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Abstract
This paper is concerned with the following periodic Hamiltonian elliptic system:
–�u + V(x)u = Hv(x,u, v), x ∈R

N , –�v + V(x)v = Hu(x,u, v), x ∈R
N , u(x) → 0, v(x) → 0 as

|x| → ∞. Assuming the potential V is periodic and 0 lies in a gap of σ (–� + V), H(x, z)
is periodic in x and superquadratic in z = (u, v). We establish the existence of infinitely
many large energy solutions by the generalized variant fountain theorem developed
recently by Batkam and Colin.
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1 Introduction and main results
In this paper, we consider the following Hamiltonian elliptic system:

⎧
⎪⎨

⎪⎩

–�u + V (x)u = Hv(x, u, v), x ∈ R
N ,

–�v + V (x)v = Hu(x, u, v), x ∈ R
N ,

u(x) → , v(x) →  as |x| → ∞,
(.)

where z = (u, v) : RN → R×R, N ≥ , V ∈ C(RN ,R), and H ∈ C(RN ×R
,R).

For the case of a bounded domain these systems were studied by a number of authors.
For instance, see [–] and the references therein. The problem (.) or similar to (.) in
the whole space R

N was considered recently in some works. For instance, see [–] and
the references therein. Most of them focused on the case V ≡ . The main difficulty of
this problem is the lack of compactness for Sobolev’s embedding theorem. A usual way
to overcome this difficulty is working on the radically symmetric function space which
possesses compact embedding. By the means, De Figueiredo and Yang [] obtained a pos-
itive radially symmetric solution which decays exponentially to  at infinity. Their results
were generalized by Sirakov [] in a different way. Later, Bartsch and De Figueiredo []
proved that the system admits infinitely many radial as well as non-radial solutions. By
a generalized linking theorem, Li and Yang [] proved the system has a positive ground
state solution for V =  and an asymptotically quadratic nonlinearity. Another usual way
is avoiding the indefinite character of the original functional by using the dual variational
method; see for instance [–, ].

Recently, problem (.) with general periodic potential was considered in [–, ,
, , , , ]. By applying a generalized linking theorem for the strongly indefinite
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functionals developed recently by Bartsch and Ding [] (also see [, ]), the authors
obtained the infinitely many geometrically distinct solutions under different assumptions.
For the non-periodic case, see [, , , ]. Moreover, for the semiclassical solutions’
problem, we refer the readers to [, , , ] and the references therein.

Motivated by these works, we continue to consider the superlinear periodic case. In a
recent paper [], Zhang et al. have studied this case and obtained infinitely many geo-
metrically distinct solutions. However, we do not know if these solutions are large energy
solutions. Here we call that a sequence {zk} of solutions of the problem (.) is large energy
solutions if the corresponding energy �(zk) → ∞ as k → ∞. In this paper, our aim is to
establish infinitely many large energy solutions by the generalized variant fountain theo-
rem developed recently by Batkam and Colin []. To the best of our knowledge, there is
no work focused on this case. Hence our result is new and different from the one in [].

More precisely, we make the following assumptions:

(V) V ∈ C(RN ,R) is -periodic in x, and  lies in a gap of the spectrum of –� + V ;
(H) H ∈ C(RN ×R

, [,∞)) is -periodic in x, and there is a constant C >  such that

∣
∣Hz(x, z)

∣
∣ ≤ C

(
 + ξ (x)|z|p–), p ∈ (

, ∗),

where ξ (x) > , ξ (x) ∈ L∞(RN ) ∩ Lr(RN ), and 
r + p

∗ = ;
(H) Hz(x, z) = o(|z|) as |z| → , and H(x,z)

|z| → ∞ as |z| → ∞ uniformly in x;
(H) there exists a function W (x) ∈ L(RN ) such that

H(x, z + w) – H(x, z) – r
(
Hz(x, z), w

)
+

(r – )


(
Hz(x, z), z

) ≥ –W (x),

∀x ∈ R
N , z, w ∈R

 and r ∈ [, ];
(H) H(x, z) = H(x, –z), ∀(x, z) ∈R

N ×R
.

The main result of this paper is the following theorem.

Theorem . Suppose that (V) and (H)-(H) are satisfied. Then problem (.) has in-
finitely many large energy solutions.

The single Schrödinger equation

{
–�u + V (x)u = f (x, u) in R

N ,
u(x) → , as |x| → ∞,

(.)

has been studied recently in Batkam and Colin []. Under the assumption (V) and the
following assumptions:

(f) f (x, u) is continuous and -periodic in x, there is a constant c >  such that |f (x, u)| ≤
c( + |u|p–), where p ∈ (, ∗);

(f) f (x, u) = o(|u|) as |u| → , and F(x,u)
|u|μ → ∞ as |u| → ∞ uniformly in x, where μ >  and

F(x, u) =
∫ u

 f (x, s) ds;
(f) u → f (x,u)

|u| is strictly increasing in R\{};
(f) f (x, u) = –f (x, –u), ∀(x, u) ∈R

N ×R;
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the existence of large energy solutions is obtained for problem (.).

Remark . There is similarity to the condition (H) for the semilinear Schrödinger equa-
tion which was first introduced in []. Namely,

(S) there exists a function W (x) ∈ L(RN ) such that

F(x, u + v) – F(x, u) –
(
rv – (r – )u

)
f (x, u) ≥ –W (x),

∀x ∈R
N , u, v ∈R and r ∈ [, ].

Clearly, the condition (S) is much weaker than the condition (f) (see []), and the con-
dition (f) implies the condition (H) since μ > .

From Remark . we know, on the one hand, Theorem . improves the result in []
by weakening the corresponding condition. On the other hand, Theorem . is a general-
ization of the result in [] from single elliptic equation to elliptic system. Compared to
the single equation (.), the system (.) becomes more complex in nature. We must face
two kinds of indefiniteness: one comes from the system itself and the other comes from
each equation in the system. Moreover, there are at least three difficulties in our problem.
First, there is a lack of compactness of the Sobolev embedding since the domain is the
whole R

N . Second, the variational setting for our problem is more complex and different
from the case where V =  since the potential V is a general periodic function. Third, the
energy function is strongly indefinite and it has a more complex geometry structure than
functions which have the mountain pass structure.

This paper is organized as follows. In Section , we formulate the variational setting,
and introduce the generalized variant fountain theorem. The existence of large energy
solutions is proved in Section .

2 Variational setting and generalized fountain theorem
Below by | · |q we denote the usual Lq-norm, (·, ·) denote the usual L inner product, c, ci

or Ci stand for different positive constants. Let X and Y be two Banach spaces with norms
‖·‖X and ‖·‖Y . We always choose the equivalent norm ‖(x, y)‖X×Y = (‖x‖

X +‖y‖
Y ) 

 on the
product space X × Y . In particular, if X and Y are two Hilbert spaces with inner products
(·, ·)X and (·, ·)Y , we choose the inner product ((x, y), (w, z)) = (x, w)X +(y, z)Y on the product
space X × Y .

Let A = –� + V and {Fλ}λ∈R be the spectral family of A. Assumption (V) implies an
orthogonal decomposition:

L := L(
R

N ,R
)

= L– ⊕ L+, u = u– + u+,

where L– = FL and L+ = (id –F)L. Denoting by |A| the absolute value of A its square
root operator is

|A|/ =
∫ +∞

–∞
|λ|/ dFλ : D

(|A|/) → L,

where

D
(|A|/) =

{

u ∈ L :
∫ +∞

–∞
|λ|/ d(Fλu, u) < ∞

}

.
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Let X = D(|A|/) be the Hilbert space with the inner product

(u, v)X =
(|A|/u, |A|/v

)



and the corresponding norm ‖u‖X = (u, v)/
X . There is an induced decomposition

X = X– ⊕ X+, where X± = X ∩ L±,

which is orthogonal with respect to the inner products (·, ·) and (·, ·)X .
Let E = X × X with the inner product

(
(u, v), (ϕ,ψ)

)
= (u,ϕ)X + (v,ψ)X

and the corresponding norm

∥
∥(u, v)

∥
∥ =

(‖u‖
X + ‖v‖

X
)/.

Setting

E+ = X+ × X–, E– = X– × X+,

then for any z = (u, v) ∈ E, we have

z = z+ + z–, where z+ =
(
u+, v–)

, z– =
(
u–, v+)

.

Clearly, E+ and E– are orthogonal with respect to the products (·, ·) and (·, ·). Hence

E = E+ ⊕ E–.

Recall that E ↪→ Lp := Lp(RN ,R) is continuous for p ∈ [, ∗] and E ↪→ Lp
loc is compact for

p ∈ [, ∗), where ∗ is the Sobolev critical exponent.
In what follows, we introduce the generalized variant fountain theorem, and consider

the C-functional �λ : E →R defined by

�λ(u) = I(u) – λJ(u), λ ∈ [, ].

Let {ej}j≥ be an orthogonal basis of E+. We adopt the following notations:

E–
k := E– ⊕

( k⊕

j=

Rej

)

and E+
k :=

∞⊕

j=k

Rej,

Bk := {u ∈ E–
k |‖u‖ ≤ ρk}, Nk := {u ∈ E+

k |‖u‖ = rk}, where  < rk < ρk , k ≥ , �k(λ) is the class
of maps γ : Bk → E such that:

(a) γ is odd and τ -continuous, and γ |∂Bk = id;
(b) for every u ∈ int(Bk) has a τ -neighborhood Nu in E–

k such that (id –γ )(Nu ∩ int(Bk))
is contained in a finite dimensional subspace of E;
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(c) �λ(γ (u)) ≤ �λ(u), ∀u ∈ Bk ,
where the definition of τ -topology can be found in [].

The following version of the fountain theorem for a strongly indefinite functional is due
to Batkam and Colin [].

Proposition . Assume that the above functional �λ satisfies

(F) �λ maps bounded sets to bounded sets uniformly for λ ∈ [, ], and �λ(–u) = �λ(u) for
all (λ, u) ∈ [, ] × E,

(F) J(u) ≥  for all u ∈ E, and I(u) → ∞ or J(u) → ∞ as ‖u‖ → ∞,
(F) for every λ ∈ [, ], �λ is τ -upper semicontinuous and �′

λ is weakly sequentially con-
tinuous.

If there are  < rk < ρk such that

bk(λ) := inf
u∈E+

k ,‖u‖=rk
�λ(u) ≥ ak(λ) := sup

u∈E–
k ,‖u‖=ρk

�λ(u), ∀λ ∈ [, ],

then

ck(λ) := inf
γ∈�k (λ)

sup
u∈Bk

�λ

(
γ (u)

) ≥ bk(λ), ∀λ ∈ [, ].

Moreover, for a.e. λ ∈ [, ] there exists a sequence {un
k (λ)} ⊂ E such that

sup
n

∥
∥un

k (λ)
∥
∥ < ∞, �′

λ

(
un

k (λ)
) →  and �λ

(
un

k (λ)
) → ck(λ) as n → ∞.

In order to apply Proposition . to prove our main result, by the assumption (V) and
decomposition of E, we define the following functional on E:

�λ(z) =


∥
∥z+∥

∥ – λ

(


∥
∥z–∥

∥ +
∫

RN
H(x, z)

)

,

and

I(z) =


∥
∥z+∥

∥, J(z) =


∥
∥z–∥

∥ +
∫

RN
H(x, z)

for all z = z+ + z– ∈ E, λ ∈ [, ]. Clearly, �λ is strongly indefinite, and our hypotheses imply
that �λ ∈ C(E,R). In particular, a standard argument shows that critical points of � are
solutions of problem (.) (see [] and []).

3 Proof of theorem
Before giving the proof of the main theorem, we need some preliminary results.

Lemma . For every λ ∈ [, ], �λ is τ -upper semicontinuous and �′
λ is weakly sequen-

tially continuous. Moreover, �λ maps bounded sets to bounded sets.

Proof The proof was given in [] (also see [, ]); here we omit the details. �

Similar to Lemma . in [] (also see []), we have the following lemma, which will be
helpful for our argument.
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Lemma . Assume that ξ (x) > , ξ (x) ∈ L∞(RN ) ∩ Lr(RN ), and 
r + p

∗ = . Then

βk = sup
z∈E+

k ,‖z‖=

(∫

RN
ξ (x)|z|p

) 
p

→ , as k → ∞. (.)

Proof Clearly,  ≤ βk+ ≤ βk , hence βk → β ≥ . For every k, there exists zk ∈ E+
k such that

‖zk‖ =  and

 ≤ β
p
k –

∫

RN
ξ (x)|zk|p <


k

.

Up to a subsequence, we have zk ⇀ z in E. By the definition of E+
k we have z = . Moreover,

by Sobolev imbedding theorem we have |zk|∗ ≤ C for some C > . Observe that ξ (x) ∈ Lr

implies that for every ε > , there exists R >  such that

(∫

Bc
R()

∣
∣ξ (x)

∣
∣r
) 

r
< ε.

Since E ↪→ Lp
loc compactly for p ∈ [, ∗). Hence, there exists k >  such that

∫

BR()
ξ (x)|zk|p < ε, ∀k ≥ k.

Now since 
r + p

∗ = , for k large enough, we deduce by using the Hölder inequality that

∫

RN
ξ (x)|zk|p =

∫

BR()
ξ (x)|zk|p +

∫

Bc
R()

ξ (x)|zk|p

≤
∫

BR()
ξ (x)|zk|p +

(∫

Bc
R()

∣
∣ξ (x)

∣
∣r
)/r(∫

Bc
R()

|zk|∗
)p/∗

≤ ε + ε|zk|p∗

≤ ε
(
 + Cp).

We see that the desired conclusion holds by taking the limit. �

Lemma . Let (V), (H)-(H) be satisfied. There exists rk >  independent of λ ∈ [, ]
such that

bk(λ) := inf
z∈E+

k ,‖z‖=rk
�λ(z) > ,

and bk(λ) → ∞ uniformly in λ as k → ∞.

Proof Observe that, given ε > , there is Cε >  such that for all z ∈ E+
k

∣
∣Hz(x, z)

∣
∣ ≤ ε|z| + Cεξ (x)|z|p– (.)
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and

∣
∣H(x, z)

∣
∣ ≤ 


ε|z| +


p

Cεξ (x)|z|p. (.)

It then follows that

�λ(z) ≥ 

‖z‖ –



λε

∫

RN
|z| –


p
λCε

∫

RN
ξ (x)|z|p

≥ 

‖z‖ –




cλε‖z‖ –

p
λCε

∫

RN
ξ (x)|z|p.

By choosing ε = 
λc , we obtain

�λ(z) ≥ 


‖z‖ –

p
λCε

∫

RN
ξ (x)|z|p.

By (.), we have

�λ(z) ≥ 


‖z‖ – Cβ
p
k ‖z‖p =




(

‖z‖ –
C


β

p
k ‖z‖p

)

.

If we set rk = ( C
 β

p
k )


–p , then for every z ∈ E+

k such that ‖z‖ = rk , we have

�λ(z) ≥ b̃k :=



(
C


β

p
k

) 
–p

=



r
k > .

Moreover, by (.) again, βk →  as k → ∞, we have b̃k → ∞, and hence bk(λ) → ∞
uniformly in λ as k → ∞. �

Lemma . Let (V), (H)-(H) be satisfied. There exists ρk >  independent of λ ∈ [, ]
such that

ak(λ) := sup
z∈E–

k ,‖z‖=ρk

�λ(z) ≤ .

Proof Since �λ ≤ � for all λ ∈ [, ], it suffices to show the conclusion holds for λ = .
Suppose to the contrary that there exists a sequence zn ∈ E–

k such that �(zn) >  for all n
and ‖zn‖ → ∞ as n → ∞. Set wn = zn

‖zn‖ = w+
n + w–

n , where w–
n ∈ E–, w+

n ∈ ⊕k
j= Rej ⊂ E+.

Then  = ‖wn‖ = ‖w+
n‖ + ‖w–

n‖ and

 <
�(zn)
‖zn‖ =



(∥
∥w+

n
∥
∥ –

∥
∥w–

n
∥
∥) –

∫

RN

H(x, zn)
|zn| |wn|. (.)

By (H), we have

∥
∥w–

n
∥
∥ <

∥
∥w+

n
∥
∥ =  –

∥
∥w–

n
∥
∥,

therefore

 ≤ ∥
∥w–

n
∥
∥ ≤ 


and




≤ ∥
∥w+

n
∥
∥ ≤ .
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Since
⊕k

j= Rej is finite dimensional, going to a subsequence if necessary, we may
assume w+

n → w+ �= , w–
n ⇀ w–, and wn(x) → w(x) a.e. on R

N . Hence w �=  and
|zn| = ‖zn‖|wn| → ∞. By (H) and Fatou’s lemma, we have

∫

RN

H(x, zn)
|zn| |wn| → ∞, as n → ∞.

By (.), we get a contradiction. �

Combining Lemmas ., ., ., and Proposition ., we have the following lemma.

Lemma . Let (V), (H)-(H) be satisfied, for almost every λ ∈ [, ], there exists a se-
quence {zn

k (λ)} such that

sup
n

∥
∥zn

k (λ)
∥
∥ < ∞, �′

λ

(
zn

k (λ)
) → , �λ

(
zn

k (λ)
) → ck(λ), as n → ∞.

Lemma . Let (V), (H)-(H) be satisfied, for almost every λ ∈ [, ], there exists some
{zk(λ)} such that

�′
λ

(
zk(λ)

)
= , �λ

(
zk(λ)

)
= ck(λ).

Proof Let {zn
k (λ)} be the sequence obtained in Lemma .. Here for notational simplicity,

we write zn
k (λ) = zn

k . Since {zn
k } is bounded, without restriction we can assume that {zn

k } is
either vanishing or nonvanishing. If {zn

k } is vanishing, i.e.,

lim
n→∞ sup

y∈RN

∫

B(y,R)

∣
∣zn

k
∣
∣ = , ∀R > ,

by Lions’ concentration compactness principle in [] (also see []), zn
k →  in Lp for all

p ∈ (, ∗). By using the Hölder inequality and (.), we have

∣
∣
∣
∣

∫

RN
Hz

(
x, zn

k
) · zn

k

∣
∣
∣
∣ ≤ ε

∫

RN

∣
∣zn

k
∣
∣ + Cε

∫

RN

∣
∣zn

k
∣
∣p → 

as n → ∞. Therefore, we have

 < bk(λ) ≤ �λ

(
zn

k
) ≤ ∥

∥
(
zn

k
)+∥

∥ –
∥
∥
(
zn

k
)–∥

∥ = �′
λ

(
zn

k
)
zn

k + λ

∫

RN
Hz

(
x, zn

k
) · zn

k → 

as n → ∞. This implies that {zn
k } is nonvanishing, i.e., there exist R, δ > , and a sequence

{yn} ⊂R
N such that

lim inf
n→∞

∫

B(yn ,R)

∣
∣zn

k
∣
∣ ≥ δ.

Taking a subsequence if necessary we may suppose that

∫

B(yn ,R)

∣
∣zn

k
∣
∣ ≥ δ
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for all n ∈N. Since �λ is invariant under translation, by a standard argument, we have

∫

B(,R+
√

N
 )

∣
∣wn

k
∣
∣ ≥ δ


, (.)

where wn
k = zn

k (· – kn). Observe that ‖zn
k‖ = ‖wn

k‖. Hence {wn
k} is bounded, up to a subse-

quence we may assume

wn
k ⇀ zk in E, wn

k → zk in L
loc and wn

k → zk a.e. in R
N . (.)

In view of (.), we know zk �= . By Lemma ., it is easy to see that �′
λ(zk) = .

Now, let us show that

∫

RN
H

(
x, wn

k – zk
) → , as n → ∞. (.)

Indeed, in virtue of assumption (H), we know that for any ε > , there exists R >  such
that

(∫

Bc
R()

∣
∣ξ (x)

∣
∣r
) 

r
< ε.

Thus, by the Hölder inequality and the Sobolev embedding theorem, we have

∫

RN
H

(
x, wn

k – zk
)

≤
∫

RN
ε
∣
∣wn

k – zk
∣
∣ + Cεξ (x)

∣
∣wn

k – zk
∣
∣p

=
∫

RN
ε
∣
∣wn

k – zk
∣
∣ + Cε

∫

BR()
ξ (x)

∣
∣wn

k – zk
∣
∣p + Cε

∫

Bc
R()

ξ (x)
∣
∣wn

k – zk
∣
∣p

≤ ε
∣
∣wn

k – zk
∣
∣
 + Cε|ξ |∞

∫

BR()

∣
∣wn

k – zk
∣
∣p + Cε

(∫

Bc
R()

∣
∣ξ (x)

∣
∣r
) 

r ∣
∣wn

k – zk
∣
∣p
∗

≤ ε(C + C + C).

Hence (.) holds. Similarly, we also have

∫

RN
Hz

(
x, wn

k – zk
)(

wn
k – zk

) → , as n → ∞. (.)

Moreover, by (.) and (.), it is easy to show that

∫

RN
H

(
x, wn

k
) →

∫

RN
H(x, zk), as n → ∞ (.)

and
∫

RN
Hz

(
x, wn

k
)
wn

k →
∫

RN
Hz(x, zk)zk , as n → ∞. (.)
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Therefore, by (.) and (.) we obtain

�λ

(
wn

k
)

=


〈
�′

λ

(
wn

k
)
, wn

k
〉
+

λ



∫

RN
Hz

(
x, wn

k
)
wn

k – λ

∫

RN
H

(
x, wn

k
)

→ 

〈
�′

λ(zk), zk
〉
+

λ



∫

RN
Hz(x, zk)zk – λ

∫

RN
H(x, zk)

= �λ(zk),

which implies �λ(zk) = ck(λ). The proof is complete. �

By the preceding lemma, we directly obtain the following lemma.

Lemma . Let (V), (H)-(H) be satisfied, there exist a sequence {λn} and a sequence
{zk(λn)} such that

λn → , �λn

(
zk(λn)

)
= ck(λn), �′

λn

(
zk(λn)

)
= .

Lemma . Let (H) be satisfied, then

∫

RN

(

H(x, z) – H(x, rφ) + r(Hz(x, z),φ
)

–
 + r


(
Hz(x, z), z

)
)

≤ C,

where z ∈ E, φ ∈ E+,  ≤ r ≤ , and the constant C :=
∫

RN |W (x)| does not depend on z,
φ, r.

Proof This follows from (H) if we take z = z and w = rφ – z. �

Lemma . Let (V), (H)-(H) be satisfied. The sequences {zk(λn)} given in Lemma . are
bounded.

Proof For notational simplicity, we write zn
k := zk(λn). First, we claim that there is a con-

stant C independent of zn
k and λn such that

�λn

(
r
(
zn

k
)+)

– �λn

(
zn

k
) ≤ C, ∀r ∈ [, ]. (.)

Since

〈
�′

λn

(
zn

k
)
,ϕ

〉
=

((
zn

k
)+,ϕ+)

– λn
((

zn
k
)–,ϕ–)

– λn

∫

RN
Hz

(
x, zn

k
)
ϕ = , ∀ϕ ∈ E,

it follows from the definition of �λ that

�λn

(
r
(
zn

k
)+)

– �λn

(
zn

k
)

=


(
r – 

)∥
∥
(
zn

k
)+∥

∥ +


λn

∥
∥
(
zn

k
)–∥

∥

+ λn

∫

RN
H

(
x, zn

k
)

– λn

∫

RN
H

(
x, r

(
zn

k
)+)

+


((

zn
k
)+,ϕ+)

–


λn

((
zn

k
)–,ϕ–)

–


λn

∫

RN
Hz

(
x, zn

k
)
ϕ.
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Take

ϕ =
(
r + 

)(
zn

k
)– –

(
r – 

)(
zn

k
)+ =

(
r + 

)
zn

k – r(zn
k
)+,

which together with Lemma . implies that

�λn

(
r
(
zn

k
)+)

– �λn

(
zn

k
)

= –
r


λn

∥
∥
(
zn

k
)–∥

∥ + λn

∫

RN

(
H

(
x, zn

k
)

– H
(
x, r

(
zn

k
)+))

+ λn

∫

RN

(

r(Hz
(
x, zn

k
)
,
(
zn

k
)+)

–
 + r


(
Hz

(
x, zn

k
)
, zn

k
)
)

≤ C.

Hence (.) holds.
To show the boundness of {zn

k }, we argue by contradiction that ‖zn
k‖ → ∞ as n → ∞.

Since �λ ≥ , we know ‖(zn
k )+‖ ≥ ‖(zn

k )–‖. Let wn
k = zn

k /‖zn
k‖, then wn

k = (wn
k )– + (wn

k )+ and

 ≤ ‖(wn

k )+‖ ≤ . Passing to a subsequence, (wn
k )+ ⇀ w+

k in E, (wn
k )+ → w+

k in L
loc, and

(wn
k )+ → w+

k a.e. on R
N . We see that either {(wn

k )+} is vanishing, i.e.,

lim
n→∞ sup

y∈RN

∫

B(y,R)

∣
∣
(
wn

k
)+∣

∣ = , ∀R > ,

or nonvanishing, i.e., there exist R, δ >  and a sequence {yn} ⊂R
N such that

lim inf
n→∞

∫

B(yn ,R)

∣
∣
(
wn

k
)+∣

∣ ≥ δ.

If (wn
k )+ is vanishing, Lions’ concentration compactness principle implies (wn

k )+ →  in Lp

for p ∈ (, ∗). Lebesgue’s dominated convergence theorem and (.) imply that
∫

RN
H

(
x, s

(
wn

k
)+) → , for any s ∈R. (.)

Let rn = s
‖zn

k ‖ →  as n → ∞. Therefore, by (.) and (.), we have

ck(λn) + C = C + �λn

(
zn

k
) ≥ �λn

(
rn

(
zn

k
)+)

=
s


∥
∥
(
wn

k
)+∥

∥ – λn

∫

RN
H

(
x, s

(
wn

k
)+)

≥ s


+ o(),

which implies a contradiction if s is large enough. Hence (wn
k )+ is nonvanishing, i.e., there

exist R, δ >  and a sequence {yn} ⊂R
N such that

lim inf
n→∞

∫

B(yn ,R)

∣
∣
(
wn

k
)+∣

∣ ≥ δ.

Going to a subsequence if necessary, we have
∫

B(yn ,R)

∣
∣
(
wn

k
)+∣

∣ ≥ δ


, for all n ∈N.
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By a standard argument, we have

∫

B(,R+
√

N
 )

∣
∣
(
un

k
)+∣

∣ ≥ δ


, (.)

where (un
k )+ = (wn

k )+(· – kn). Thus (.) implies that u+
k �=  and |zn

k | → ∞. It follows from
(H) and Fatou’s lemma that

∫

RN

H(x, zn
k )

|zn
k |

∣
∣wn

k
∣
∣ → ∞, as n → ∞,

and

 ≤ �λn (zn
k )

‖zn
k‖ =



∥
∥
(
wn

k
)+∥

∥ – λn

(


∥
∥
(
wn

k
)–∥

∥ +
∫

RN

H(x, zn
k )

|zn
k |

∣
∣wn

k
∣
∣

)

→ –∞,

as n → ∞, a contradiction. Therefore, {zn
k } is bounded. �

Proof of Theorem . Clearly, the condition (F) holds and �λ(–z) = �λ(z) for all (λ, z) ∈
[, ] × E. Lemma . implies that the conditions (F) and (F) hold. Lemmas . and .
show that �λ possesses the geometric property of Proposition .. Therefore, we can ob-
tain the sequence {zn

k } given in Lemma . by Proposition .. From the relations

�
(
zn

k
)

= �λn

(
zn

k
)

+ (λn – )
(



∥
∥
(
zn

k
)–∥

∥ +
∫

RN
H

(
x, zn

k
)
)

and

〈
�′


(
zn

k
)

– �′
λn

(
zn

k
)
,ϕ

〉
= (λn – )

(
((

zn
k
)–,ϕ

)
+

∫

RN
Hz

(
x, zn

k
)
ϕ

)

, ∀ϕ ∈ E,

we deduce, since the sequence {ck(λn)} is nondecreasing and bounded from above, that
{zn

k } is a (PS)-sequence for � at level ck(). By repeating the argument of Lemma . we
obtain the existence of zk ∈ E such that �′

(zk) =  and �(zk) ≥ bk , moreover, bk → ∞ as
k → ∞. This ends the proof of Theorem .. �
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