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Abstract
We prove the existence results in the setting of Orlicz spaces for the following
nonlinear elliptic equation:

A(u) + g(x,u,Du) =μ,

where A is a Leray-Lions operator defined on D(A) ⊂ W1
0LM(�), while g is a nonlinear

term having a growth condition with respect to Du, but does not satisfy any sign
condition. The right-hand side μ is a bounded Radon measure data.
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1 Introduction
Let � be a bounded domain in R

N . In the classical Sobolev space W ,p
 (�), Porretta []

studied the solution of the following problem:

– div a(x, u, Du) = H(x, u, Du) + μ, ()

where a is supposed to satisfy a polynomial growth condition with respect to u and Du,
H has natural growth with respect to Du without any sign condition (i.e., H(x, s, ξ )s ≥ ),
that is, a and H satisfy

(a) |a(x, s, ξ )| ≤ β(k(x) + |s|p– + |ξ |p–), k(x) ∈ Lp′ (�), β > , p > , 
p + 

p′ = ,
(H) |H(x, s, ξ )| ≤ γ (x) + g(s)|ξ |p, γ (x) ∈ L(�), and g : R →R

+ is continuous, g ≥ ,
g ∈ L(R),

for almost every x ∈ �, for all s ∈ R, ξ ∈ R
N . The right-hand side μ is a nonnegative

bounded Radon measure on �. The model example is the equation

–�p(u) + g(u)|Du|p = μ

in � coupled with a Dirichlet boundary condition.
Aharouch et al. [] proved the existence results in the setting of Orlicz spaces for the

unilateral problem associated to the following equation:

A(u) + g(x, u, Du) = f , ()
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where A(u) = – div a(x, u, Du) is a Leray-Lions operator defined on D(A) ⊂ W 
LM(�), a

and g satisfy the following growth conditions:
(a) |a(x, s, ξ )| ≤ c(x) + kP̄–(M(k|s|)) + kM̄–(M(k|ξ |)), k, k, k, k ≥ ,

c(x) ∈ EM̄(�),
(g) |g(x, s, ξ )| ≤ γ (x) + ρ(s)M(|ξ |), γ (x) ∈ L(�), and ρ : R→ R

+ is continuous, ρ ≥ ,
ρ ∈ L(R),

for almost every x ∈ �, for all s ∈ R, ξ ∈ R
N , where M and P are N-functions such that

P � M. The right-hand side f belongs to L(�). The obstacle is a measurable function.
Youssfi et al. [] proved the existence of bounded solutions of problem () whose prin-

cipal part has a degenerate coercivity, where g does not satisfy the sign condition and f is
an appropriate integrable source term.

Some elliptic equations in Orlicz spaces with variational structure of the form

∫
�

M
(|Du|)dx

have been studied, where u : � →R
N , � ⊂R

n is a bounded open set (see, e.g., [–]). The
associated Euler-Lagrange system is

– div

(
M′(|Du|) Du

|Du|
)

=  (see, e.g., []).

In this case methods from the calculus of variations can be used and regularity of solutions
can be shown. However, the assumptions are strong. For example, it is needed that M
satisfies � condition in [] and [].

The purpose of this paper is to study the existence of a solution for the following non-
linear Dirichlet problem:

A(u) + g(x, u, Du) = μ, ()

where A(u) = – div a(x, u, Du) is a Leray-Lions operator defined on D(A) ⊂ W 
LM(�) hav-

ing the following growth condition:

∣∣a(x, s, ξ )
∣∣ ≤ β

[
c(x) + M̄–(M

(|s|)) + M̄–(M
(|ξ |))], β > , c(x) ∈ EM̄(�)

for almost every x ∈ �, for all s ∈ R, ξ ∈R
N , g is a nonlinear term having the growth condi-

tion (g) without any sign condition, and μ is a nonnegative bounded Radon measure on �.
When trying to relax the restriction on a and H in Eq. (), we are led to replace Sobolev
spaces by Orlicz-Sobolev spaces without assuming any restriction on M (i.e., without the
� condition). The choice M(t) = tp, p > , t >  leads to []. A nonstandard example is
M(t) = t ln( + t), t >  (see, e.g., [, ]). Taking M(t) = et – , t > , M does not satisfy �-
condition. Moreover, the elimination of the term g in Eq. () can lead to []. A specific
example to which our result applies includes the following:

– div

(
a(u)

M(|Du|)Du
|Du|

)
+ a′(u)

∫ |Du|



M(t)
t

dt = δ,

where a(s) is a smooth function, and δ is a Dirac measure.
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This paper is organized as follows. In Section , we recall some preliminaries and some
technical lemmas which will be needed in Section . In Section , we first prove that there
exist solutions in W 

EM(�) for approximate equations by using a linear functional analysis
method; next, following [–, ], we prove the existence results for problem ()-() and
show that solutions belong to Orlicz-Sobolev spaces W 

LB(�) for any B ∈PM , where PM

is a special class of N-functions (see Theorem . below).
For some classical results on equations, we refer to [–].

2 Preliminaries
2.1 N-function
Let M : R+ →R

+ be an N-function; i.e., M is continuous, convex with M(u) >  for u > ,
M(u)/u →  as u → , and M(u)/u → ∞ as u → ∞. Equivalently, M admits the rep-
resentation M(u) =

∫ u
 φ(t) dt, where φ : R+ → R

+ is a nondecreasing, right-continuous
function with φ() = , φ(t) >  for t > , and φ(t) → ∞ as t → ∞.

The conjugated N-function M̄ of M is defined by M̄(v) =
∫ v

 ψ(s) ds, where ψ : R+ →R
+

is given by ψ(s) = sup{t : φ(t) ≤ s}.
The N-function M is said to satisfy the � condition if, for some k > ,

M(u) ≤ kM(u), ∀u ≥ .

The N-function M is said to satisfy the � condition near infinity if, for some k >  and
u > , M(u) ≤ kM(u), ∀u ≥ u (see [, ]).

Moreover, one has the following Young inequality:

∀u, v ≥ , uv ≤ M(u) + M̄(v).

We will extend these N-functions into even functions on all R.
Let P, Q be two N-functions, P � Q means that P grows essentially less rapidly

than Q; i.e., for each ε > , P(t)/Q(εt) →  as t → ∞. This is the case if and only if
limt→∞ Q–(t)/P–(t) =  (see [, ]).

2.2 Orlicz spaces
Let � be an open subset of RN and M be an N-function. The Orlicz class KM(�) (resp. the
Orlicz space LM(�)) is defined as the set of (equivalence classes of ) real valued measurable
functions u on � such that

∫
�

M
(
u(x)

)
dx < +∞

(
resp.

∫
�

M
(

u(x)
λ

)
dx < +∞ for some λ > 

)
.

LM(�) is a Banach space under the Luxemburg norm

‖u‖(M) = inf

{
λ >  :

∫
�

M
(

u(x)
λ

)
dx ≤ 

}
,

and KM(�) is a convex subset of LM(�) but not necessarily a linear space.
The closure in LM(�) of the set of bounded measurable functions with compact support

in �̄ is denoted by EM(�). The equality EM(�) = LM(�) holds if and only if M satisfies the
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� condition for all t or for t large according to whether � has infinite measure or not. The
dual space of EM(�) can be identified with LM̄(�) by means of the pairing

∫
�

u(x)v(x) dx,
and the dual norm of LM̄(�) is equivalent to ‖ · ‖(M̄).

2.3 Orlicz-Sobolev spaces
We now turn to the Orlicz-Sobolev spaces. The class W LM(�) (resp., W EM(�)) consists
of all functions u such that u and its distributional derivatives up to order  lie in LM(�)
(resp., EM(�)). The classes W LM(�) and W EM(�) of such functions may be given the
norm

‖u‖�,M =
∑
|α|≤

∥∥Dαu
∥∥

(M).

These classes will be Banach spaces under this norm. We refer to spaces of the forms
W LM(�) and W EM(�) as Orlicz-Sobolev spaces. Thus W LM(�) and W EM(�) can be
identified with subspaces of the product of N +  copies of LM(�). Denoting this product
by �LM , we will use the weak topologies σ (�LM,�EM̄) and σ (�LM,�LM̄). If M satisfies
� condition (near infinity only when � has finite measure), then W LM(�) = W EM(�).

The space W 
EM(�) is defined as the (norm) closure of the Schwartz space D(�) in

W EM(�) and the space W 
LM(�) as the σ (�LM,�EM̄) closure of D(�) in W LM(�).

We recall that a sequence un converges to u for the modular convergence in W LM(�)
if there exists λ >  such that

∫
�

M
( |Dαun – Dαu|

λ

)
dx →  as n → ∞ for all |α| ≤ .

Let W –LM̄(�) (resp. W –EM̄(�)) denote the space of distributions on � which can be
written as sums of derivatives of order ≤  of functions in LM̄(�) (resp. EM̄(�)). It is a
Banach space under the usual quotient norm.

If the open set � has the segment property, then the space D(�) is dense in W 
LM(�)

for the modular convergence and thus for the topology σ (�LM,�LM̄). Consequently, the
action of a distribution in W –LM̄(�) on an element of W 

LM(�) is well defined. The dual
space of W 

EM(�) is W –LM̄(�) and the dual space of W –EM̄(�) is W 
LM(�) (see [,

]).
For the above results, the readers can also be referred to [, –].
We recall some lemmas which will be used later.

Lemma . (see []) For all u ∈ W 
LM(�), one has

∫
�

M
(|u|/ diam�

)
dx ≤

∫
�

M
(|Du|)dx,

where diam� is the diameter of �.

Lemma . (see []) If the open set � has the segment property, u ∈ W 
LM(�), then there

exists λ >  and a sequence uk ∈D(�) such that for any |α| ≤ , ρM(|Dαuk – Dαu|/λ) → ,
k → ∞.
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Definition . (see []) Let Vm = span{ω, . . . ,ωm}; then um ∈ Vm is called a Galerkin
solution of A(u) = f in Vm if and only if

(
A(um), v

)
= (f , v) ∀v ∈ Vm.

The proof of the following lemma can be found in Lemma .. in [].

Lemma . Let f : Rm →R
m be a continuous mapping with

lim|x|→∞
〈x, f (x)〉

|x| = a, ()

where a is a constant with –∞ ≤ a <  or  < a ≤ +∞, | · | is a norm in R
m, 〈·, ·〉

is an inner product defined as 〈x, f (x)〉 =
∑m

i= xifi(x) with x = (x, x, . . . , xm) and f (x) =
(f(x), f(x), . . . , fm(x)). Then the range of f is the whole of Rm.

Proof Let u ∈ R
m and define f ∗(x) = f (x) – u. Then f ∗ satisfies (). Consequently, it is

sufficient to prove that the range of any map satisfying () contains the origin.
If  < a ≤ +∞, using () we see that we may choose r large enough so that

〈x, f (x)〉
|x| >  for |x| = r. ()

But from (), it follows that the mapping

w(ξ ) = –
rf (ξ )
|f (ξ )| , |ξ | ≤ r.

Then w : B(, r) → B(, r) is continuous where B(, r) = {x ∈ R
m, |x| ≤ r}. By the Brouwer

fixed point theorem, f is continuous from B(, r) ⊂R
m into B(, r), and f has a fixed point,

i.e., there exists x ∈ B(, r) such that x = w(x). Then

|x| =
∣∣w(x)

∣∣ =
∣∣∣∣– rf (x)

|f (x)|
∣∣∣∣ = r,

which implies that

〈x, f (x)〉
|x| =

〈x, – x
r |f (x)|〉
|x| = –

|f (x)|〈x, x〉
r|x| = –

|f (x)| · |x|
r|x| = –

|f (x)| · |x|
r

< .

It is a contradiction with (). Therefore, f is surjective.
If –∞ ≤ a < , then let g = –f . Thanks to (), we have

lim|x|→∞
〈x, g(x)〉

|x| = –a.

From this we deduce that g is surjective. Therefore –g is surjective, too. Immediately, f is
surjective, i.e., the range of f is the whole of Rm. �
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Remark . Let V be a vector space of finite dimension and A : V → V ∗ be a continuous
mapping with

lim‖u‖V →∞
(A(u), u)

|x| = a, ()

where a is the constant in Lemma . and V ∗ is the dual space of V , then A is surjective.

Clearly, condition () is weaker than the one of Lemma .. in [].

Remark . If condition () is replaced by

lim|x|→∞
|〈x, f (x)〉|

|x| = a,

then f is not surjective. For example, let f (x) = |x|, then f : R →R is continuous and

|〈x, f (x)〉|
|x| =

|x · |x||
|x| = |x| → +∞ as |x| → +∞.

However, the range of f is [, +∞). Therefore, Lemma  in Landes [] should be without
absolute.

Lemma . (see [] and []) If a sequence un ∈ LM(�) converges a.e. to u and if un

remains bounded in LM(�), then u ∈ LM(�) and un ⇀ u for σ (LM, EM̄).

Lemma . (see []) Let uk , u ∈ LM(�). If uk → u with respect to the modular conver-
gence, then uk → u for σ (LM, LM̄).

For N-function M, T ,M
 (�) is defined as the set of measurable functions u : � → R such

that for all k >  the truncated functions Tk(u) ∈ W 
LM(�) with Tk(s) = max(–k, min(k, s)).

The following lemmas will be applied to the truncation operators.

Lemma . (see [, ] and []) Let F : R → R be uniformly Lipschitzian with F() = .
Let M be an N-function, and let u ∈ W LM(�) (resp. W EM(�)). Then F(u) ∈ W LM(�)
(resp. W EM(�)). Moreover, we have ∂

∂xi
F(u) = F ′(u) ∂

∂xi
u, a.e. in {x ∈ �|u(x) /∈ D}, and

∂
∂xi

F(u) = , a.e. in {x ∈ �|u(x) ∈ D}, where D is the set of discontinuity points of F ′.

Lemma . (see []) If u ∈ W LM(�), then u+, u– ∈ W LM(�) and

Du+ =

⎧⎨
⎩

Du, if u > ,

, if u ≤ ,
and Du– =

⎧⎨
⎩

, if u ≥ ,

–Du, if u < .
()

Lemma . (see []) For every u ∈ T ,M
 (�), there exists a unique measurable function

v : � → R such that DTk(u) = vχ{|u|<k} almost everywhere in � for every k > . Define the
gradient of u as the function v, and denote it by v = Du.



Dong and Fang Boundary Value Problems  (2015) 2015:18 Page 7 of 22

3 Existence theorem
Let � ⊂R

N be a bounded domain with the segment property, N ≥ , M be an N-function,
M̄ be a complementary function of M. Assume that M is twice continuously differentiable.
Denote by PM the following subset of N-functions defined as:

PM =
{

B : R+ →R
+ : N-function : B is twice continuously differentiable,

B′′/B′ ≤ M′′/M′;
∫ 


B ◦ H–(/t–/N)

dt < ∞
}

,

where H(r) = M(r)/r. Assume that there exists Q ∈PM such that

Q ◦ H– is an N-function. ()

Let μ be a bounded nonnegative Radon measure on �. We consider the following
Dirichlet problem:

A(u) + g(x, u, Du) = μ in �, ()

u = , on ∂�, ()

where A : D(A) ⊂ W 
LM(�) → W –LM̄(�) is a mapping given by A(u) = – div a(x, u, Du).

a : � × R × R
N → R

N is a Carathéodory function satisfying for a.e. x ∈ � and all s ∈ R,
ξ ,η ∈R

N with ξ �= η:

∣∣a(x, s, ξ )
∣∣ ≤ β

[
c(x) + M̄–(M

(|s|)) + M̄–(M
(|ξ |))], ()

[
a(x, s, ξ ) – a(x, s,η)

]
[ξ – η] > , ()

a(x, s, ξ )ξ ≥ αM
(|ξ |), ()

where α,β > , k, k ≥ , c(x) ∈ EM̄(�).
g : � × R × R

N → R is a Carathéodory function satisfying for a.e. x ∈ � and all s ∈ R,
ξ ∈R

N :

∣∣g(x, s, ξ )
∣∣ ≤ γ (x) + ρ(s)M

(|ξ |), ()

where ρ : R → R
+ is a continuous positive function which belongs to L(R) and γ (x) be-

longs to L(�). For example, g(x, u, Du) = γ (x) + | sin u|e–uM(|Du|) (see []).
We have the following theorem.

Theorem . Assume that ()-() hold. Then there exists at least one solution of the fol-
lowing problem:

⎧⎨
⎩

u ∈ T ,M
 (�) ∩ W 

LB(�), ∀B ∈PM,

〈A(u),φ〉 +
∫
�

g(x, u, Du)φ dx = 〈μ,φ〉, ∀φ ∈D(�).
()
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Remark . It is well known that there exists a sequence μn ∈ D(�) such that μn con-
verges to μ in the distributional sense with ‖μn‖L(�) ≤ ‖μ‖Mb(�) and μn is nonnegative
if μ is nonnegative.

Remark . () Benkirane and Bennouna [, Remark .] give some examples of N-
functions M for which the set PM is not empty. For example, assume that the N-function
M is defined only at infinity, and let M(t) = t log t and B(t) = t log t, then H(t) = t log t
and H–(t) = t(log t)– at infinity (see, e.g., [] or []). Hence, the N-function B belongs
to PM .

() Let M(t) = |t|p and B(t) = |t|q, then B ∈ PM ⇔  < q < p̃ = N(p–)
N– and p >  – 

N . So
that we find the same result given in []. Our theorem gives a refinement of the regularity
result. For example, take B(t) = tp̃

logα (e+t) with α > .

We have the following proposition.

Proposition . Assume that ()-() hold. Then, for any n ∈ N, there exists at least one
solution un ∈ W 

EM(�) of the following approximate equation:

∫
�

[
a(x, u, Du)Dv + gn(x, u, Du)v

]
dx =

∫
�

μnv dx, ∀v ∈ W 
LM(�), ()

where gn(x, s, ξ ) = g(x,s,ξ )
+ 

n |g(x,s,ξ )| .

Proof Denote V = W 
EM(�). Define An : V → V ∗,

(Anu, w) :=
∫

�

[
a(x, u, Du)Dw(x) + gn(x, u, Du)w(x)

]
dx, ∀w ∈ V .

Then An is well defined. Indeed, from () we have

∫
�

M̄
(


β

∣∣a(x, u, Du)
∣∣
)

dx ≤
∫

�



[
M̄

(
c(x)

)
+ M

(|u|) + M
(|Du|)]dx < ∞.

Therefore, a(x, u, Du) ∈ (LM̄(�))N . On the other hand, for every fixed n,
∫
�

M̄(|gn(x, u,
Du)|) dx ≤ M̄(n) meas(�) < ∞. Thus gn(x, u, Du) ∈ LM̄(�).

There exists a sequence {wj}∞n= ⊂ D(�) such that {wj}∞n= dense in V . Let Vm =
span{w, . . . , wm} and consider An|Vm .

∫
�

|Du|dx and ‖Du‖(M) to be two norms of Vm equiv-
alent to the usual norm of finite dimensional vector spaces.

Claim: the mapping u → An|Vm u : Vm → V ∗
m is continuous. Indeed, if uj → u in Vm and

there exists ε >  such that

‖An|Vm uj – An|Vm u‖V∗
m ≥ ε, ()

and since uj → u strongly in Vm,

∫
�

M
(
|uj – u|)dx →  and

∫
�

M
(
|Duj – Du|)dx → ,
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then there exists a subsequence of {uj} still denoted by {uj} and f, f ∈ L(�) such that
M(|uj – u|) ≤ f and M(|Duj – Du|) ≤ f. By the convexity of M, we deduce that

M
(|uj|

) ≤ 


M
(
|uj – u|) +




M
(
|u|) ≤ 


f +




M
(
|u|). ()

Similarly,

M
(|Duj|

) ≤ 


f +



M
(
|Du|). ()

For ∀w ∈ Vm, by (), (), () and Young inequality, one has

∣∣a(x, uj, Duj)Dw(x) + gn(x, uj, Duj)w(x)
∣∣

≤ β
[
c(x) + M̄–(M

(|uj|
))

+ M̄–M
(|Duj|

)]|Dw| + n|w|
≤ β

[
M̄

(
c(x)

)
+ M

(|Dw|) + M
(|uj|

)
+ M

(|Duj|
)]

+
[
M̄(n) + M

(|w|)]

≤ β

[
M̄

(
c(x)

)
+ M

(|Dw|) +



f +



M
(
|u|) +




f +



M
(
|Du|)

]

+ M̄(n) + M
(|w|). ()

Hence (An|Vm uj, w) < ∞ for all w ∈ Vm. By the Banach-Steinhaus theorem {‖An|Vm uj‖V∗
m}j

is bounded. Hence {An|Vm uj}j is relatively sequently compact in V ∗
m. Passing to a subse-

quence if necessary, there exists ηn ∈ V ∗
m such that

‖An|Vm uj – ηn‖V∗
m → .

On the other hand, passing to a subsequence if necessary,

uj(x) → u(x) a.e. in � and Duj(x) → Du(x) a.e. in �.

By the Lebesgue theorem, we know that for each w ∈ Vm,

lim
j→∞(An|Vm uj, w) = (An|Vm u, w).

Hence An|Vm u = ηn, it is a contradiction with ().
Thanks to () and Lemma ., for all u ∈ Vm,

(Anu, u) =
∫

�

[
a(x, u, Du)Du + gn(x, u, Du)u

]
dx

≥
∫

�

[
αM

(|Du|) – n|u|]dx

≥ α

∫
�

M
(|Du|)dx –

∫
�

[
M̄

(

α

(n diam�)
)

+ M
(

α
|u|

diam�

)]
dx

≥ α

∫
�

M
(|Du|)dx – M̄

(

α

(n diam�)
)

meas� –
∫

�

αM
(|Du|)dx

= (α – α)
∫

�

M
(|Du|)dx – M̄

(

α

(n diam�)
)

meas�, ()
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where α = min{ α
 , }. By Lemma ., one has ‖u‖(M) ≤ diam�‖Du‖(M). It follows that

‖u‖�,M ≤ ( + diam�)‖Du‖(M). We have

∫
�

M(|Du|) dx
‖u‖�,M

≥ 
 + diam�

∫
�

M(|Du|) dx
‖Du‖(M)

≥ 
 + diam�

()

since
∫
�

M(u) dx > ‖u‖(M) whenever ‖u‖(M) > . Combining () and (), one has

(Anu, u)
‖u‖�,M

≥ 
 + diam�

. ()

By Remark ., An is surjective, i.e., there exists a Galerkin solution um ∈ Vm for every m
such that

(Anum, v) = (μn, v), ∀v ∈ Vm. ()

We will show that the sequence {um} is bounded in V .
In fact, for every um ∈ V , if ‖um‖�,M → ∞, then by (), (Anum, um) → ∞. It is a con-

tradiction with (). Therefore {um} is bounded in V .
It follows from () that we can deduce {‖An|Vm um‖V∗ }m is bounded. So we can extract

a subsequence {uk}∞k= of {um}∞m= such that

uk ⇀ u in V for σ (�LM,�EM̄), Anuk ⇀ ξn in V ∗ for σ (�LM̄,�EM), ()

as k → ∞ and (ξn, w) = (μn, w) for all w ∈ ⋃∞
m={wm}. By the density of {wm}, we get

(ξn, w) = (μn, w), ∀w ∈ V .

By the imbedding theorem (see, e.g., []) we have

uk → u strongly in LM(�) as k → ∞. ()

Hence, passing to a subsequence if necessary

uk(x) → u(x) a.e. x ∈ � as k → ∞. ()

On the other hand, thanks to (), we have

∫
�

gn(x, uk , Duk)(uk – u) dx →  and
∫

�

μn(uk – u) dx → 

as k → ∞. Thus we obtain that
∫

�

a(x, uk , Duk)(Duk – Du) dx

=
∫

�

μn(uk – u) dx –
∫

�

gn(x, uk , Duk)(uk – u) dx → . ()
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Fix a positive real number r and define �r = {x ∈ � : |Du(x)| ≤ r} and denote by χr the
characteristic function of �r .

Taking s ≥ r, one has

 ≤
∫

�r

[
a(x, uk , Duk) – a(x, uk , Du)

]
(Duk – Du) dx

≤
∫

�s

[
a(x, uk , Duk) – a(x, uk , Du)

]
(Duk – Du) dx

=
∫

�s

[
a(x, uk , Duk) – a(x, uk , Duχs)

]
(Duk – Duχs) dx

≤
∫

�

[
a(x, uk , Duk) – a(x, uk , Duχs)

]
(Duk – Duχs) dx.

On the other hand,

∫
�

a(x, uk , Duk)(Duk – Du) dx

=
∫

�

[
a(x, uk , Duk) – a(x, uk , Duχs)

]
(Duk – Duχs) dx

–
∫

�

a(x, uk , Duk)Duχ�\�s dx +
∫

�

a(x, uk , Duχs)(Duk – Duχs) dx.

Therefore
∫

�

[
a(x, uk , Duk) – a(x, uk , Duχs)

]
(Duk – Duχs) dx

=
∫

�

a(x, uk , Duk)(Duk – Du) dx

+
∫

�

a(x, uk , Duk)Duχ�\�s dx –
∫

�

a(x, uk , Duχs)(Duk – Duχs) dx. ()

In view of () the first term of the right-hand side of () tends to  as k → ∞.
{a(x, uk , Duk)}k is bounded in (LM̄(�))N . Indeed, for every w ∈ (EM(�))N ,

∫
�

a(x, uk , Duk)w dx

=
∫

�

μnw dx –
∫

�

gn(x, uk , Duk)w dx

≤ ‖μn‖M̄ · ‖w‖(M) + ‖n‖M̄ · ‖w‖(M) =
(‖μn‖M̄ + ‖n‖M̄

)‖w‖(M) < +∞.

By the Banach-Steinhaus theorem, {‖a(x, uk , Duk)‖M̄}k is bounded.
Thus, there exists h ∈ (LM̄(�))N such that (for a subsequence still denoted by {uk})

a(x, uk , Duk) ⇀ h in
(
LM̄(�)

)N for σ (�LM̄,�EM).

It follows that the second term of the right-hand side of () tends to
∫
�\�s

hDu dx as
k → ∞.
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Since a(x, uk , Duχs) ⇀ a(x, u, Duχs) strongly in (EM̄(�))N , while by () Duk –
Duχs ⇀ Du – Duχs tends weakly in (EM(�))N for σ ((LM(�))N , (EM̄(�))N ), the third
term of the right-hand side of () tends to –

∫
�

a(x, u, Duχs)(Du – Duχs) dx =
–

∫
�\�s

a(x, u, )Du dx.
Therefore,

∫
�

[
a(x, uk , Duk) – a(x, uk , Duχs)

]
(Duk – Duχs) dx

=
∫

�\�s

[
h – a(x, u, )

]
Du dx + ε(k).

We have then proved that

 ≤ lim sup
k→∞

∫
�r

[
a(x, uk , Duk) – a(x, uk , Du)

]
(Duk – Du) dx

=
∫

�\�s

[
h – a(x, u, )

]
Du dx.

Using the fact that [h – a(x, u, )]Du ∈ L(�) and letting s → ∞, we get, since
meas(�\�s) → ,

∫
�r

[
a(x, uk , Duk) – a(x, uk , Du)

]
(Duk – Du) dx →  as k → ∞,

which gives

[
a(x, uk , Duk) – a(x, uk , Du)

]
(Duk – Du) dx →  a.e. in �r ()

(for a subsequence still denoted by {uk}), say, for each x ∈ �r\Z with meas(Z) = . As the
proof of Eq. (.) in [], we can construct a subsequence such that

Duk(x) → Du(x) a.e. in �. ()

Consequently, we get

a(x, uk , Duk) → a(x, u, Du) a.e. in �,

and

gn(x, uk , Duk) → gn(x, u, Du) a.e. in �.

By Lemma ., we get

a(x, uk , Duk) ⇀ a(x, u, Du) in
(
LM̄(�)

)N for σ
((

LM̄(�)
)N ,

(
EM(�)

)N)
,

and

gn(x, uk , Duk) ⇀ gn(x, u, Du) in
(
LM̄(�)

)N for σ
((

LM̄(�)
)N ,

(
EM(�)

)N)
.
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Then

∫
�

[
a(x, uk , Duk)Dw + gn(x, uk , Duk)w

]
dx →

∫
�

[
a(x, u, Du)Dw + gn(x, u, Du)w

]
dx

for every w ∈ V . Thus, we get (Anuk , w) → (Anu, w) for every w ∈ V . It follows that Anu =
ξn. Therefore,

(Anu, w) = (μn, w), ∀w ∈ W 
EM(�).

Furthermore, by Lemmas . and ., we have

(Anu, v) = (μn, v), ∀v ∈ W 
LM(�).

Hence, for every n, there exists at least one solution un of () with un ∈ W 
EM(�). �

Remark . From Proposition ., we have the following approximate equations:

∫
�

[
a(x, un, Dun)Dv + gn(x, un, Dun)v

]
dx =

∫
�

μnv dx, ∀v ∈ W 
LM(�), ()

where un ∈ W 
EM(�).

Remark . Clearly, condition () is weaker than

∣∣a(x, s, ξ )
∣∣ ≤ β

[
c(x) + P̄–(M

(|s|)) + M̄–(M
(|ξ |))], ()

whenever P � M. If condition () is replaced by () in Proposition ., the approximate
equations () has at least one solution un ∈ W 

LM(�) by the classical result of [].

The proof of the following proposition is similar to the proof of Lemma . in [].

Proposition . Assume that ()-() hold true, and let {un}n be a solution of the approx-
imate problem (). Let ϕ ∈ W 

LM(�) ∩ L∞(�) with ϕ ≥ . Then
() exp(G(Tk(un)))ϕ can be taken as a test function in () and

∫
�

a(x, un, Dun) exp
(
G(un)

)
Dϕ dx

≤
∫

�

μn exp
(
G(un)

)
ϕ dx +

∫
�

γ (x) exp
(
G(un)

)
ϕ dx; ()

() exp(–G(Tk(un)))ϕ can be taken as a test function in () and

∫
�

a(x, un, Dun) exp
(
–G(un)

)
Dϕ dx +

∫
�

γ (x) exp
(
–G(un)

)
ϕ dx

≥
∫

�

μn exp
(
–G(un)

)
ϕ dx. ()
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Proof () Choosing exp(G(Tk(un)))ϕ as a test function in (), we have

∫
�

a(x, un, Dun) exp
(
G

(
Tk(un)

))ρ(Tk(un))
α

DTk(un)ϕ dx

+
∫

�

a(x, un, Dun) exp
(
G

(
Tk(un)

))
Dϕ dx

+
∫

�

gn(x, un, Dun) exp
(
G

(
Tk(un)

))
ϕ dx

=
∫

�

μn exp
(
G

(
Tk(un)

))
ϕ dx, ()

which implies by ()

∫
�

αM
(∣∣DTk(un)

∣∣) exp
(
G

(
Tk(un)

))ρ(Tk(un))
α

ϕ dx

≤
∫

�

a
(
x, Tk(un), DTk(un)

)
exp

(
G

(
Tk(un)

))ρ(Tk(un))
α

DTk(un)ϕ dx

=
∫

�

a(x, un, Dun) exp
(
G

(
Tk(un)

))ρ(Tk(un))
α

DTk(un)ϕ dx.

Since Tk(un) → un and DTk(un) → Dun a.e. in � as k → ∞, by the Fatou lemma, we get

∫
�

αM
(|Dun|

)
exp

(
G(un)

)ρ(un)
α

ϕ dx

≤ lim inf
k→∞

∫
�

αM
(∣∣DTk(un)

∣∣) exp
(
G

(
Tk(un)

))ρ(Tk(un))
α

ϕ dx

≤ lim inf
k→∞

∫
�

a(x, un, Dun) exp
(
G

(
Tk(un)

))ρ(Tk(un))
α

DTk(un)ϕ dx.

On the other hand, the functions a(x, un, Dun)Dϕ, gn(x, un, Dun)ϕ, and μnϕ are summable,
and the functions exp(G(Tk(un))) are bounded in L∞(�); so Lebesgue’s dominated con-
vergence theorem may be applied in the remaining integrals. Indeed, thanks to () and
Young inequality, one has

∣∣a(x, un, Dun) exp
(
G

(
Tk(un)

))
Dϕ

∣∣

≤ e
‖ρ‖L(R)

α β
[
c(x) + M̄–(M

(|un|
))

+ M̄–(M
(|Dun|

))]|Dϕ|

≤ e
‖ρ‖L(R)

α β
[
M̄

(
c(x)

)
+ M

(|un|
)

+ M
(|Dun|

)
+ M

(|Dϕ|)].

Since a(x, un, Dun) exp(G(Tk(un)))Dϕ → a(x, un, Dun) exp(G(un))Dϕ a.e. in � as k → ∞,
and by Lebesgue’s dominated convergence theorem, we deduce that

∫
�

a(x, un, Dun) exp
(
G

(
Tk(un)

))
Dϕ dx →

∫
�

a(x, un, Dun) exp
(
G(un)

)
Dϕ dx
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as k → ∞. Since gn(x, un, Dun) exp(G(Tk(un)))ϕ → gn(x, un, Dun) exp(G(un))ϕ a.e. in � as
k → ∞, and

∣∣gn(x, un, Dun) exp
(
G

(
Tk(un)

))
ϕ
∣∣ ≤ ne

‖ρ‖L(R)
α ‖ϕ‖∞,

by Lebesgue’s dominated convergence theorem one has

∫
�

gn(x, un, Dun) exp
(
G

(
Tk(un)

))
ϕ dx →

∫
�

gn(x, un, Dun) exp
(
G(un)

)
ϕ dx

as k → ∞. Since μn exp(G(Tk(un)))ϕ → μn exp(G(un))ϕ a.e. in � as k → ∞, and

∣∣μn exp
(
G

(
Tk(un)

))
ϕ
∣∣ ≤ e

‖ρ‖L(R)
α μn‖ϕ‖∞,

we have
∫

�

μn exp
(
G

(
Tk(un)

))
ϕ dx →

∫
�

μn exp
(
G(un)

)
ϕ dx

as k → ∞.
Thus, letting k tend to ∞ in (), we obtain

∫
�

M
(|Dun|

)
exp

(
G(un)

)
ρ(un)Dunϕ dx

+
∫

�

a(x, un, Dun) exp
(
G(un)

)
Dϕ dx +

∫
�

gn(x, un, Dun) exp
(
G(un)

)
ϕ dx

≤
∫

�

μn exp
(
G(un)

)
ϕ dx. ()

By (), () is reduced to ().
() Similarly, taking exp(–G(Tk(un)))ϕ as a test function in (), we obtain (). �

Proposition . Assume that ()-() hold true, and let {un}n be a solution of the approx-
imate problem (). Then, for all k > , there exists a constant C (which does not depend on
the n and k) such that

∫
�

M
(∣∣DTk(un)

∣∣)dx ≤ Ck. ()

Proof Let ϕ = Tk(un)+ in (). Also let G(±∞) = 
α

∫ ±∞
 ρ(s) ds which are well defined since

ρ ∈ L(R), then G(–∞) ≤ G(s) ≤ G(+∞) and |G(±∞)| ≤ ‖ρ‖L(R)/α. We have

∫
�

a(x, un, Dun) exp
(
G(un)

)
DTk(un)+ dx ≤ e

‖ρ‖L(R)
α k

[‖μ‖Mb(�) +
∥∥γ (x)

∥∥
L(�)

]
.

Immediately, by () we get

∫
�

M
(∣∣DTk(un)+∣∣)dx ≤ Ck. ()
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Similarly, let ϕ = Tk(un)– in (). We obtain
∫

�

M
(∣∣DTk(un)–∣∣)dx ≤ Ck. ()

Combing () and (), we deduce (). �

Proposition . Assume that ()-() hold true, and let {un}n be a solution of the approx-
imate problem (). Then there exists a measurable function u such that for all k >  we
have (for a subsequence still denoted by {un}n),

() un → u a.e. in �;
() Tk(un) ⇀ Tk(u) weakly in W 

EM(�) for σ (�LM,�EM̄);
() Tk(un) → Tk(u) strongly in EM(�) and a.e. in �.

Proof Since

M
(

k
diam�

)
meas

{∣∣Tk(un)
∣∣ = k

}

=
∫

{|Tk (un)|=k}
M

( |Tk(un)|
diam�

)
dx ≤

∫
�

M
(∣∣DTk(un)

∣∣)dx ≤ Ck

and {|un| > k} ⊂ {|Tk(un)| = k}, we get

meas
{|un| > k

} ≤ meas
{∣∣Tk(un)

∣∣ = k
} ≤ Ck

M( k
diam�

)

for all n and for all k. Similar to the proof of Proposition . in [], assertions ()-() hold.
�

Proposition . Assume that ()-() hold true, and let {un}n be a solution of the approx-
imate problem (). Then, for all k > ,

() {a(x, Tk(un), DTk(un))}n is bounded in LM̄(�)N ;
() Dun → Du a.e. in � (for a subsequence) as n → ∞.

Proof () Let w ∈ (EM(�))N be arbitrary. By condition () and Young inequality, we have
∫

�

a
(
x, Tk(un), DTk(un)

)
w dx

≤ β

∫
�

[
M̄

(
c(x)

)
+ M(k) + M

(∣∣DTk(un)
∣∣) + M

(|w|)]dx

≤ β

[∫
�

M̄
(
c(x)

)
dx + M(k) meas� +

∫
�

M
(∣∣DTk(un)

∣∣)dx + 
∫

�

M
(|w|)dx

]

≤ β

[∫
�

M̄
(
c(x)

)
dx + M(k) meas� + Ck + 

∫
�

M
(|w|)dx

]
= C(k) < +∞,

where C(k) is a constant independent of n.
By the Banach-Steinhaus theorem {‖a(x, Tk(un), DTk(un))‖M̄}n is bounded; this com-

pletes the proof of assertion ().
() Let �s = {x ∈ �||DTk(un)| < s} and denote by χs the characteristic function of �s.

Clearly, �s ⊂ �s+ and meas(�\�s) →  as s → ∞.
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Step (i). We shall show the following assertion:

lim
j→∞ lim sup

n→∞

∫
{–(j+)≤un≤–j}

a(x, un, Dun)Dun dx = . ()

Indeed, the term in () with μn can be neglected since it is nonnegative. Hence

–
∫

�

a(x, un, Dun) exp
(
–G(un)

)
Dϕ dx ≤

∫
�

γ (x) exp
(
–G(un)

)
ϕ dx. ()

Taking ϕ = T(un – Tj(un))– in (), we obtain

∫
{–(j+)≤un≤–j}

a(x, un, Dun)Dun exp
(
–G(un)

)
dx

≤
∫

�

γ (x) exp
(
–G(un)

)
T

(
un – Tj(un)

)– dx.

Since |γ (x) exp(–G(un))T(un – Tj(un))–| ≤ e
‖ρ‖L(R)

α |γ (x)|, we deduce

lim
j→∞ lim

n→∞

∫
�

γ (x) exp
(
–G(un)

)
T

(
un – Tj(un)

)– dx = ,

by Lebesgue’s dominate convergence theorem, which implies ().
Step (ii). Taking ϕ = (Tk(un) – Tk(vi))–[ – |T(un – Tj(un))|] and ϕ = (Tk(vi) – Tk(un))–[ –

|T(un – Tj(un))|] in () with j > k, as in [], we can deduce that, by passing to a subse-
quence if necessary,

DTk(un) → DTk(u) a.e. in �, ()

and

Dun → Du a.e. in �. ()
�

Proof of Theorem . () We are going to show that as n → ∞,

gn(x, un, Dun) → g(x, u, Du) in L(�). ()

Indeed, taking v = exp(–G(Tk(un)))
∫ 

Tk (un) ρ(s)χ{s<–h} ds as a test function in (), we have

∫
�

a(x, un, Dun)DTk(un)
ρ(Tk(un))

α
exp

(
–G

(
Tk(un)

))∫ 

Tk (un)
ρ(s)χ{s<–h} ds dx

+
∫

�

a(x, un, Dun)DTk(un) exp
(
–G

(
Tk(un)

))
ρ
(
Tk(un)

)
χ{Tk (un)<–h} dx

=
∫

�

gn(x, un, Dun) exp
(
–G

(
Tk(un)

))∫ 

Tk (un)
ρ(s)χ{s<–h} ds dx

–
∫

�

μn exp
(
–G

(
Tk(un)

))∫ 

Tk (un)
ρ(s)χ{s<–h} ds dx.
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Using () and by Fatou’s lemma and Lebesgue’s theorem, we can deduce that

∫
�

αM
(|Dun|

)
exp

(
–G(un)

)ρ(un)
α

∫ 

un

ρ(s)χ{s<–h} ds dx

+
∫

�

αM
(|Dun|

)
exp

(
–G(un)

)
ρ(un)χ{un<–h} dx

≤
∫

�

gn(x, un, Dun) exp
(
–G(un)

)∫ 

un

ρ(s)χ{s<–h} ds dx

–
∫

�

μn exp
(
–G(un)

)∫ 

un

ρ(s)χ{s<–h} ds dx,

which implies that

∫
�

αM
(|Dun|

)
exp

(
–G(un)

)
ρ(un)χ{un<–h} dx

≤
∫

�

γ (x) exp
(
–G(un)

)∫ 

un

ρ(s)χ{s<–h} ds dx

–
∫

�

μn exp
(
–G(un)

)∫ 

un

ρ(s)χ{s<–h} ds dx.

Since ρ ≥ , we get

∫ 

un

ρ(s)χ{s<–h} ds ≤
∫ –h

–∞
ρ(s) ds.

Hence we have

∫
�

M
(|Dun|

)
exp

(
–G(un)

)
ρ(un)χ{un<–h} dx

≤ 
α

e
‖ρ‖L(R)

α

∫ –h

–∞
ρ(s) ds

(‖γ ‖L(�) + ‖μ‖Mb(�)
)

= C
∫ –h

–∞
ρ(s) ds.

Consequently, one has

∫
�

M
(|Dun|

)
ρ(un)χ{un<–h} dx ≤ C

∫ –h

–∞
ρ(s) ds.

Letting h → +∞, one has

∫ –h

–∞
ρ(s) ds → .

Therefore,

lim
h→+∞

sup
n∈N

∫
{un<–h}

M
(|Dun|

)
ρ(un) dx = .
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Taking v = exp(G(Tk(un)))
∫ Tk (un)

 ρ(s)χ{s>h} ds as a test function in (), similarly we obtain
that

lim
h→+∞

sup
n∈N

∫
{un>h}

M
(|Dun|

)
ρ(un) dx = .

Hence,

lim
h→+∞

sup
n∈N

∫
{|un|>h}

M
(|Dun|

)
ρ(un) dx = . ()

Following the proof of step  in Theorem . of [], we can deduce ().
() We will prove that a(x, un, Dun) ⇀ a(x, u, Du) weakly for σ (�LQ◦H– ,�EQ◦H– ).
By (), we have

a(x, un, Dun) → a(x, u, Du) a.e. in �. ()

By Q ∈PM and (), one has Q′′/Q′ ≤ M′′/M′. Then

∫ Q′′(t)
Q′(t)

dt ≤
∫ M′′(t)

M′(t)
dt.

Thus, there exists a constant C such that ln |Q′(t)| ≤ ln |M′(t)| + C. Therefore,

Q′(t) ≤ CM′(t).

It implies that

Q(r) =
∫ r


Q′(t) dt ≤ C

∫ r


M′(t) dt = CM(r). ()

Let s = H(r), then s = M◦H–(s)
H–(s) . By Young inequality we have

M ◦ H–
(

s


)
=

s


· H–
(

s


)
≤ 


M̄(s) +




M ◦ H–
(

s


)
.

Hence

M ◦ H–
(

s


)
≤ M̄(s). ()

In view of () and (), we get

∫
�

Q ◦ H–
(




c(x)
)

dx ≤ C
∫

�

M ◦ H–
(




c(x)
)

dx ≤ C
∫

�

M̄
(
c(x)

)
dx < ∞. ()

Since M̄–(M(|Dun|)) ≤  M(|Dun|)
|Dun| , we have




M̄–(M
(|Dun|

)) ≤ M(|Dun|)
|Dun| .
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Hence
∫

�

Q ◦ H–
(




M̄–(M
(|Dun|

)))
dx ≤

∫
�

Q ◦ H–
(

M(|Dun|)
|Dun|

)
dx =

∫
�

Q
(|Dun|

)
dx,

and
∫

�

Q ◦ H–
(




M̄–(M
(|un|

)))
dx ≤

∫
�

Q
(|un|

)
dx.

For t > , by taking Th(un – Tt(un)) as a test function in (), from () and (), we can
deduce that

∫
{t<|un|≤t+h}

a(x, un, Dun)Dun dx ≤ Ch,

where C is a constant independent of n, h, t, which gives


h

∫
{t<|un|≤t+h}

M
(|Dun|

)
dx ≤ C,

and by letting h → ,

–
d
dt

∫
{|un|>t}

M
(|Dun|

)
dx ≤ C.

Let now B ∈PM . Following the lines of [], it is easy to deduce that

∫
�

B
(|Dun|

)
dx ≤ C, ∀n.

This implies that {un} is bounded in W 
LQ(�) and converges to u strongly in LQ(�). Con-

sequently, using the convexity of Q ◦ H– and by (), we have

∫
�

Q ◦ H–
( |a(x, un, Dun)|

β

)
dx

≤ 


∫
�

Q ◦ H–
(




c(x)
)

dx +



∫
�

Q ◦ H–
(




M̄–(M
(|un|

)))
dx

+



∫
�

Q ◦ H–
(




M̄–(M
(|Dun|

)))
dx

≤ 


[
C

∫
�

M̄
(
c(x)

)
dx +

∫
�

Q
(|un|

)
dx +

∫
�

Q
(|Dun|

)
dx

]
≤ C,

where C is independent of n. Thus we get

a(x, un, Dun) ⇀ a(x, u, Du) weakly for σ (�LQ◦H–�EQ◦H– ). ()

Thanks to () and () we can pass to the limit in () and we obtain that u is a solution
of (). �
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