
)

–

p

∫

RN
(wλ)p + O

(
λ

(p–)
p

)
.

Together with Lemma . this implies that

Kyλ∗ – Kyλ ≥ –C
jn∑

i=

∫

RN
zp–(x – yλ

i
)
wy∗ – C

jn∑

i=

∫

RN
(wy∗ )p–z

(
x – yλ

i
)

– C
∑

≤i<j≤jn

∫

RN
zp–(x – yλ

i
)
z
(
x – yλ

j
)

+ O
(
λ

(p–)
p

)
. (.)

By Lemma ., (.), and (.), one sees that

∫

RN
zp–(x – yλ

i
)
z
(
x – yλ

j
) ≤ Ce–μ(λ) ≤ Ce–(–δ) ln 

λ

= Cλ
(–δ) ≤ Cλ

(p–)
p . (.)
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In view of (.), a similar argument shows that

jn∑

i=

∫

RN
zp–(x – yλ

i
)
wy∗ +

jn∑

i=

∫

RN
(wy∗ )pz

(
x – yλ

i
) ≤ Cλ

(p–)
p . (.)

Combining (.)-(.), we have

Kyλ∗ – Kyλ ≥ –Cλ
(p–)

p .

Together with (.), it follows that

�λ(uyλ + vμ,λ,yλ ) ≥ jnc +
λ



∫

RN
a(x)w

λ, + λ

∫

RN
a(x)wλ,wy∗ – Cλ

(p–)
p

+
λ

p

∫

RN
b(x)

(
wp

yλ – wp
y∗

)
+ �λ(wy∗ + vμ,λ,y∗ ).

We distinguish the following two cases to finish the proof of this lemma.
(i) If (.) holds, then by (.), we have, for i = , . . . , jn,

∫

RN
a(x)w

λ, ≥
∫

|x–yλ
i |≤

a(x)z(x – yλ
i
) ≥

∫

|x–yλ
i |≤

e–τ |x|z(x – yλ
i
)

≥ Ce–τ |yλ
i | ≥ Ce–nτ ln 

λ = Cλ
nτ . (.)

Hence,

�λ(uyλ + vμ,λ,yλ ) ≥ jnc + �λ(wy∗ + vμ,λ,y∗ ) + Cλ
nτ+ – Cλ

(p–)
p .

Since nτ +  < (p–)
p , we obtain, for λ small enough,

�λ(uyλ + vμ,λ,yλ ) ≥ jnc + �λ(wy∗ + vμ,λ,y∗ ) + C′
λ

nτ+,

which contradicts (.).
(ii) Suppose that (.) holds. Similar to (.), one has

∫

RN
b(x)

(
up

yλ – up
y∗

) ≥
∫

|x–yλ
 |≤

b(x)zp(x – yλ

) ≥

∫

|x–yλ
 |≤

e–τ |x|zp(x – yλ

)

≥ Ce–τ |yλ
 | ≥ Ce–nτ ln 

λ = Cλ
nτ .

Repeating the arguments of (i), we get, for λ small enough,

�λ(uyλ + vμ,λ,yλ ) ≥ jnc + �λ(wy∗ + vμ,λ,y∗ ) + C′
λ

nτ+.

This contradicts (.).
From (i) and (ii), we know that there exists λ(n) >  such that, if  < λ < λ(n), then U (λ) =

∅ and �λ(uy + vh,λ,y) reaches its maximum at some point (y
 , . . . , y

n) ∈Dμ(λ). �

Next, we shall prove Theorem ..
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Proof of Theorem . For n ≥ , according to Lemma ., if  < λ < λ(n), then �λ(uy +vh,λ,y)
reaches its maximum at some point y = (y

 , . . . , y
n) ∈Dμ(λ). Then uy +vh,λ,y is an n-bump

solution of (Sλ). For n = , as a consequence of Lemma .(iii), if λ ∈ (,λ], then

lim|y|→∞�λ(uy + vh,λ,y) = �(z) = c.

Since �λ(uy +vh,λ,y) is defined on allRN , �λ(uy +vh,λ,y) has a critical point y ∈ R
N and uy +

vh,λ,y is a -bump solution of (Sλ). By an argument similar to those in [, ], one sees
that uy + vh,λ,y is a positive solution of (Sλ). Set λ() = λ and λ(n) = min{λ(), . . . ,λ(n)}.
If  < λ < λ(n), then (Sλ) has at least n nontrivial positive solutions. �
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