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1 Introduction
Boundary value problems for nonlinear differential equations arise in a variety of areas of
applied mathematics, physics and variational problems of control theory. A point of cen-
tral importance in the study of nonlinear boundary value problems is to understand how
the properties of nonlinearity in a problem influence the nature of the solutions to the
boundary value problems. Much of the work on the existence of solutions to the bound-
ary value problems involves second-order differential equations. Third-order differential
equations arise in a variety of problems ranging from the study of regularization of the
Cauchy problem for one-dimensional hyperbolic conservation laws [] to nano boundary
layer fluid flows [] or to describe the evolution of physical phenomena in fluctuating en-
vironments []. Examples include many famous equations in mathematical physics, such
as the Korteweg-de Vries equation []. Some results concerning the existence of solutions
for third-order differential equations can be found in [–].

In recent years, computational fluid dynamics (CFD) techniques have been used increas-
ingly by researchers seeking to understand vascular hemodynamics. Most of the CFD-
based hemodynamic studies so far have been conducted to represent in vitro conditions
within restrictive assumptions. These studies under in vitro conditions are well suited to
investigate basic phenomena related to fluid dynamics in vessels models but are not fully
representative of actual patient hemodynamic conditions. In fact, CFD methods possess
the potential to augment the data obtained from in vitro methods by providing a complete
characterization of hemodynamic conditions (blood velocity and pressure as a function
of space and time) under precisely controlled conditions. However, specific difficulties in
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CFD studies of blood flows are related to the boundary conditions. It is now recognized
that the blood flow in a given district may depend on the global dynamics of the whole
circulation. Consequently, it is sometimes necessary to couple the D blood flow solver to
a low-order model for the entire vascular system []. A second difficulty is related to the
limitations of the existing in vitro anemometry techniques. Indeed, the space resolution
is far too coarse to tackle even the largest scales of the blood flow details. As a conse-
quence, the boundary conditions (e.g. the instantaneous velocity profile at the inlet sec-
tion of the computed domain) are unknown for an in vitro blood flow computation. Most
of the times, one assumes some analytical space-time evolution for prescribing the inlet
profile. Taylor et al. [] propose to assume very long circular vessel geometry upstream
the inlet section so that the analytic solution of Womersley [] can be prescribed. How-
ever, it is not always justified to assume a circular cross section. In order to cope with this
problem, an alternative approach prescribing integral boundary conditions is presented
in []. The validity of this approach is verified by computing both steady and pulsated
channel flows for Womersley number up to . As a matter of fact, problems with integral
boundary conditions arise naturally in thermal conduction problems [], semiconductor
problems [], hydrodynamic problems [], etc. Integral boundary conditions have var-
ious applications in applied sciences such as blood flow problems, chemical engineering,
thermoelasticity, underground water flow, population dynamics, etc. For more details of
boundary value problems involving integral boundary conditions; see for instance, [–
] and references therein.

The main tools of our study are fixed point theorems. Several authors have used fixed
point theory to show the existence of solutions to boundary value problems. The texts by
Agarwal et al. [] and by Guo and Lakshmikantham [] are excellent resources for the
use of fixed point theory in the study of existence of solutions to boundary value problems.

In this paper, we discuss several new results for third-order boundary value problems
of differential equations and inclusions with new kinds of integral boundary conditions.
The work accomplished in this paper is important from theoretical as well as from practi-
cal point of view. The third-order differential equations occur in a variety of problems of
applied sciences such as conservation laws, nano boundary layer fluid, evolution of physi-
cal phenomena in fluctuating environments, etc. Therefore the present study will provide
a platform for solving these problems by means of analytic/numerical techniques. The
paper is organized as follows.

In Section , we consider the following problem of third-order differential equations
with anti-periodic type integral boundary conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′′′(t) = f (t, x(t)), t ∈ [, T], T > ,
x() – λx(T) = μ

∫ T
 g(s, x(s)) ds,

x′() – λx′(T) = μ
∫ T

 h(s, x(s)) ds,
x′′() – λx′′(T) = μ

∫ T
 φ(s, x(s)) ds,

(.)

where f , g, h,φ : [, T] × R → R are given continuous functions and λj,μj ∈ R (λj �= , j =
, , ). The existence of solutions is obtained by means of the Leray-Schauder nonlinear
alternative, the Banach contraction mapping principle, and the Krasnoselskii fixed point
theorem.



Alsulami et al. Boundary Value Problems  (2015) 2015:25 Page 3 of 30

In Section , we consider a third-order nonlinear boundary value problem with multi-
strip boundary conditions given by

⎧
⎪⎨

⎪⎩

x′′′(t) = f (t, x(t)),  < t < ,
x() = , x′() = ,
x() =

∑n–
i= αi

∫ ηi
ζi

x(s) ds,  < ζi < ηi < , i = , , . . . , n – , n ≥ ,
(.)

where f is a given continuous function and αi ∈R satisfy the condition:

n–∑

i=

αi
(
η

i – ζ 
i
) �= .

We obtain some new existence results for the problem (.) by using a variety of fixed
point theorems such as the Banach contraction principle, the Krasnoselskii fixed point
theorem, the Leray-Schauder nonlinear alternative, and a fixed point theorem due to Boyd
and Wong.

Finally, in Section , we study the following third-order nonlinear differential inclusion
with multi-strip boundary conditions:

⎧
⎪⎨

⎪⎩

x′′′(t) ∈ F(t, x(t)),  < t < ,
x() = , x′() = ,
x() =

∑n–
i= αi

∫ ηi
ζi

x(s) ds,  < ζi < ηi < , i = , , . . . , n – , n ≥ ,
(.)

where F : [, ]×R→P(R) is a multi-valued map, P(R) is the family of all nonempty sub-
sets of R. We establish some existence results for the problem (.), when the right hand
side is convex as well as non-convex valued. In the first result we use the nonlinear alter-
native of Leray-Schauder type while in the second result, we shall combine the nonlinear
alternative of Leray-Schauder type for single-valued maps with a selection theorem due
to Bressan and Colombo for lower semicontinuous multi-valued maps with nonempty
closed and decomposable values. The third result relies on the fixed point theorem for
contraction multi-valued maps due to Covitz and Nadler.

The methods used in all problems above are standard; however, their exposition in the
framework of the given problems is new.

2 Problem I
The following lemma plays a pivotal role in obtaining the existence results for the problem
(.).

Lemma . For a given y ∈ C([, T],R), the unique solution of the equation x′′′(t) = y(t),
t ∈ [, T] subject to the boundary conditions of (.) is given by

x(t) =
∫ t



(t – s)


y(s) ds – λξ

∫ T



(T – s)


y(s) ds

+ λη

∫ T


(T – s)y(s) ds + λη

∫ T


y(s) ds

– μξ

∫ T


g
(
s, x(s)

)
ds + μη

∫ T


h
(
s, x(s)

)
ds + μη

∫ T


φ
(
s, x(s)

)
ds, (.)
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where

η = ξ
[
–λ(λ + )T + λ(λ – )tT – (λ – )(λ – )t],

η = ξ
[
λT – (λ – )t

]
,

ξ =


λ – 
, ξ =


(λ – )(λ – )

, ξ =


(λ – )(λ – )(λ – )
.

Proof It is well known that the solution of the differential equation x′′′(t) = y(t) can be
written as

x(t) =
∫ t



(t – s)


y(s) ds – c – ct – ct, t ∈ [, T], (.)

where c, c, c ∈ R are arbitrary constants. Applying the boundary conditions of (.), we
get

⎧
⎪⎨

⎪⎩

(λ – )c + λTc + λTc = μ
∫ T

 g(t, x(s)) ds + λ
∫ T


(T–s)

 y(s) ds,
(λ – )c + λTc = μ

∫ T
 h(s, x(s)) ds + λ

∫ T
 (T – s)y(s) ds,

(λ – )c = μ
∫ T

 φ(s, x(s)) ds + λ
∫ T

 y(s) ds.
(.)

Solving the system (.), we find the values of c, c and c. Substituting these values in
(.), we obtain (.). �

Next we outline the tools that will be used in the sequel.

Theorem . (Nonlinear alternative for single-valued maps) Let E be a Banach space, C
a closed, convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U → C is a
continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Lemma . (Krasnoselskii’s fixed point theorem) Let M be a closed bounded, convex and
nonempty subset of a Banach space X. Let A, B be the operators such that

(i) Ax + By ∈ M whenever x, y ∈ M;
(ii) A is compact and continuous, and

(iii) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

2.1 Existence results
Let C = C([, T],R) denotes the Banach space of all continuous functions from [, T] →R

endowed with the usual sup-norm ‖x‖ = supt∈[,T] |x(t)|.
By Lemma ., the problem (.) can be transformed to a fixed point problem as x = Fx,

where F : C → C is given by

(Fx)(t) =
∫ t



(t – s)


f
(
s, x(s)

)
ds – λξ

∫ T



(T – s)


f
(
s, x(s)

)
ds

+ λη

∫ T


(T – s)f

(
s, x(s)

)
ds + λη

∫ T


f
(
s, x(s)

)
ds
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– μξ

∫ T


g
(
s, x(s)

)
ds + μη

∫ T


h
(
s, x(s)

)
ds

+ μη

∫ T


φ
(
s, x(s)

)
ds, t ∈ [, T]. (.)

For the sake of computational convenience, we introduce

	 =
T


(
 + |λξ| + |λη|T– + |λη|T–). (.)

Our first existence result is based on the Leray-Schauder nonlinear alternative.

Theorem . Assume that f , g, h,φ : [, T] × R → R are continuous functions and the
following conditions hold:

(A) there exist a function p ∈ C([, T],R+) and ψ : R+ → R
+ nondecreasing such that

|f (t, x)| ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [, T] ×R;
(A) there exist continuous nondecreasing functions ψj : [,∞) → (,∞) and functions pj ∈

C([, T],R+) such that

∣
∣g(t, x)

∣
∣≤ p(t)ψ

(‖x‖), ∣
∣h(t, x)

∣
∣≤ p(t)ψ

(‖x‖), ∣
∣φ(t, x)

∣
∣≤ p(t)ψ

(‖x‖),

for each (t, x) ∈ [, T] ×R;
(A) there exists a number M >  such that

M
‖p‖ψ(‖x‖)	 + ‖p‖ψ(‖x‖)	 + ‖p‖ψ(‖x‖)	 + ‖p‖ψ(‖x‖)	

> ,

where 	 is defined by (.) and

	 = |μξ|, 	 = T |μη|, 	 = T |μη|.

Then the boundary value problem (.) has at least one solution on [, T].

Proof Consider the operator F : C → C defined by (.). It is easy to prove that F is con-
tinuous. Next, we show that F maps bounded sets into bounded sets in C([, T],R). For
a positive number ρ , let Bρ = {x ∈ C([, T],R) : ‖x‖ ≤ ρ} be a bounded set in C([, T],R).
Then, for each x ∈ Bρ , we have

∣
∣(Fx)(t)

∣
∣ ≤
∫ t



(t – s)


∣
∣f
(
s, x(s)

)∣
∣ds + |λξ|

∫ T



(T – s)


∣
∣f
(
s, x(s)

)∣
∣ds

+ |λη|
∫ T


(T – s)

∣
∣f
(
s, x(s)

)∣
∣ds + |λη|

∫ T



∣
∣f
(
s, x(s)

)∣
∣ds

+ |μξ|
∫ T



∣
∣g
(
s, x(s)

)∣
∣ds + |μη|

∫ T



∣
∣h
(
s, x(s)

)∣
∣ds

+ |μη|
∫ T



∣
∣φ
(
s, x(s)

)∣
∣ds

≤
∫ t



(t – s)


p(s)ψ

(‖x‖)ds + |λξ|
∫ T



(T – s)


p(s)ψ

(‖x‖)ds
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+ |λη|
∫ T


(T – s)p(s)ψ

(‖x‖)ds + |λη|
∫ T


p(s)ψ

(‖x‖)ds

+ |μξ|
∫ T


p(s)ψ

(‖x‖)ds + |μη|
∫ T


p(s)ψ

(‖x‖)ds

+ |μη|
∫ T


p(s)ψ

(‖x‖)ds

≤ ‖p‖ψ(‖x‖)T


{

 + |λξ| + |λη|T– + |λη|T–}

+ T‖p‖ψ
(‖x‖)|μξ| + T‖p‖ψ

(‖x‖)|μη| + T‖p‖ψ
(‖x‖)|μη|

= ‖p‖ψ(‖x‖)	 + ‖p‖ψ
(‖x‖)	 + ‖p‖ψ

(‖x‖)	 + ‖p‖ψ
(‖x‖)	.

Thus,

‖Fx‖ ≤ ‖p‖ψ(ρ)	 + ‖p‖ψ(ρ)	 + ‖p‖ψ(ρ)	 + ‖p‖ψ(ρ)	.

Now we show that F maps bounded sets into equicontinuous sets of C([, T],R). Let
t′, t′′ ∈ [, T] with t′ < t′′ and x ∈ Bρ , where Bρ is a bounded set of C([, T],R). Then we
have

∣
∣(Fx)

(
t′′) – (Fx)

(
t′)∣∣

≤
∣
∣
∣
∣ψ
(‖x‖)

∫ t′



[
(t′′ – s) – (t′ – s)



]

p(s) ds + ψ
(‖x‖)

∫ t′′

t′

(t′′ – s)


p(s) ds

∣
∣
∣
∣

+
∣
∣( – λ)λξ

∣
∣
∣
∣t′′ – t′∣∣ψ

(‖x‖)
∫ T


(T – s)p(s) ds + |λξ|

[

∣
∣( – λ)λ

∣
∣T
∣
∣t′′ – t′∣∣

+
∣
∣( – λ)( – λ)

∣
∣
∣
∣t′′ – t′∣∣]ψ

(‖x‖)
∫ T


p(s) ds

+
∣
∣( – λ)μλξ

∣
∣
∣
∣t′′ – t′∣∣ψ

(‖x‖)
∫ T


p(s) ds

+ |λξμ|
[
T
∣
∣( – λ)λ

∣
∣
∣
∣t′′ – t′∣∣ +

∣
∣( – λ)( – λ)

∣
∣
∣
∣t′′ – t′∣∣]

× ψ
(‖x‖)

∫ T


p(s) ds.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Bρ

as t′′ – t′ → . Therefore it follows by the Arzelá-Ascoli theorem that FC([, T],R) →
C([, T],R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Theorem .) once
we have proved the boundedness of the set of all solutions to the equations x = λFx for
λ ∈ [, ].

Let x be a solution. Then, for t ∈ [, T], and using the computations in proving that F is
bounded, we have

∣
∣x(t)

∣
∣ ≤
∫ t



(t – s)


p(s)ψ

(‖x‖)ds + |λξ|
∫ T



(T – s)


p(s)ψ

(‖x‖)ds

+ |λη|
∫ T


(T – s)p(s)ψ

(‖x‖)ds + |λη|
∫ T


p(s)ψ

(‖x‖)ds
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+ |μξ|
∫ T


p(s)ψ

(‖x‖)ds + |μη|
∫ T


p(s)ψ

(‖x‖)ds

+ |μη|
∫ T


p(s)ψ

(‖x‖)ds

≤ ‖p‖ψ(‖x‖)T


{

 + |λξ| + |λη|T– + |λη|T–}

+ T‖p‖ψ
(‖x‖)|μξ| + T‖p‖ψ

(‖x‖)|μη| + T‖p‖ψ
(‖x‖)|μη|

= ‖p‖ψ(‖x‖)	 + ‖p‖ψ
(‖x‖)	 + ‖p‖ψ

(‖x‖)	 + ‖p‖ψ
(‖x‖)	.

Consequently, we have

‖x‖
‖p‖ψ(‖x‖)	 + ‖p‖ψ(‖x‖)	 + ‖p‖ψ(‖x‖)	 + ‖p‖ψ(‖x‖)	

≤ .

In view of (A), there exists M such that ‖x‖ �= M. Let us set

U =
{

x ∈ C
(
[, T],R

)
: ‖x‖ < M + 

}
.

Note that the operator F : U → C([, T],R) is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λFx for some λ ∈ (, ). Conse-
quently, by the Leray-Schauder alternative (Theorem .), we deduce that F has a fixed
point x ∈ U which is a solution of the problem (.). �

Our next result is based on the celebrated fixed point theorem due to Banach.

Theorem . Assume that f , g, h,φ : [, T] × R → R are continuous functions satisfying
the conditions:

(A) |f (t, x) – f (t, y)| ≤ L|x – y|, ∀t ∈ [, T], L > , x, y ∈R;
(A) |g(t, x) – g(t, y)| ≤L|x – y|, |h(t, x) – h(t, y)| ≤L|x – y|, |φ(t, x) – φ(t, y)| ≤L|x – y|,

∀t ∈ [, T], Lj > , j = , , , x, y ∈R.

Then the boundary value problem (.) has a unique solution if

L	 +
{
L|μξ| + L|μη| + L|μη|

}
T < ,

where 	 is given by (.).

Proof Let us fix supt∈[,T] |f (t, )| = M, supt∈[,T] |g(t, )| = M, supt∈[,T] |h(t, )| = M,
supt∈[,T] |φ(t, )| = M and choose

r ≥ M	 + {M|μξ| + M|μη| + M|μη|}T
 – (L	 + {L|μξ| + L|μη| + L|μη|}T)

.
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Then we show that FBr ⊂ Br , where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br , we have

∣
∣(Fx)(t)

∣
∣≤ sup

t∈[,T]

{∫ t



(t – s)


∣
∣f
(
s, x(s)

)∣
∣ds + |λξ|

∫ T



(T – s)


∣
∣f
(
s, x(s)

)∣
∣ds

+ |λη|
∫ T


(T – s)

∣
∣f
(
s, x(s)

)∣
∣ds + |λη|

∫ T



∣
∣f
(
s, x(s)

)∣
∣ds

+ |μξ|
∫ T



∣
∣g
(
s, x(s)

)∣
∣ds + |μη|

∫ T



∣
∣g
(
s, x(s)

)∣
∣ds

+ |μη|
∫ T



∣
∣g
(
s, x(s)

)∣
∣ds
}

≤ sup
t∈[,T]

{∫ t



(t – s)


[∣
∣f
(
s, x(s)

)
– f (s, )

∣
∣ +
∣
∣f (s, )

∣
∣
]

ds

+ |λξ|
∫ T



(T – s)


[∣
∣f
(
s, x(s)

)
– f (s, )

∣
∣ +
∣
∣f (s, ) ds

∣
∣
]

ds

+ |λη|
∫ T


(T – s)

[∣
∣f
(
s, x(s)

)
– f (s, )

∣
∣ +
∣
∣f (s, ) ds

∣
∣
]

ds

+ |λη|
∫ T



[∣
∣f
(
s, x(s)

)
– f (s, )

∣
∣ +
∣
∣f (s, )

∣
∣
]

ds

+ |μξ|
∫ T



[∣
∣g
(
s, x(s)

)
– g(s, )

∣
∣ +
∣
∣g(s, )

∣
∣
]

ds

+ |μη|
∫ T



[∣
∣h
(
s, x(s)

)
– h(s, )

∣
∣ +
∣
∣h(s, )

∣
∣
]

ds

+ |μη|
∫ T



[∣
∣φ
(
s, x(s)

)
– φ(s, )

∣
∣ +
∣
∣φ(s, )

∣
∣
]

ds
}

≤ (Lr + M)
T


{

 + |λξ| + |λη|T– + |λη|T–}

+ (Lr + M)|μξ|T + (Lr + M)|μη|T + (Lr + M)|μη|T
=
(
L	 + L|μξ|T + L|μη|T + L|μη|T

)
r

+
(
M	 + M|μξ|T + M|μη|T + M|μη|T

)≤ r.

Now, for x, y ∈ C and for each t ∈ [, T], we obtain

∣
∣(Fx)(t) – (Fy)(t)

∣
∣ ≤ sup

t∈[,T]

{∫ t



(t – s)


∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣ds

+ |λξ|
∫ T



(T – s)


∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣ds

+ |λη|
∫ T


(T – s)

∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣ds

+ |λη|
∫ T



∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣ds

+ |μξ|
∫ T



∣
∣g
(
s, x(s)

)
– g
(
s, y(s)

)∣
∣ds
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+ |μη|
∫ T



∣
∣h
(
s, x(s)

)
– h
(
s, y(s)

)∣
∣ds

+ |μη|
∫ T



∣
∣φ
(
s, x(s)

)
– φ
(
s, y(s)

)∣
∣ds
}

≤ ‖x – y‖LT


{

 + |λξ| + |λη|T– + |λη|T–}

+ L‖x – y‖|μξ| + L‖x – y‖|μη|T + L|μη|T‖x – y‖
=
(
L	 + L|μξ|T + L|μη|T + L|μη|T

)‖x – y‖,

which implies that ‖Fx – Fy‖ ≤ (L	 + (L|μξ| + L|μη| + L|μη|)T)‖x – y‖. As
L	 + (L|μξ| + L|μη| + L|μη|)T < , F is a contraction. Thus, the conclusion of
the theorem follows by the contraction mapping principle (Banach fixed point theorem).

�

Theorem . Let f , g, h,φ : [, T]×R→R be continuous functions satisfying the assump-
tions (A)-(A). In addition we suppose that

(A) |f (t, x)| ≤ ν(t), ∀(t, x) ∈ [, T] ×R, and ν ∈ C([, T],R+);
(A) |g(t, x)| ≤ ν(t), |h(t, x)| ≤ ν(t), |φ(t, x)| ≤ ν(t), ∀(t, x) ∈ [, T] × R, and νj ∈

C([, T],R+), j = , , .

If

L(	 – T)


+
(
L|μξ| + L|μη| + L|μη|

)
T < , (.)

then problem (.) has at least one solution on [, T].

Proof Letting supt∈[,T] |ν(t)| = ‖ν‖, supt∈[,T] |νj(t)| = ‖νj‖, j = , , , we fix

r ≥ 	‖ν‖ +
(|μξ|‖ν‖ + |μη|‖ν‖ + |μη|‖ν‖

)
T

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =
∫ t



(t – s)


f
(
s, x(s)

)
ds,

(Qx)(t) = –λξ

∫ T



(T – s)


f
(
s, x(s)

)
ds + λη

∫ T


(T – s)f

(
s, x(s)

)
ds

+ λη

∫ T


f
(
s, x(s)

)
ds – μξ

∫ T


g
(
s, x(s)

)
ds

+ μη

∫ T


h
(
s, x(s)

)
ds + μη

∫ T


φ
(
s, x(s)

)
ds, t ∈ [, T].

For x, y ∈ Br , we find that

‖Px + Qy‖ ≤ 	‖ν‖ +
(|μξ|‖ν‖ + |μη|‖ν‖ + |μη|‖ν‖

)
T ≤ r.

Thus, Px + Qy ∈ Br . It follows from the assumption (A) together with (.) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P
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is uniformly bounded on Br as

‖Px‖ ≤ T


‖μ‖.

Now we prove the compactness of the operator P .
We define sup(t,x)∈[,T]×Br

|f (t, x)| = fs < ∞, and consequently, for t, t ∈ [, T] with t < t,
we have

∣
∣(Px)(t) – (Px)(t)

∣
∣ ≤ fs

(q)

∣
∣
∣
∣

∫ t



[
(t – s) – (t – s)]ds +

∫ t

t

(t – s) ds
∣
∣
∣
∣,

which is independent of x. Thus, P is equicontinuous. So P is relatively compact on Br .
Hence, by the Arzelá-Ascoli theorem, P is compact on Br . Thus all the assumptions of
Lemma . are satisfied. So the conclusion of Lemma . implies that the boundary value
problem (.) has at least one solution on [, T]. �

Example . Consider the following boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′′′(t) = 
 (cos t + tan– x(t)), t ∈ [, ],

x() + x() =
∫ 


x(s)

(+s) ds,
x′() + x′() = 


∫ 

 ( esx(s)
+es + 

 ) ds,
x′′() + x′′() = 


∫ 

 ( x(s)
+es + 

 ) ds,

(.)

where

f (t, x) =


(
cos t + tan– x(t)

)
, g(t, x) =

x(t)
( + t) ,

h(t, x) =
etx(t)
 + et +




, φ(t, x) =
x(t)

 + et +



,

and λ = λ = λ = –, μ = , μ = 
 , μ = 

 .

Clearly, ξ = –/, ξ = /, ξ = –/, η = /, η = /,

∣
∣f (t, x) – f (t, y)

∣
∣≤ L|x – y|, ∣

∣g(t, x) – g(t, y)
∣
∣≤ |x – y|,

∣
∣h(t, x) – h(t, y)

∣
∣≤ 


|x – y|, ∣

∣φ(t, x) – φ(t, y)
∣
∣≤ 


|x – y|,

L = , L =



, L =



,

	 =
T


(
 + |λξ| + |λη|T– + |λη|T–)≈ .,

and

L	 –
T


+
{
L|μξ| + L|μη| + L|μη|

}
T ≈ . < .

Thus, all the conditions of Theorem . are satisfied. So there exists at least one solution
of the problem (.) on [, ].
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3 Problem II
We need to establish the following result to define the solutions for the given problem.

Lemma . For any σ ∈ C([, ],R), the unique solution of the boundary value problem

⎧
⎪⎨

⎪⎩

x′′′(t) = σ (t),  < t < ,
x() = , x′() = ,
x() =

∑n–
i= αi

∫ ηi
ζi

x(s) ds,  < ζi < ηi < , i = , , . . . , n – , n ≥ ,
(.)

is given by

x(t) =
∫ t



(t – s)


σ (s) ds –

t

( –
∑n–

i= αi(η
i – ζ 

i ))

[∫ 



( – s)


σ (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


σ (u) du

)

ds

]

. (.)

Proof The general solution of the fractional differential equation in (.) can be written as

x(t) =
∫ t



(t – s)

!
σ (s) ds – c – ct – ct, (.)

where c, c, c are arbitrary constants. Applying the boundary conditions for the problem
(.), we find that c = , c = , and

c =


( –
∑n–

i= αi(η
i – ζ 

i ))

[∫ 



( – s)


σ (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


σ (u) du

)

ds

]

.

Substituting the values of c, c, c in (.) yields the solution (.). �

3.1 Existence of solutions
In view of Lemma ., we transform problem (.) as

x = Sx. (.)

In (.), the operator S : C → C is defined by

(Sx)(t) =
∫ t



(t – s)


f
(
s, x(s)

)
ds – ϑt

[∫ 



( – s)


f
(
s, x(s)

)
ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f
(
u, x(u)

)
du
)

ds

]

, t ∈ [, ], (.)

where

ϑ = 

(

 –
n–∑

i=

αi
(
η

i – ζ 
i
)
)–

.
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For convenience, let us set

	 =



[

 + |ϑ |
{

 +
n–∑

i=

αi(η
i – ζ 

i )


}]

. (.)

Theorem . Assume that f : [, ] ×R →R is a jointly continuous function and satisfies
the assumption

(A) |f (t, x) – f (t, y)| ≤ L|x – y|, ∀t ∈ [, ], L > , x, y ∈R,

with L < /	, where 	 is given by (.). Then the boundary value problem (.) has a unique
solution.

Proof Setting supt∈[,] |f (t, )| = M and choosing r ≥ 	M
–L	

, we show that SBr ⊂ Br , where
Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br , we have

∣
∣(Sx)(t)

∣
∣ ≤ sup

t∈[,]

{∫ t



(t – s)


∣
∣f
(
s, x(s)

)∣
∣ds + |ϑ |t

[∫ 



( – s)


∣
∣f
(
s, x(s)

)∣
∣ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f
(
u, x(u)

)∣
∣du
)

ds

]}

≤ sup
t∈[,]

{



∫ t


(t – s)(∣∣f

(
s, x(s)

)
– f (s, )

∣
∣ +
∣
∣f (s, )

∣
∣
)

ds

+ |ϑ |t

[∫ 



( – s)


(∣
∣f
(
s, x(s)

)
– f (s, )

∣
∣ +
∣
∣f (s, )

∣
∣
)

ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


(∣
∣f
(
u, x(u)

)
– f (u, )

∣
∣ +
∣
∣f (u, )

∣
∣
)

du
)

ds

]}

≤ (Lr + M) sup
t∈[,]

{



∫ t


(t – s) ds

+ |ϑ |t

[∫ 



( – s)


ds +

n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


du
)

ds

]}

≤ (Lr + M)


[

 + |ϑ |
{

 +
n–∑

i=

αi(η
i – ζ 

i )


}]

= (Lr + M)	 ≤ r.

Now, for x, y ∈ C and for each t ∈ [, ], we obtain

∣
∣(Sx)(t) – (Sy)(t)

∣
∣

≤ sup
t∈[,]

{∫ t



(t – s)


∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣ds

+ |ϑ |t

[∫ 



( – s)


∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣ds
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+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f
(
u, x(u)

)
– f
(
u, y(u)

)∣
∣du
)

ds

]}

≤ L‖x – y‖ sup
t∈[,]

{



∫ t


(t – s) ds

+ |ϑ |t

[∫ 



( – s)


ds +

n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


du
)

ds

]}

≤ L


[

 + |ϑ |
{

 +
n–∑

i=

αi(η
i – ζ 

i )


}]

‖x – y‖ = L	‖x – y‖,

where 	 is given by (.). Observe that 	 depends only on the parameters involved in the
problem. Hence ‖Sx – Sy‖ ≤ L	‖x – y‖ and as L < /	, therefore S is a contraction. Thus,
the conclusion of the theorem follows by the contraction mapping principle (Banach fixed
point theorem). �

Now, we prove the existence of solutions of the problem (.) by applying Krasnoselskii’s
fixed point theorem.

Theorem . Let f : [, ]×R→R be a jointly continuous function satisfying the assump-
tion (A). Moreover, we assume that

(A) |f (t, x)| ≤ μ(t), ∀(t, x) ∈ [, ] ×R, and μ ∈ C([, ],R+).

If

L|ϑ |


(

 +
n–∑

i=

αi(η
i – ζ 

i )


)

< , (.)

then the boundary value problem (.) has at least one solution on [, ].

Proof By the assumption (A), we can fix

r ≥ ‖μ‖


[

 + |ϑ |
(

 +
n–∑

i=

αi(η
i – ζ 

i )


)]

,

and consider Br = {x ∈ C : ‖x‖ ≤ r}. For t ∈ [, ], we define the operators PS and QS on Br

as

(PSx)(t) =
∫ t



(t – s)


f
(
s, u(s)

)
ds,

(QSx)(t) = –ϑt

[∫ 



( – s)


f
(
s, x(s)

)
ds –

n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f
(
u, x(u)

)
du
)

ds

]

.

For x, y ∈ Br , we find that

‖PSx + QSy‖ ≤ ‖μ‖


[

 + |ϑ |
(

 +
n–∑

i=

αi(η
i – ζ 

i )


)]

≤ r.
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Thus, PSx + QSy ∈ Br . It follows from the assumption (A) together with (.) that QS is
a contraction mapping. Continuity of f implies that the operator PS is continuous. Also,
PS is uniformly bounded on Br as

‖PSx‖ ≤ ‖μ‖


.

Now we prove the compactness of the operator PS . In view of (A), we define

sup
(t,x)∈[,]×Br

∣
∣f (t, x)

∣
∣ = f .

Consequently we have

∣
∣(PSx)(t) – (PSx)(t)

∣
∣ =
∣
∣
∣
∣




∫ t



[
(t – s) – (t – s)]f

(
s, x(s)

)
ds

+
∫ t

t

(t – s)f
(
s, x(s)

)
ds
∣
∣
∣
∣

≤ f

(
|t – t| + |t

 – t
 |
)
,

which is independent of x and tends to zero as t → t. Thus,PS is relatively compact on Br .
Hence, by the Arzelá-Ascoli theorem, PS is compact on Br . Thus all the assumptions of
Lemma . are satisfied. So by the conclusion of Lemma ., problem (.) has at least one
solution on [, ]. �

Our next result relies on the Leray-Schauder alternative.

Theorem . Let f : [, ] ×R →R be a jointly continuous function. Assume that:

(A) There exist a function p ∈ C([, ],R+) and a nondecreasing function ψ : R+ → R
+

such that |f (t, x)| ≤ p(t)ψ(‖x‖), ∀(t, x) ∈ [, ] ×R.
(A) There exists a constant M >  such that

M
‖p‖ψ(M)

 [ + |ϑ |{ +
∑n–

i= αi
η

i –ζ
i

 }]
> .

Then the boundary value problem (.) has at least one solution on [, ].

Proof Consider the operator S : C → C with x = S(x), where S is defined by (.). We show
that S maps bounded sets into bounded sets in C([, ],R). For a positive number r, let
Br = {x ∈ C([, ],R) : ‖x‖ ≤ r} be a bounded set in C([, ],R). Then

∣
∣(Sx)(t)

∣
∣ ≤
∫ t



(t – s)


∣
∣f
(
s, x(s)

)∣
∣ds + |ϑ |t

[∫ 



( – s)


∣
∣f
(
s, x(s)

)∣
∣ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f
(
u, x(u)

)∣
∣du
)

ds

]

≤
∫ t



(t – s)


p(s)ψ

(‖x‖)ds + |ϑ |t
∫ 



( – s)


p(s)ψ

(‖x‖)ds
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+ |ϑ |t
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


p(s)ψ

(‖x‖)du
)

ds

≤ ‖p‖ψ(‖x‖)


∫ 


( – s) ds +

|ϑ |‖p‖ψ(‖x‖)


∫ 


( – s) ds

+
|ϑ |‖p‖ψ(‖x‖)



n–∑

i=

αi

∫ ηi

ζi

(∫ s


(s – u) du

)

ds

≤ ‖p‖ψ(‖x‖)


+
|ϑ |‖p‖ψ(‖x‖)


+

|ϑ |‖p‖ψ(‖x‖)


n–∑

i=

αi
η

i – ζ 
i



=
‖p‖ψ(‖x‖)



[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

.

Next we show that S maps bounded sets into equicontinuous sets of C([, ],R). Let t′, t′′ ∈
[, ] with t′ < t′′ and x ∈ Br , where Br is a bounded set of C([, ],R). Then we obtain

∣
∣(Sx)

(
t′′) – (Sx)

(
t′)∣∣ =

∣
∣
∣
∣
∣




∫ t′′



(
t′′ – s

)f
(
s, x(s)

)
ds –




∫ t′



(
t′ – s

)f
(
s, x(s)

)
ds

– ϑ
((

t′′) –
(
t′))

[∫ 



( – s)


f
(
s, x(s)

)
ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f
(
u, x(u)

)
du
)

ds

]∣
∣
∣
∣
∣

≤
∣
∣
∣
∣




∫ t′



[(
t′′ – s

) –
(
t′ – s

)]
ψ(r)p(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣




∫ t′′

t′

(
t′′ – s

)
ψ(r)p(s) ds

∣
∣
∣
∣

+

∣
∣
∣
∣
∣
ϑ
((

t′′) –
(
t′))

[∫ 



( – s)


ψ(r)p(s) ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


ψ(r)p(u) du

)

ds

]∣
∣
∣
∣
∣
.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br

as t′′ – t′ → . As S satisfies the above assumptions, it follows by the Arzelá-Ascoli theorem
that S : C([, ],R) → C([, ],R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma .) once
we have proved the boundedness of the set of all solutions to the equations x = λSx for
λ ∈ [, ].

Let x be a solution. Then, for t ∈ [, ], and using the computations in proving that S is
bounded, we have

∣
∣x(t)

∣
∣ =
∣
∣λ(Sx)(t)

∣
∣

≤
∫ t



(t – s)


∣
∣f
(
s, x(s)

)∣
∣ds + |ϑ |t

[∫ 



( – s)


∣
∣f
(
s, x(s)

)∣
∣ds
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+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f
(
u, x(u)

)∣
∣du
)

ds

]

≤ ‖p‖ψ(‖x‖)


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

.

Consequently, we have

‖x‖
‖p‖ψ(‖x‖)

 [ + |ϑ |{ +
∑n–

i= αi
η

i –ζ
i

 }]
≤ .

In view of (A), there exists M such that ‖x‖ �= M. Let us set

U =
{

x ∈ C
(
[, ], X

)
: ‖x‖ < M + 

}
.

Note that the operator S : U → C([, ],R) is continuous and completely continuous. From
the choice of U , there is no x ∈ ∂U such that x = λS(x) for some λ ∈ (, ). Consequently,
by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce that S has a
fixed point x ∈ U which is a solution of the problem (.). This completes the proof. �

Now we make use of Leray-Schauder degree theory to establish our existence result.

Theorem . Let f : [, ] × R → R. Assume that there exist constants  ≤ κ < 
	

, where
	 is given by (.) and K >  such that |f (t, x)| ≤ κ‖x‖ + K for all t ∈ [, ], x ∈R. Then the
boundary value problem (.) has at least one solution.

Proof In view of the fixed point problem (.), we just need to prove the existence of at
least one solution x ∈ R satisfying (.). Define a suitable ball BR ⊂ C[, ] with radius
R >  as

BR =
{

x ∈ C : ‖x‖ < R
}

,

where R will be fixed later. Then it is sufficient to show that S : BR → C satisfies

x �= λSx, ∀x ∈ ∂BR and ∀λ ∈ [, ]. (.)

Let us set

H(λ, x) = λSx, x ∈ C,λ ∈ [, ].

Then, by the Arzelá-Ascoli theorem, hλ(x) = x–H(λ, x) = x–λSx is completely continuous.
If (.) is true, then the following Leray-Schauder degrees are well defined and by the
homotopy invariance of topological degree, it follows that

deg(hλ, BR, ) = deg(I – λS, BR, ) = deg(h, BR, )

= deg(h, BR, ) = deg(I, BR, ) =  �= ,  ∈ Br ,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree,
h(x) = x – Sx =  for at least one x ∈ BR. In order to prove (.), we assume that x = λSx
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for some λ ∈ [, ] and for all t ∈ [, ] so that

∣
∣x(t)

∣
∣ =
∣
∣λ(Sx)(t)

∣
∣

≤
∫ t



(t – s)


∣
∣f
(
s, x(s)

)∣
∣ds + |ϑ |t

[∫ 



( – s)


∣
∣f
(
s, x(s)

)∣
∣ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f
(
u, x(u)

)∣
∣du
)

ds

]

≤ (κ‖x‖ + K
)
{




∫ t


(t – s) ds

+ |ϑ |t

[∫ 



( – s)


ds +

n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


du
)

ds

]}

≤ (κ‖x‖ + K)


[

 + |ϑ |
{

 +
n–∑

i=

αi(η
i – ζ 

i )


}]

=
(
κ‖x‖ + K

)
	,

which, on taking the norm (supt∈[,] |x(t)| = ‖x‖) and solving for ‖x‖, yields

‖x‖ ≤ K	

 – κ	
.

Letting R = K	
–κ	

+ , (.) holds. This completes the proof. �

Now we present an existence result via nonlinear contractions.

Definition . Let E be a Banach space and let V : E → E be a mapping. V is said to be
a nonlinear contraction if there exists a continuous nondecreasing function � : R+ →R

+

such that �() =  and �(ξ ) < ξ for all ξ >  with the property:

‖Vx – Vy‖ ≤ �
(‖x – y‖), ∀x, y ∈ E.

Lemma . (Boyd and Wong) Let E be a Banach space and let V : E → E be a nonlinear
contraction. Then V has a unique fixed point in E.

Theorem . Assume that:

(A) |f (t, x) – f (t, y)| ≤ h(t) |x–y|
H∗+|x–y| , t ∈ [, ], x, y ≥ , where h : [, ] → R

+ is continuous
and

H∗ =
∫ 



( – s)


h(s) ds + |ϑ |

[∫ 



( – s)


h(s) ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


h(u) du

)

ds

]

. (.)

Then the boundary value problem (.) has a unique solution.
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Proof We define the operator S : C → C by (.).
Let a continuous nondecreasing function � : R+ →R

+ satisfying �() =  and �(ξ ) < ξ

for all ξ >  be defined by

�(ξ ) =
H∗ξ

H∗ + ξ
, ∀ξ ≥ .

Let x, y ∈ C . Then

∣
∣f
(
s, x(s)

)
– f
(
s, y(s)

)∣
∣≤ h(s)

H∗ �
(‖x – y‖)

so that

∣
∣Sx(t) – Sy(t)

∣
∣ ≤
∫ t



( – s)


h(s)

|x(s) – y(s)|
H∗ + |x(s) – y(s)| ds

+ |ϑ |
∫ 



( – s)


h(s)

|x(s) – y(s)|
H∗ + |x(s) – y(s)| ds

+ |ϑ |
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


h(m)

|x(m) – y(m)|
H∗ + |x(m) – y(m)| dm

)

ds,

for t ∈ [, ]. In view of (.), it follows that ‖Sx – Sy‖ ≤ �(‖x – y‖) and hence S is a nonlin-
ear contraction. Thus, by Lemma ., the operator S has a unique fixed point in C , which
in turn is a unique solution of problem (.). �

Example . Consider the following boundary value problem

{
x′′′(t) = f (t, x(t)), t ∈ [, ],
x() = , x′() = , x() =

∑
i= αi

∫ ηi
ζi

x(s) ds,
(.)

where ζ = /, ζ = /, ζ = /, η = /, η = /, η = /, α = /, α = /, α = .

With the given data we find θ = ., 	 = ..
(a) Let f : [, ] ×R →R be defined by

f (t, x) = L
(
 + sin t + e–t tan– x(t)

)
,  < t < . (.)

Clearly

∣
∣f (t, x) – f (t, y)

∣
∣≤ Le–t∣∣tan– x – tan– y

∣
∣≤ L|x – y|.

Fixing L < 
	

≈ ., all the conditions of Theorem . hold. Hence, the
problem (.) with f defined by (.) has a unique solution.

(b) Let us choose

f (t, x) =



sin

(
π


x
)

+
(x + )

 + (x + ) ,  < t < , (.)
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and note that

∣
∣f (t, x)

∣
∣≤ π


|x| + ,

with κ = π
 < 

	
≈ .. Thus, the conclusion of Theorem . applies to the

problem (.) with f defined by (.).

4 Problem III
Definition . A function x ∈ C()([, ],R) is a solution of the problem (.) if there exists
a function f ∈ L([, ],R) such that f (t) ∈ F(t, x(t)) a.e. on [, ] and

x(t) =
∫ t



(t – s)


f (s) ds – ϑt

[∫ 



( – s)


f (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f (u) du

)

ds

]

.

4.1 The Carathéodory case
In this subsection, we are concerned with the existence of solutions for the problem (.)
when the right hand side has convex values. We first recall some preliminary facts.

For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈
P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}.

Definition . A multi-valued map G : X →P(X):
(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X ;

(ii) is bounded on bounded sets if G(B) =
⋃

x∈B G(x) is bounded in X for all B ∈Pb(X)
(i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞);

(iii) is called upper semicontinuous (u.s.c.) on X if for each x ∈ X , the set G(x) is a
nonempty closed subset of X , and if for each open set N of X containing G(x),
there exists an open neighborhood N of x such that G(N) ⊆ N ;

(v) is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X);
(v) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of the

multi-valued operator G will be denoted by Fix G.

Remark . It is well known that, if the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e.,
xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

Definition . A multi-valued map G : [; ] → Pcl(R) is said to be measurable if for every
y ∈ R, the function

t �−→ d
(
y, G(t)

)
= inf

{‖y – z‖ : z ∈ G(t)
}

is measurable.

Definition . A multi-valued map F : [, ] ×R →P(R) is said to be Carathéodory if
(i) t �−→ F(t, x) is measurable for each x ∈R;
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(ii) x �−→ F(t, x) is upper semicontinuous for almost all t ∈ [, ];
Further a Carathéodory function F is called L-Carathéodory if

(iii) for each α > , there exists ϕα ∈ L([, ],R+) such that

∥
∥F(t, x)

∥
∥ = sup

{|v| : v ∈ F(t, x)
}≤ ϕα(t)

for all ‖x‖ ≤ α and for a.e. t ∈ [, ].

For each y ∈ C([, ],R), define the set of selections of F by

SF ,y :=
{

v ∈ L([, ],R
)

: v(t) ∈ F
(
t, y(t)

)
for a.e. t ∈ [, ]

}
.

The consideration of this subsection is based on the following lemmas.

Lemma . (Nonlinear alternative for Kakutani maps) Let E be a Banach space, C a closed
convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U → Pcp,c(C) is a
upper semicontinuous compact map; herePcp,c(C) denotes the family of nonempty, compact
convex subsets of C. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . Let X be a Banach space. Let F : [, ] ×R→Pcp,c(R) be an L-Carathéodory
multi-valued map and let � be a linear continuous mapping from L([, ],R) to C([,
],R). Then the operator

� ◦ SF : C
(
[, ],R

)→ Pcp,c
(
C
(
[, ],R

))
, x �→ (� ◦ SF )(x) = �(SF ,x)

is a closed graph operator in C([, ],R) × C([, ],R).

Theorem . Assume that

(H) F : [, ] ×R →P(R) is Carathéodory and has nonempty compact convex values;
(H) there exists a continuous nondecreasing function ψ : [,∞) → (,∞) and a function

p ∈ C([, ],R+) such that

∥
∥F(t, x)

∥
∥
P := sup

{|y| : y ∈ F(t, x)
}≤ p(t)ψ

(‖x‖) for each (t, x) ∈ [, ] ×R;

(H) there exists a number M >  such that

M
‖p‖ψ(M)

 [ + |ϑ |{ +
∑n–

i= αi
η

i –ζ
i

 }]
> . (.)

Then the boundary value problem (.) has at least one solution on [, ].

Proof Define an operator � : C([, ],R) →P(C([, ],R)) by

�(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h ∈ C([, ],R) :

h(t) =

⎧
⎪⎨

⎪⎩

∫ t


(t–s)

 f (s) ds
–ϑt[

∫ 


(–s)

 f (s) ds
–
∑n–

i= αi
∫ ηi
ζi

(
∫ s


(s–u)

 f (u) du) ds],  ≤ t ≤ ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭



Alsulami et al. Boundary Value Problems  (2015) 2015:25 Page 21 of 30

for f ∈ SF ,x. We will show that � satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof consists of several steps. As a first step, we show that �

is convex for each x ∈ C([, ],R). For that, let h, h ∈ �(x). Then there exist f, f ∈ SF ,x

such that, for each t ∈ [, ], we have

hi(t) =
∫ t



(t – s)


fi(s) ds – ϑt

[∫ 



( – s)


fi(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


fi(u) du

)

ds

]

, i = , .

Let  ≤ ω ≤ . Then, for each t ∈ [, ], we have

[
ωh + ( – ω)h

]
(t) =

∫ t



(t – s)


[
ωf(s) + ( – ω)f(s)

]
ds

– ϑt

[∫ 



( – s)


[
ωf(s) + ( – ω)f(s)

]
ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


[
ωf(s) + ( – ω)f(s)

]
du
)

ds

]

.

Since SF ,x is convex (F has convex values), ωh + ( – ω)h ∈ �(x).
Next, we show that � maps bounded sets into bounded sets in C([, ],R). For a positive

number r, let Br = {x ∈ C([, ],R) : ‖x‖ ≤ r} be a bounded set in C([, ],R). Then, for each
h ∈ �(x), x ∈ Br , there exists f ∈ SF ,x such that

h(t) =
∫ t



(t – s)


f (s) ds – ϑt

[∫ 



( – s)


f (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f (u) du

)

ds

]

.

Then, as in Theorem .,

∣
∣h(t)

∣
∣ ≤
∫ t



(t – s)


∣
∣f (s)

∣
∣ds + |ϑ |t

∫ 



( – s)


∣
∣f (s)

∣
∣ds

+ |ϑ |t
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f (u)

∣
∣du
)

ds

≤ ‖p‖ψ(‖x‖)


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

.

Thus,

‖h‖ ≤ ‖p‖ψ(‖x‖)


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

.

Now we show that � maps bounded sets into equicontinuous sets of C([, ],R). Let t′, t′′ ∈
[, ] with t′ < t′′ and x ∈ Br , where Br is a bounded set of C([, ],R). For each h ∈ �(x),
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we obtain

∣
∣h
(
t′′) – h

(
t′)∣∣ =

∣
∣
∣
∣
∣




∫ t′′



(
t′′ – s

)f (s) ds –



∫ t′



(
t′ – s

)f (s) ds

– ϑ
((

t′′) –
(
t′))

[∫ 



( – s)


f (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f (u) du

)

ds

]∣
∣
∣
∣
∣

≤
∣
∣
∣
∣




∫ t′



[(
t′′ – s

) –
(
t′ – s

)]
ψ(r)p(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣




∫ t′′

t′

(
t′′ – s

)
ψ(r)p(s) ds

∣
∣
∣
∣

+

∣
∣
∣
∣
∣
ϑ
((

t′′) –
(
t′))

[∫ 



( – s)q–


ψ(r)p(s) ds

+
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


ψ(r)p(u) du

)

ds

]∣
∣
∣
∣
∣
.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br

as t′′ – t′ → . As � satisfies the above three assumptions, by the Arzelá-Ascoli theorem
� : C([, ],R) →P(C([, ],R)) is completely continuous.

In our next step, we show that � has a closed graph. Let xn → x∗, hn ∈ �(xn) and hn →
h∗. Then we need to show that h∗ ∈ �(x∗). Associated with hn ∈ �(xn), there exists fn ∈
SF ,xn such that, for each t ∈ [, ],

hn(t) =
∫ t



(t – s)


fn(s) ds – ϑt

[∫ 



( – s)


fn(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


fn(u) du

)

ds

]

.

Thus we have to show that there exists f∗ ∈ SF ,x∗ such that, for each t ∈ [, ],

h∗(t) =
∫ t



(t – s)


f∗(s) ds – ϑt

[∫ 



( – s)


f∗(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f∗(u) du

)

ds

]

.

Let us consider the continuous linear operator � : L([, ],R) → C([, ],R) given by

f �→ �(f ) =
∫ t



(t – s)


f (s) ds – ϑt

[∫ 



( – s)


f (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f (u) du

)

ds

]

.
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Observe that

∥
∥hn(t) – h∗(t)

∥
∥ =

∥
∥
∥
∥
∥

∫ t



(t – s)


(
fn(s) – f∗(s)

)
ds

– ϑt

[∫ 



( – s)


(
fn(s) – f∗(s)

)
ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


(
fn(u) – f∗(u)

)
du
)

ds

]∥
∥
∥
∥
∥

→ ,

as n → ∞. Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further,
we have hn(t) ∈ �(SF ,xn ). Since xn → x∗, we have

h∗(t) =
∫ t



(t – s)


f∗(s) ds – ϑt

[∫ 



( – s)


f∗(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f∗(u) du

)

ds

]

,

for some f∗ ∈ SF ,x∗ .
Finally, we discuss a priori bounds on the solutions. Let x be a solution of (.). Then

there exists f ∈ L([, ],R) with f ∈ SF ,x such that, for t ∈ [, ], we have

x(t) =
∫ t



(t – s)


f (s) ds – ϑt

[∫ 



( – s)


f (s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


f (u) du

)

ds

]

.

In view of (H), and using the computations in the second step above, for each t ∈ [, ],
we obtain

∣
∣x(t)

∣
∣ ≤
∫ t



(t – s)


∣
∣f (s)

∣
∣ds + |ϑ |t

∫ 



( – s)


∣
∣f (s)

∣
∣ds

+ |ϑ |t
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣f (u)

∣
∣du
)

ds

≤ ‖p‖ψ(‖x‖)


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

.

Consequently, we have

‖x‖
‖p‖ψ(‖x‖)

 [ + |ϑ |{ +
∑n–

i= αi
η

i –ζ
i

 }]
≤ .

In view of (H), there exists M such that ‖x‖ �= M. Let us set

U =
{

x ∈ C
(
[, ],R

)
: ‖x‖ < M + 

}
.
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Note that the operator � : U → P(C([, ],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ μ�(x) for some μ ∈
(, ). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .),
we deduce that � has a fixed point x ∈ U which is a solution of the problem (.). This
completes the proof. �

4.2 The lower semicontinuous case
Here, we study the case when F is not necessarily convex valued. Our strategy to deal
with this problems is based on the nonlinear alternative of Leray-Schauder type together
with the selection theorem of Bressan and Colombo for lower semicontinuous maps with
decomposable values.

Definition . Let X be a nonempty closed subset of a Banach space E and G : X →P(E)
be a multi-valued operator with nonempty closed values. G is lower semicontinuous (l.s.c.)
if the set {y ∈ X : G(y) ∩ B �= ∅} is open for any open set B in E.

Definition . Let A be a subset of [, ] ×R. A is L⊗B measurable if A belongs to the
σ -algebra generated by all sets of the form J × D, where J is Lebesgue measurable in
[, ] and D is Borel measurable in R.

Definition . A subset A of L([, ],R) is decomposable if for all x, y ∈A and measur-
able J ⊂ [, ] = J , the function xχJ + yχJ–J ∈ A, where χJ stands for the characteristic
function of J .

Definition . Let Y be a separable metric space and let N : Y → P(L([, ],R)) be a
multi-valued operator. We say N has a property (BC) if N is lower semicontinuous (l.s.c.)
and has nonempty closed and decomposable values.

Let F : [, ] ×R→P(R) be a multi-valued map with nonempty compact values. Define
a multi-valued operator F : C([, ] ×R) →P(L([, ],R)) associated with F as

F (x) =
{

w ∈ L([, ],R
)

: w(t) ∈ F
(
t, x(t)

)
for a.e. t ∈ [, ]

}
,

which is called the Nemytskii operator associated with F .

Definition . Let F : [, ] × R → P(R) be a multi-valued function with nonempty
compact values. We say F is of lower semicontinuous type (l.s.c. type) if its associated Ne-
mytskii operator F is lower semicontinuous and has nonempty closed and decomposable
values.

Lemma . (Bressan and Colombo) Let Y be a separable metric space and let N : Y →
P(L([, ],R)) be a multi-valued operator satisfying the property (BC). Then N has a
continuous selection, that is, there exists a continuous function (single-valued) g : Y →
L([, ],R) such that g(x) ∈ N(x) for every x ∈ Y .

Theorem . Assume that (H), (H) and the following condition holds:

(H) F : [, ] ×R →P(R) is a nonempty compact-valued multi-valued map such that
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(a) (t, x) �−→ F(t, x) is L⊗B measurable,
(b) x �−→ F(t, x) is lower semicontinuous for each t ∈ [, ].

Then the boundary value problem (.) has at least one solution on [, ].

Proof It follows from (H) and (H) that F is of l.s.c. type. Then, by Lemma ., there
exists a continuous function f : C()([, ],R) → L([, ],R) such that f (x) ∈ F (x) for all
x ∈ C([, ],R).

Consider the problem

⎧
⎪⎨

⎪⎩

x′′′(t) = f (x(t)),  < t < ,
x() = , x′() = ,
x() =

∑n–
i= αi

∫ ηi
ζi

x(s) ds,  < ζi < ηi < , i = , , . . . , n – ,
(.)

in the space C([, ],R). It is clear that if x is a solution of the problem (.), then x is a
solution to the problem (.). In order to transform the problem (.) into a fixed point
problem, we define the operator � as

�x(t) =

{


∫ t

 (t – s)f (x(s)) ds – ϑt[
∫ 


(–s)

 f (x(s)) ds
–
∑n–

i= αi
∫ ηi
ζi

(
∫ s


(s–u)

 f (x(u)) du) ds],  ≤ t ≤ .

It can easily be shown that � is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem .. So we omit it. This completes the
proof. �

4.3 The Lipschitz case
Now we prove the existence of solutions for the problem (.) with a non-convex valued
right hand side by applying a fixed point theorem for multi-valued maps due to Covitz and
Nadler.

Let (X, d) be a metric space induced from the normed space (X;‖ · ‖). Consider Hd :
P(X) ×P(X) →R∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a; b) and d(a, B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a metric
space and (Pcl(X), Hd) is a generalized metric space.

Definition . A multi-valued operator N : X →Pcl(X) is called:
(a) γ -Lipschitz if and only if there exists γ >  such that

Hd
(
N(x), N(y)

)≤ γ d(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < .

Lemma . (Covitz-Nadler) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then Fix N �= ∅.
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Definition . A measurable multi-valued function F : [, ] → P(X) is said to be in-
tegrably bounded if there exists a function h ∈ L([, ], X) such that, for all v ∈ F(t),
‖v‖ ≤ h(t) for a.e. t ∈ [, ].

Theorem . Assume that the following conditions hold:

(H) F : [, ] × R → Pcp(R) is such that F(·, x) : [, ] → Pcp(R) is measurable for each
x ∈R;

(H) Hd(F(t, x), F(t, x̄)) ≤ m(t)|x – x̄| for almost all t ∈ [, ] and x, x̄ ∈ R with m ∈
C([, ],R+) and d(, F(t, )) ≤ m(t) for almost all t ∈ [, ].

Then the boundary value problem (.) has at least one solution on [, ] if

‖m‖


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

< .

Proof We transform the problem (.) into a fixed point problem. Consider the set-valued
map � : C([, ],R) → P(C([, ],R)) defined at the beginning of the proof of Theo-
rem .. It is clear that the fixed point of � are solutions of the problem (.).

Note that, by the assumption (H), since the set-valued map F(·, x) is measurable, it ad-
mits a measurable selection f : [, ] →R. Moreover, from assumption (H)

∣
∣f (t)

∣
∣≤ m(t) + m(t)

∣
∣x(t)

∣
∣,

i.e. f (·) ∈ L([, ],R). Therefore the set SF ,x is nonempty. Also note that since SF ,x �= ∅,
�(x) �= ∅ for any x ∈ C([, ],R).

Now we show that the operator � satisfies the assumptions of Lemma .. To show that
�(x) ∈ Pcl((C[, ],R)) for each x ∈ C([, ],R), let {un}n≥ ∈ �(x) be such that un → u
(n → ∞) in C([, ],R). Then u ∈ C([, ],R) and there exists vn ∈ SF ,x such that, for each
t ∈ [, ], we have

un(t) =
∫ t



(t – s)


vn(s) ds – ϑt

[∫ 



( – s)


vn(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


vn(u) du

)

ds

]

.

As F has compact values, we may pass onto a subsequence (if necessary) to obtain the
result that vn converges to v in L([, ],R). Thus, v ∈ SF ,x and, for each t ∈ [, ],

un(t) → u(t) =
∫ t



(t – s)


v(s) ds – ϑt

[∫ 



( – s)


v(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


v(u) du

)

ds

]

.

Hence, u ∈ �(x) and �(x) is closed.
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Next we show that � is a contraction on C([, ],R), i.e. there exists γ <  such that

Hd
(
�(x),�(x̄)

)≤ γ ‖x – x̄‖ for each x, x̄ ∈ C()([, ],R
)
.

Let x, x̄ ∈ C()([, ],R) and h ∈ �(x). Then there exists v(t) ∈ F(t, x(t)) such that, for each
t ∈ [, ],

h(t) =
∫ t



(t – s)


v(s) ds – ϑt

[∫ 



( – s)


v(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


v(u) du

)

ds

]

.

By (H), we have

Hd
(
F(t, x), F(t, x̄)

)≤ m(t)
∣
∣x(t) – x̄(t)

∣
∣.

So, there exists w ∈ F(t, x̄(t)) such that

∣
∣v(t) – w(t)

∣
∣≤ m(t)

∣
∣x(t) – x̄(t)

∣
∣, t ∈ [, ].

Define U : [, ] →P(R) by

U(t) =
{

w ∈R :
∣
∣v(t) – w

∣
∣≤ m(t)

∣
∣x(t) – x̄(t)

∣
∣
}

.

Since the multi-valued operator U(t)∩F(t, x̄(t)) is measurable, there exists a function v(t)
which is a measurable selection for U . So v(t) ∈ F(t, x̄(t)) and, for each t ∈ [, ], we have
|v(t) – v(t)| ≤ m(t)|x(t) – x̄(t)|.

For each t ∈ [, ], let us define

h(t) =
∫ t



(t – s)


v(s) ds – ϑt

[∫ 



( – s)


v(s) ds

–
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


v(u) du

)

ds

]

.

Thus,

∣
∣h(t) – h(t)

∣
∣ ≤
∫ t



(t – s)


∣
∣v(s) – v(s)

∣
∣ds

+ |ϑ |t
∫ 



( – s)


∣
∣v(s) – v(s)

∣
∣ds

+ |ϑ |t
n–∑

i=

αi

∫ ηi

ζi

(∫ s



(s – u)


∣
∣v(u) – v(u)

∣
∣du
)

ds

≤ ‖m‖


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

‖x – x‖.
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Hence,

‖h – h‖ ≤ ‖m‖


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

‖x – x‖.

Analogously, interchanging the roles of x and x, we obtain

Hd
(
�(x),�(x̄)

)≤ γ ‖x – x̄‖

≤ ‖m‖


[

 + |ϑ |
{

 +
n–∑

i=

αi
η

i – ζ 
i



}]

‖x – x‖.

Since � is a contraction, it follows by Lemma . that � has a fixed point x which is a
solution of (.). This completes the proof. �

Example . Consider the following boundary value problem:

{
x′′′(t) ∈ F(t, x(t)), t ∈ [, ],
x() = , x′() = , x() =

∑
i= αi

∫ ηi
ζi

x(s) ds,
(.)

where ζ = /, ζ = /, ζ = /, η = /, η = /, η = /, α = /, α = /, α = .

Let F : [, ] ×R→P(R) be a multi-valued map given by

x → F(t, x) =
[ |x|

(|x| + )
+ t + ,

|x|
|x| + 

+ t + 
]

.

For f ∈ F , we have

|f | ≤ max

( |x|
(|x| + )

+ t + ,
|x|

|x| + 
+ t + 

)

≤ /, x ∈R.

Thus,

∥
∥F(t, x)

∥
∥
P := sup

{|y| : y ∈ F(t, x)
}≤ / = p(t)ψ

(‖x‖), x ∈R,

with p(t) = , ψ(‖x‖) = /. Further using the condition

M
‖p‖

 [ + |ϑ |{ +
∑n–

i= αi
η

i –ζ
i

 }]
> ,

we find that M > .. This shows that all the assumptions of Theorem . are satis-
fied. In consequence, we conclude that there exists at least one solution for the problem
(.).

5 Conclusions
In this paper, we have discussed the existence of solutions for third-order single-valued
and multi-valued boundary value problems involving anti-periodic type integral boundary
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conditions and multi-strip boundary conditions. The existence results for single-valued
case rely on the standard tools of fixed point theory such as the Leray-Schauder nonlinear
alternative, the Banach contraction mapping principle, and fixed point theorems due to
Krasnoselskii, and Boyd and Wong, while the existence of solutions for multi-valued case
is based on nonlinear alternative of Leray-Schauder type, a selection theorem due to Bres-
san and Colombo, and Covitz and Nadler’s result for contractive multi-valued maps. The
results are well illustrated with the aid of several examples. It is interesting to note that the
results for problem (.) reduce to the ones for a third-order anti-periodic boundary value
problem if we take μ = μ = μ =  and λ = λ = λ = –. Further, letting λ = λ = λ = 
in problem (.) yields the results for a problem with initial-integral boundary conditions.
On the other hand, one can notice that arbitrary many strips of finite length are involved in
problems (.) and (.). This consideration is quite flexible as it helps to fix the number of
strips as well as their lengths. The problems (.) and (.) can also be regarded as (n – )-
point nonlocal nonlinear boundary value problems. Furthermore, ∀αi =  (i = , . . . , n – ),
the results for problems (.) and (.) correspond to the one with boundary conditions:
x() = x′() = x() = . In a nutshell, we conclude that the results reported in this study
significantly contribute to the existing theory of third-order boundary value problems.
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