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Abstract
In the paper, we establish sufficient conditions for the existence and multiplicity of
positive solutions to a class of higher-order delayed nonlinear fractional differential
equations withm-point multi-term fractional integral boundary conditions. The
results are established by converting the problem into an equivalent integral
equation and applying fixed point theorems of the cone expansion and compression
of norm type. Our study improves the previous results in the literature. As an
application, an example is also provided to illustrate our main results.
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1 Introduction
The fractional differential equation has a significant role to play in many fields such as
physics, chemistry, aerodynamics, electrodynamics of a complex medium, polymer rheol-
ogy, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-
analytical chemistry, biology, control theory, fitting of experimental data, and so forth.
The fractional differential equation also serves as an excellent tool for the description of
hereditary properties of various materials and processes. In consequence, the subject of
fractional differential equations is gaining much importance and attention. There are a
large number of papers dealing with the existence or multiplicity of solutions or positive
solutions of initial or boundary value problems for some differential equations. For de-
tails and examples, see [–] and the references therein. In [, , , –], the authors
have discussed the existence of multiple positive solutions for boundary value problems
of integer or fractional differential equations.

Integral boundary conditions have various applications in applied fields such as blood
flow problems, chemical engineering, thermoelasticity, underground water flow, popula-
tion dynamics, and so on. For more details of nonlocal and integral boundary conditions,
see [, –, ] and the references therein. In addition, it is well known that delay arises
naturally in practical systems due to the transmission of signal or the mechanical trans-
mission. Though the theory of ordinary differential equations with delays is mature, not
much has been done for fractional differential equations with delays; see [, , , ].
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In [], Tariboon et al. are concerned with the existence of at least one, two or three
positive solutions for the boundary value problem with three-point multi-term fractional
integral boundary conditions,

{
Dq

+u(t) + f (t, u(t)) = ,  < q ≤ , t ∈ [, ],
u() = , u() =

∑m
i= αi(I

pi
+u)(η),  < η < ,

(.)

where f : [, ] × [,∞) → [,∞). Dq
+ is the standard Riemann-Liouville derivative of

order q. Ipi
+ is the Riemann-Liouville fractional integral of order pi > . αi ≥  (i = , , . . . ,

m – ) are real constants.
To the best of our knowledge, no one has studied the existence of multiple positive so-

lutions with delayed nonlinear fractional differential equations. In this article, motivated
by the above-mentioned papers, we study the existence of multiple positive solutions for
the following higher-order delayed nonlinear fractional differential equation with m-point
multi-term fractional integral boundary conditions:

{
Dq

+u(t) + f (t, u(t – τ), u(t + τ)) = , t ∈ [, ],
u(j)() = , u() =

∑m–
i= αi(I

pi
+u)(ζi),  ≤ j ≤ n – ,  < ζi < ,

(.)

subject to the following initial conditions:

{
au(t) – bu′(t) = η(t), t ∈ [–τ, ],
cu(t) + du′(t) = ξ (t), t ∈ [,  + τ],

(.)

where  ≤ τ, τ < θ ∈ (, /) are suitably small. Dq
+ is the standard Riemann-Liouville

derivative of order n –  < q ≤ n, n ≥ . a, b, c, d ≥ , η(t) ∈ C([–τ, ], [, +∞)), ξ (t) ∈
C([,  + τ], [, +∞)), f ∈ C([, ] × [, +∞) × [, +∞), [, +∞)). Ipi

+ is the Riemann-
Liouville fractional integral of order pi. αi ≥  (i = , , . . . , m – ) are real constants such

that
∑m–

i=
αiζ

pi+q–
i �(q)
�(pi+q) < .

Remark . By (.) and (.), we have η() =  and ξ () = cu() + du′().

Remark . When  < q ≤ , τ = τ = , ςi ≡ η, j = , then (.) and (.) degenerate into
(.). So our models extend (.).

2 Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions and properties can be found in the literature.

Definition . (see [, ]) The Riemann-Liouville fractional integral of order α >  of
a function u : (,∞) →R is given by

Iα
+u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right-hand side is pointwise defined on (,∞).
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Definition . (see [, ]) The Riemann-Liouville fractional derivative of order α > 
of a continuous function u : (,∞) →R is given by

Dα
+u(t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–u(s) ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . (see []) Assume that u ∈ C(, )∩L(, ) with a fractional derivative of order
α >  that belongs to u ∈ C(, ) ∩ L(, ). Then

Iα
+Dα

+u(t) = u(t) + Ctα– + Ctα– + · · · + Cntα–n,

for some Ci ∈R, i = , , . . . , n, where n is the smallest integer greater than or equal to α.

Lemma . (see []) Let E be a Banach space, P ⊆ E is a cone, and 
, 
 are two
bounded open balls of E centered at the origin with  ∈ 
 and 
 ⊂ 
. Suppose that
A : P ∩ (
 \ 
) → P is a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂
, and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂
, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂
, and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂


holds. Then A has at least one fixed point in P ∩ (
 \ 
).

For simplicity, we put


 =  –
m–∑
i=

αiζ
pi+q–
i �(q)

�(pi + q)
. (.)

Now we present the Green’s function for BVP (.)-(.).

Lemma . Let
∑m–

i=
αiζ

pi+q–
i �(q)
�(pi+q) < , αi ≥ , pi >  (i = , , . . . , m–), and h ∈ C([, ],R),

 ≤ n –  < q ≤ n. The unique solution of

{
Dq

+u(t) + h(t) = , t ∈ [, ],
u(j)() = , u() =

∑m–
i= αi(I

pi
+u)(ζi), j = , , . . . , n – ,  < ζi < ,

(.)

is

u(t) =
∫ 


G(t, s)h(s) ds,

where G(t, s) is the Green’s function given by

G(t, s) = g(t, s) +
m–∑
i=

αitq–


�(pi + q)
gi(ζi, s), (.)

where

g(t, s) =


�(q)

{
tq–( – s)q– – (t – s)q–,  ≤ s ≤ t ≤ ,
tq–( – s)q–,  ≤ t ≤ s ≤ 

(.)
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and

gi(ζi, s) =

{
ζ

pi+q–
i ( – s)q– – (ζi – s)pi+q–,  ≤ s ≤ ζi < ,

ζ
pi+q–
i ( – s)q–,  < ζi ≤ s ≤ .

(.)

Proof Applying Lemma ., BVP (.) can be expressed as an equivalent integral equation

u(t) = –


�(q)

∫ t


(t – s)q–h(s) ds + Ctq– + Ctq– + · · · + Cntq–n, (.)

for Ci ∈ R (i = , , . . . , n) ∈ R. u(j)() =  (j = , , , . . . , n – ) implies that C = C = · · · =
Cn = . Taking the Riemann-Liouville fractional integral of order pi >  for (.), we get

(
Ipi

+u
)
(t) =

∫ t



(t – s)pi–

�(pi)

(
Csq– –

∫ s



(s – r)q–

�(q)
h(r) dr

)
ds

= C

∫ t



(t – s)pi–sq–

�(pi)
ds –

∫ t



(t – s)pi–

�(pi)

∫ s



(s – r)q–

�(q)
h(r) ds dr

= C
tpi+q–�(q)
�(pi + q)

–


�(pi + q)

∫ t


(t – s)pi+q–h(s) ds.

u() =
∑m–

i= αi(I
pi
+u)(ζi) yields

C –
∫ 



( – s)q–

�(q)
h(s) ds

= C

m–∑
i=

αiζ
pi+q–
i �(q)

�(pi + q)
–

m–∑
i=

αi

�(pi + q)

∫ ζi


(ζi – s)pi+q–h(s) ds.

Then we have

C =




[∫ 



( – s)q–

�(q)
h(s) ds –

m–∑
i=

αi

�(pi + q)

∫ ζi


(ζi – s)pi+q–h(s) ds

]
.

Therefore, the unique solution of BVP (.) is written as

u(t) = –


�(q)

∫ t


(t – s)q–h(s) ds +



�(q)

∫ 


( – s)q–tq–h(s) ds

–




m–∑
i=

αi

�(pi + q)

∫ ζi


(ζi – s)pi+q–tq–h(s) ds.

Hence, by taking into account (.), we have

u(t) = –


�(q)

∫ t


(t – s)q–h(s) ds +



�(q)

∫ 


( – s)q–tq–h(s) ds

–




m–∑
i=

αi

�(pi + q)

∫ ζi


(ζi – s)pi+q–tq–h(s) ds

+


�(q)

∫ 


( – s)q–tq–h(s) ds –


�(q)

∫ 


( – s)q–tq–h(s) ds
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=


�(q)

∫ 


( – s)q–tq–h(s) ds –


�(q)

∫ t


(t – s)q–h(s) ds

+
m–∑
i=

αitq–


�(pi + q)

(∫ 


ζ

pi+q–
i ( – s)q–h(s) ds –

∫ ζi


(ζi – s)pi+q–h(s) ds

)

=
∫ 


g(t, s)h(s) ds +

∫ 



m–∑
i=

αitq–


�(pi + q)
gi(ζi, s)h(s) ds

=
∫ 


G(t, s)h(s) ds.

The proof is complete. �

Lemma . The Green’s function G(t, s) defined by (.)-(.) has the following properties:
(A) G(t, s) ∈ C([, ] × [, ]) and G(t, s) ≥ , for all t, s ∈ [, ].
(A) G(t, s) ≤ max≤t≤ G(t, s) ≤ G(s) and G(t, s) ≥ min≤t≤ G(t, s) ≥ σ (t)G(s), where

G(s) =
s( – s)q–

�(q – )
+

m–∑
i=

αi


�(pi + q)
gi(ζi, s), σ (t) =

tq–( – t)
q – 

.

(A) If θ ∈ (, /), then mint∈[θ ,–θ ] G(t, s) ≥ σ (θ )G(s).

Proof From the expression of G(t, s), it is obvious that G(t, s) ∈ C([, ] × [, ]). To prove
G(t, s) ≥ , we will show that g(t, s), gi(ζi, s) ≥ , i = , , . . . , m – , for all  ≤ s, t ≤ .

Let k(t, s) = tq–( – s)q– – (t – s)q– for  ≤ s ≤ t ≤ , then we have

k(t, s) = (t – ts)q– – (t – s)q– ≥ (t – s)q– – (t – s)q– = .

For  ≤ t ≤ s ≤ , k(t, s) = (t – ts)q– ≥ . Therefore, g(t, s) ≥  for all  ≤ s, t ≤ . Now, let
ki

(ζi, s) = ζ
pi+q–
i ( – s)q– – (ζi – s)pi+q– for  ≤ s ≤ ζi < , then we have

ki
(ζi, s) = ζ

pi+q–
i ( – s)q– – ζ

pi+q–
i

(
 –

s
ζi

)pi+q–

≥ ζ
pi+q–
i ( – s)q– – ζ

pi+q–
i ( – s)pi+q–

= ζ
pi+q–
i

(
( – s)q– – ( – s)pi+q–) ≥ .

For  < ζi ≤ s ≤ , ki
(ζi, s) = ζ

pi+q–
i ( – s)q– ≥ . Therefore gi(ζi, s) ≥ , i = , , . . . , m – ,

for all  ≤ s ≤ .
In the following, we prove (A). When s ≤ t, we have  – s ≥  – t, then

k(t, s) = tq–( – s)q– – (t – s)q– = (q – )
∫ t–ts

t–s
xq– dx

≤ (q – )(t – ts)q–((t – ts) – (t – s)
)

= (q – )tq–( – s)q–( – t)s

≤ (q – )s( – s)q–



Zhao and Gong Boundary Value Problems  (2015) 2015:19 Page 6 of 19

and

k(t, s) = tq–( – s)q– – (t – s)q–

= (t – ts)q–(t – ts) – (t – s)q–(t – s)

≥ (t – ts)q–(t – ts) – (t – ts)q–(t – s)

= tq–( – s)q–( – t)s

≥ tq–( – t)s( – s)q–.

When t ≤ s, we derive from q >  that

k(t, s) = tq–( – s)q– ≤ (q – )tq–t( – s)q–

≤ (q – )tq–s( – s)q–

≤ (q – )s( – s)q–

and

k(t, s) = tq–( – s)q– ≥ tq–( – t)s( – s)q–.

Thus,

tq–( – t)s( – s)q–

�(q)
≤ g(t, s) ≤ (q – )s( – s)q–

�(q)
=

s( – s)q–

�(q – )
.

From the above analysis, we have for  ≤ s ≤ ,

G(t, s) ≤ max
≤t≤

G(t, s) = max
≤t≤

(
g(t, s) +

m–∑
i=

αitq–


�(pi + q)
gi(ζi, s)

)

≤ s( – s)q–

�(q – )
+

m–∑
i=

αi


�(pi + q)
gi(ζi, s) = G(s)

and

G(t, s) ≥ min
≤t≤

G(t, s) = min
≤t≤

(
g(t, s) +

m–∑
i=

αitq–


�(pi + q)
gi(ζi, s)

)

≥ tq–( – t)s( – s)q–

�(q)
+

m–∑
i=

αitq–


�(pi + q)
gi(ζi, s)

≥ min
≤t≤

{
tq–( – t)

q – 
, tq–

}(
(q – )s( – s)q–

�(q)
+

m–∑
i=

αi


�(pi + q)
gi(ζi, s)

)

=
tq–( – t)

q – 
G(s) = σ (t)G(s).

Now we prove (A). By (A) and (A), we have

min
θ≤t≤–θ

G(t, s) ≥ min
θ≤t≤–θ

σ (t)G(s)
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and

∂σ (t)
∂t

=
(q – )tq–( – t) – tq–

q – 
=

(q – )tq– – qtq–

q – 
=

tq–(q –  – qt)
q – 

.

It is clear that σ (t) is increasing in t ∈ [, q–
q ] and decreasing in t ∈ [ q–

q , ], respectively.
By q > , we have

q – 
q

=  –

q

>  –



=



> θ ,

thus, σ (t) is increasing in t ∈ [θ , q–
q ], for q–

q ≤  – θ or q–
q ≥  – θ , and we have

minθ≤t≤–θ σ (t) = min{σ (θ ),σ ( – θ )}. For  < θ <  – θ < , q > , we get

σ (θ ) – σ ( – θ ) =
θq–( – θ )

q – 
–

( – θ )q–θ

q – 
=

θq–( – θ )
q – 

(
 –

(
 – θ

θ

)q–)
< .

Therefore

min
θ≤t≤–θ

G(t, s) ≥ min
θ≤t≤–θ

σ (t)G(s) = σ (θ )G(s).

This proof is complete. �

3 Existence of multiple positive solutions
In this section, we will consider the existence of multiple positive solutions for the BVP
(.)-(.).

Let E = {u(t) : u(t) ∈ C[–τ, +τ]} denote a real Banach space with the norm ‖·‖ defined
by ‖u‖ = max–τ≤t≤+τ |u(t)|. Define the cone P ⊂ E by P = {u ∈ E : u(t) ≥ }. Let

K =
{

u ∈ P : u(t) ≥ σ (t)‖u‖,∀t ∈ [, ]
}

, (.)

Kr =
{

u ∈ K : ‖u‖ < r
}

, ∂Kr =
{

u ∈ K : ‖u‖ = r
}

. (.)

Suppose that u(t) is a solution of (.)-(.); according to Lemma . and Remark ., it
can be written as

u(t) =

⎧⎪⎨
⎪⎩

u(τ, t), –τ ≤ t ≤ ,∫ 
 G(t, s)f (s, u(s – τ), u(s + τ)) ds,  ≤ t ≤ ,

u(τ, t),  ≤ t ≤  + τ,

where

u(τ, t) =

{
e

a
b t( 

b
∫ 

t e– a
b sη(s) ds + u()), –τ ≤ t ≤ , b �= ,

η(t)
a , –τ ≤ t ≤ , b = 

and

u(τ, t) =

{
e– c

d t( 
d
∫ t

 e
c
d sξ (s) ds + e

c
d u()),  ≤ t ≤  + τ, d �= ,

ξ (t)
c ,  ≤ t ≤  + τ, d = .
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Throughout this paper, we assume that v(t) is the solution of (.)-(.) with f ≡ .
Clearly, v(t) can be expressed as follows:

v(t) =

⎧⎪⎨
⎪⎩

v(τ, t), –τ ≤ t ≤ ,
,  ≤ t ≤ ,
v(τ, t),  ≤ t ≤  + τ,

where

v(τ, t) =

{
e

a
b t

b
∫ 

t e– a
b sη(s) ds, –τ ≤ t ≤ , b �= ,

η(t)
a , –τ ≤ t ≤ , b = 

and

v(τ, t) =

{
e– c

d t

d
∫ t

 e
c
d sξ (s) ds,  ≤ t ≤  + τ, d �= ,

ξ (t)
c ,  ≤ t ≤  + τ, d = .

Obviously, v(t) ≥  for each t ∈ [–τ,  + τ].
Let u(t) be a solution of (.)-(.) and v(t) = u(t) – v(t). Noting that v(t) ≡ u(t) for

 ≤ t ≤ , we have

v(t) =

⎧⎪⎨
⎪⎩

v(τ, t), –τ ≤ t ≤ ,∫ 
 G(t, s)f (s, (v + v)(s – τ), (v + v)(s + τ)) ds,  ≤ t ≤ ,

v(τ, t),  ≤ t ≤  + τ,

where

(v + v)(s – τ) = v(s – τ) + v(s – τ),

(v + v)(s + τ) = v(s + τ) + v(s + τ),

v(τ, t) =

{
e

a
b tv(), –τ ≤ t ≤ , b �= ,

, –τ ≤ t ≤ , b = 

and

v(τ, t) =

{
e– c

d (t–)v(),  ≤ t ≤  + τ, d �= ,
,  ≤ t ≤  + τ, d = .

Define an operator A : E → E as follows:

(Av)(t) =

⎧⎪⎨
⎪⎩

(Bv)(t), –τ ≤ t ≤ ,∫ 
 G(t, s)f (s, (v + v)(s – τ), (v + v)(s + τ)) ds,  ≤ t ≤ ,

(Bv)(t),  ≤ t ≤  + τ,
(.)

where

(Bv)(t) =

{
e

a
b t ∫ 

 G(, s)f (s, (v + v)(s – τ), (v + v)(s + τ)) ds, –τ ≤ t ≤ , b �= ,
, –τ ≤ t ≤ , b = 
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and

(Bv)(t) =

⎧⎪⎨
⎪⎩

e– c
d
∫ 

 f (s, (v + v)(s – τ), (v + v)(s + τ))
× G(, s) ds,  ≤ t ≤  + τ, d �= ,

,  ≤ t ≤  + τ, d = .

It is easy to derive that u is a positive solution of BVP (.)-(.) if v = u – v is a nontrivial
fixed point of A : K → K , where v is defined as before.

Lemma . A : K → K defined by (.) is completely continuous.

Proof For v ∈ K , we find from Lemma . and the definition of A that  ≤ (Av)(t) ≤
(Av)(), for t ∈ [–τ, ], and  ≤ (Av)(t) ≤ (Av)() for t ∈ [,  + τ]. Thus, ‖Av‖ = ‖Av‖[,] =
max≤t≤ |(Av)(t)|. It follows from Lemma . that

(Av)(t) ≥ σ (t)
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (t)‖Av‖[,] = σ (t)‖Av‖.

Thus, A(K) ⊂ K . In addition, since f is continuous, it follows that A is continuous.
Let Q ∈ K be bounded, that is, there exists a positive constant M >  such that

‖v‖[–τ,+τ] ≤ M for all v ∈ Q. Then ‖v + v‖[–τ,+τ] ≤ M + M � M for v ∈ Q, where
v is defined as before. Define a set Q ⊂ E as follows:

Q =
{
ψ ∈ E : ‖ψ‖[–τ,+τ] ≤ M

}
.

Hence, max–τ≤t≤+τ |(v+v)(t)| ≤ ‖v+v‖[–τ,+τ] ≤ ‖v‖[–τ,+τ] +‖v‖[–τ,+τ] ≤ M. Not-
ing that f is continuous on [, ] × [, M] × [, M], there exists a constant M >  such
that on [, ] × [, M] × [, M],

∣∣f (t, (v + v)(t – τ), (v + v)(t + τ)
)∣∣ ≤ M.

Therefore,

‖Av‖[–τ,+τ] = ‖Av‖[,] ≤ M

∫ 


G(s) ds.

Hence, A(Q) is bounded.
Finally, we show the operator A is equicontinuous. For v ∈ Q, we have

(Av)′(t) =
∫ 



∂

∂t
G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds, t ∈ [, ],

(Av)′(t) =
a
b

e
a
b t

∫ 


G(, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds, t ∈ [–τ, ]

and

(Av)′(t) = –
c
d

e– c
d (t–)

∫ 


G(, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds, t ∈ [,  + τ].



Zhao and Gong Boundary Value Problems  (2015) 2015:19 Page 10 of 19

In the light of f ≤ M and

∂

∂t
G(t, s) ≤ (q – )tq–( – s)q– + (q – )(t – s)q–

�(q)
+

m–∑
i=

αi(q – )tq–


�(pi + q)
gi(ζi, s)

≤ 
�(q – )

+
m–∑
i=

αi(q – )

�(pi + q)

gi(ζi, s) � M′,

we have ‖(Av)′‖ ≤ M for some positive constant M. Thus, for –τ ≤ t < t ≤  + τ, we
have

∥∥(Av)(t) – (Av)(t)
∥∥ ≤

∫ t

t

∣∣(Av)′(s)
∣∣ds ≤ M(t – t) → , as t → t.

Therefore, for any ε > , there exists δ = δ(ε) >  which is independent of t, t, and v such
that ‖(Av)(t)–(Av)(t)‖ ≤ ε, whenever |t – t| ≤ δ. Thus, A(Q) is equicontinuous. In view
of the Ascoli-Arzela theorem, we can easily see that A : K → K is a completely continuous
operator. The proof is complete. �

Further we make the following assumptions for f (t, x, y):

(H) There exists a constant r >  such that  ≤ x ≤ r +‖v‖[–τ,],  ≤ y ≤ r +‖v‖[,+τ],
and  ≤ t ≤  implies f (t, x, y) < ρr, where ρ = ∫ 

 G(s) ds
.

(H) There exists a constant r >  such that σr ≤ x ≤ r, σr ≤ y ≤ r, and θ ≤ t ≤
–θ implies f (t, x, y) > ρr, where ρ = 

σ (θ )
∫ –θ
θ G(s) ds

, σ = minθ–τ≤t≤–θ–τ |σ (t)|, σ =
minθ+τ≤t≤–θ+τ |σ (t)|.

(H) f∞ = lim infx+y→+∞ mint∈[,]
f (t,x,y)

x+y = ∞.
(H) f ∞ = lim supx+y→+∞ maxt∈[,]

f (t,x,y)
x+y = .

(H) f = lim infx+y→ mint∈[,]
f (t,x,y)

x+y = ∞.
(H) f  = lim supx+y→ maxt∈[,]

f (t,x,y)
x+y = .

Theorem . Assume that (H), (H), and (H) are satisfied. If r > r > , then BVP (.)-
(.) has at least two positive solutions u and u such that

 < r < ‖u‖[,] < r < ‖u‖[,].

Proof Let A : K → K be the cone preserving completely continuous that is defined by
(.). Let �r = {v ∈ E : ‖v‖ < r}, then for any v ∈ K ∩ ∂�r , we get

 ≤ (v + v)(t – τ) ≤ ‖v‖ + ‖v‖[–τ,] = r + ‖v‖[–τ,],  ≤ t ≤ ,

 ≤ (v + v)(t + τ) ≤ ‖v‖ + ‖v‖[,+τ] = r + ‖v‖[,+τ],  ≤ t ≤ .

Thus, from (A) and (H), we have

‖Av‖ = ‖Av‖[,] = max
t∈[,]

(Av)(t)

= max
t∈[,]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds
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≤
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

< ρr

∫ 


G(s) ds = r = ‖v‖.

Therefore,

‖Av‖ < ‖v‖, v ∈ K ∩ ∂�r . (.)

Let �r = {v ∈ E : ‖v‖ < r}, then for any v ∈ K ∩ ∂�r , we have

r = ‖v‖ ≥ v(t – τ) ≥ σ (t – τ)‖v‖ ≥ σr, θ ≤ t ≤  – θ ,

r = ‖v‖ ≥ v(t + τ) ≥ σ (t + τ)‖v‖ ≥ σr, θ ≤ t ≤  – θ .

Thus, from (H) and (A) of Lemma ., we get

‖Av‖ = ‖Av‖[,] = max
t∈[,]

(Av)(t)

= max
t∈[,]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ min
t∈[θ ,–θ ]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (θ )
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (θ )
∫ –θ

θ

G(s)f
(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

= σ (θ )
∫ –θ

θ

G(s)f
(
s, v(s – τ), v(s + τ)

)
ds

> ρrσ (θ )
∫ –θ

θ

G(s) ds = r = ‖v‖.

So

‖Av‖ > ‖v‖, v ∈ K ∩ ∂�r . (.)

Choose L >  such that

(σ + σ)Lσ (θ )
∫ –θ

θ

G(s) ds > . (.)

From (H), there exists R >  such that

f (t, x, y) ≥ L(x + y), x, y ≥ , x + y ≥ R,  ≤ t ≤ . (.)

Choose

R > max

{
r,

R

 min{σ,σ}
}

.
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Let �R = {v ∈ E : ‖v‖ < R, R ≥ R}, then for any v ∈ K ∩ ∂�R, we have

v(t – τ) ≥ σ (t – τ)‖v‖ ≥ σR ≥ min{σ,σ}R >



R, θ ≤ t ≤  – θ ,

v(t + τ) ≥ σ (t + τ)‖v‖ ≥ σR ≥ min{σ,σ}R >



R, θ ≤ t ≤  – θ .

Then, from (.) and (.) we have

‖Av‖ = ‖Av‖[,] = max
t∈[,]

(Av)(t)

= max
t∈[,]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ min
t∈[θ ,–θ ]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (θ )
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (θ )
∫ –θ

θ

G(s)f
(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

= σ (θ )
∫ –θ

θ

G(s)f
(
s, v(s – τ), v(s + τ)

)
ds

≥ Lσ (θ )
∫ –θ

θ

G(s)
[
v(s – τ) + v(s + τ)

]
ds

≥ (σ + σ)RLσ (θ )
∫ –θ

θ

G(s) ds > R = ‖v‖.

Therefore,

‖Av‖ > ‖v‖, v ∈ K ∩ ∂�R. (.)

Applying Lemma . to (.) and (.) yields the result that A has a fixed point v ∈ K ∩
(�r \ �r ) with v(t) ≥ σ‖u‖ > , t ∈ [, ]. Similarly, Lemma . associated with (.)
and (.) shows that A has another fixed point v ∈ K ∩ (�R \ �r ) with v(t) ≥ σ‖u‖ > ,
t ∈ [, ], which means that u(t) = v(t) + v(t) and u(t) = v(t) + v(t) are two positive
solutions of BVP (.)-(.). Since

‖ui‖[,] = ‖vi + v‖[,] = ‖vi‖[,] = ‖Avi‖[,] = ‖Avi‖ = ‖vi‖, i = , ,

it follows that u(t) and u(t) satisfy

 < r < ‖u‖[,] = ‖v‖ < r < ‖v‖ = ‖u‖[,].

The proof is complete. �

Theorem . Assume that (H), (H), and (H) are satisfied. There exist constants R > r >
r > , then BVP (.)-(.) has at least two positive solutions u and u such that

 < r < ‖u‖[,] < r < ‖u‖[,].
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Proof Choose  < r < r < R, let �r = {v ∈ E : ‖v‖ < r, r < r}. For the same L >  satisfying
(.), (H) implies that

f (t, x, y) ≥ L(x + y), x, y ≥ , x + y ≤ r,  ≤ t ≤ . (.)

Then for any v ∈ K ∩ ∂�r , we have

r = ‖v‖ ≥ v(t – τ) ≥ σ (t – τ)‖v‖ ≥ σr, θ ≤ t ≤  – θ ,

r = ‖v‖ ≥ v(t + τ) ≥ σ (t + τ)‖v‖ ≥ σr, θ ≤ t ≤  – θ .

Then, from (.) and (.) we have

‖Av‖ = ‖Av‖[,] = max
t∈[,]

(Av)(t)

= max
t∈[,]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (θ )
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≥ σ (θ )
∫ –θ

θ

G(s)f
(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

= σ (θ )
∫ –θ

θ

G(s)f
(
s, v(s – τ), v(s + τ)

)
ds

≥ Lσ (θ )
∫ –θ

θ

G(s)
[
v(s – τ) + v(s + τ)

]
ds

≥ (σ + σ)rLσ (θ )
∫ –θ

θ

G(s) ds > r = ‖v‖.

Therefore,

‖Av‖ > ‖v‖, v ∈ K ∩ ∂�r . (.)

Applying Lemma . to (.) and (.) yields that A has a fixed point v ∈ K ∩ (�r \ �r)
with v(t) ≥ σ‖u‖ > , t ∈ [, ]. Similarly, Lemma . associated with (.) and (.) yields
the result that A has another fixed point v ∈ K ∩ (�R \ �r ) with v(t) ≥ σ‖u‖ > , t ∈
[, ]. This means that u(t) = v(t) + v(t) and u(t) = v(t) + v(t) are two positive solutions
of BVP (.)-(.). Since

‖ui‖[,] = ‖vi + v‖[,] = ‖vi‖[,] = ‖Avi‖[,] = ‖Avi‖ = ‖vi‖, i = , ,

it follows that u(t) and u(t) satisfy

 < r < ‖u‖[,] = ‖v‖ < r < ‖v‖ = ‖u‖[,].

The proof is complete. �
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Theorem . Assume that (H), (H), and (H) are satisfied. There exist constants R >
r > r > , then BVP (.)-(.) has at least two positive solutions u and u such that

 < r < ‖u‖[,] < r < ‖u‖[,].

Proof Choose  < r < r < R. By (H), for any  < ε < 

∫ 

 G(s) ds
, there exists R′ >  such that

f (t, x, y) ≤ ε(x + y), x, y ≥ , x + y ≥ R′,  ≤ t ≤ .

Putting

C � max
≤t≤

max
≤x,y,x+y≤R′

∣∣f (t, x, y)
∣∣ + ,

then

f (t, x, y) ≤ ε(x + y) + C, x, y ≥ ,  ≤ t ≤ .

Choose

R >
(
C + ε‖v‖

) ∫ 
 G(s) ds

 – ε
∫ 

 G(s) ds
.

Let �R = {v ∈ E : ‖v‖ < R, R ≥ max{r, R}}. Then, for any v ∈ K ∩ ∂�R, we have

‖Av‖ = ‖Av‖[,] = max
t∈[,]

(Av)(t)

= max
t∈[,]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≤
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≤
∫ 


G(s)

[
ε
(
(v + v)(s – τ) + (v + v)(s + τ)

)
+ C

]
ds

≤
∫ 


G(s)

[
ε

(‖v‖ + ‖v‖
)

+ C
]

ds

= εR
∫ 


G(s) ds +

(
C + ε‖v‖

)∫ 


G(s) ds < R = ‖v‖.

Therefore,

‖Av‖ < ‖v‖, v ∈ K ∩ ∂�R. (.)

Let �r = {v ∈ E : ‖v‖ < r, r < r}. By (H), for any  < ε < 

∫ 

 G(s) ds
, there exists  < r′ < r

such that

f (t, x, y) ≤ ε(x + y), x, y ≥ , x + y < r′,  ≤ t ≤ .
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Putting

C′ � max
≤t≤

max
≤x,y,r′≤x+y≤r

∣∣f (t, x, y)
∣∣ + ,

then

f (t, x, y) ≤ ε(x + y) + C′, x, y ∈ ∂�r ,  ≤ t ≤ .

Choose

r >
(
C′ + ε‖v‖

) ∫ 
 G(s) ds

 – ε
∫ 

 G(s) ds
.

Then, for any v ∈ K ∩ ∂�r , we have

‖Av‖ = ‖Av‖[,] = max
t∈[,]

(Av)(t)

= max
t∈[,]

∫ 


G(t, s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≤
∫ 


G(s)f

(
s, (v + v)(s – τ), (v + v)(s + τ)

)
ds

≤
∫ 


G(s)

[
ε
(
(v + v)(s – τ) + (v + v)(s + τ)

)
+ C′]ds

≤
∫ 


G(s)

[
ε

(‖v‖ + ‖v‖
)

+ C′]ds

= εr
∫ 


G(s) ds +

(
C′ + ε‖v‖

)∫ 


G(s) ds < r = ‖v‖.

So,

‖Av‖ < ‖v‖, v ∈ K ∩ ∂�r . (.)

Applying Lemma . to (.) and (.) yields the result that A has a fixed point v ∈ K ∩
(�r \ �r) with v(t) ≥ σ‖u‖ > , t ∈ [, ]. Similarly, from Lemma . associated with
(.) and (.) one derives that A has another fixed point v ∈ K ∩ (�R \ �r ) with v(t) ≥
σ‖u‖ > , t ∈ [, ]. This means that u(t) = v(t) + v(t) and u(t) = v(t) + v(t) are two
positive solutions of BVP (.)-(.). Since

‖ui‖[,] = ‖vi + v‖[,] = ‖vi‖[,] = ‖Avi‖[,] = ‖Avi‖ = ‖vi‖, i = , ,

it follows that u(t) and u(t) satisfy

 < r < ‖u‖[,] = ‖v‖ < r < ‖v‖ = ‖u‖[,].

This completes the proof. �
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We account for the control functions

ϕ(r) = max
{

f (t, x, y) : (t, x, y) ∈ [, ] × [, r + r] × [
, r + r′


]}

,

ψ(r) = min
{

f (t, x, y) : (t, x, y) ∈ [θ ,  – θ ] × [σr, r] × [σr, r]
}

,

where r = ‖v‖[–τ,], r′
 = ‖v‖[,+τ].

Theorem . Suppose that there exist two positive numbers ξ < ξ such that one of the
following conditions is satisfied:

(B) ϕ(ξ) < ρξ, ψ(ξ) > ρξ.
(B) ψ(ξ) > ρξ, ϕ(ξ) < ρξ.

Then BVP (.)-(.) has at least one positive solution u ∈ K such that

ξ < ‖u‖[,] < ξ.

Proof Because of the similarity of the proof, we prove only this theorem under condition
(B). By assumption (B), we have

f (t, x, y) ≤ ϕ(ξ) < ρξ, f (t, x, y) ≥ ψ(ξ) > ρξ,

which are the assumptions (H) and (H). By Theorem ., we find that A has a fixed point
v ∈ K ∩ (�ξ \ �ξ ), which means that (.)-(.) has at least one positive solution u and
ξ < ‖u‖[,] < ξ. This completes the proof. �

Similarly, we can obtain the existence of multiple positive solutions for BVP (.)-(.).

Theorem . Suppose that there exist three positive numbers ξ < ξ < ξ such that one of
the following conditions is satisfied:

(B) ϕ(ξ) < ρξ, ψ(ξ) > ρξ, ϕ(ξ) < ρξ.
(B) ψ(ξ) > ρξ, ϕ(ξ) < ρξ, ψ(ξ) > ρξ.

Then BVP (.)-(.) has at least two positive solutions u, u ∈ K such that

ξ < ‖u‖[,] < ξ < ‖u‖[,] < ξ.

Theorem . Suppose that there exist four positive numbers ξ < ξ < ξ < ξ such that one
of the following conditions is satisfied:

(B) ϕ(ξ) < ρξ, ψ(ξ) > ρξ, ϕ(ξ) < ρξ, ψ(ξ) > ρξ.
(B) ψ(ξ) > ρξ, ϕ(ξ) < ρξ, ψ(ξ) > ρξ, ϕ(ξ) < ρξ.

Then BVP (.)-(.) has at least three positive solutions u, u, u ∈ K such that

ξ < ‖u‖[,] < ξ < ‖u‖[,] < ξ < ‖u‖[,] < ξ.

Theorem . Suppose that there exist n +  positive numbers ξn+ < ξn < · · · < ξ < ξ such
that one of the following conditions is satisfied:
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(B) ϕ(ξk–) < ρξk–, ψ(ξk) > ρξk , k = , , . . . , [ n+
 ].

(B) ψ(ξk–) > ρξk–, ϕ(ξk) < ρξk , k = , , . . . , [ n+
 ].

Then BVP (.)-(.) has at least n positive solutions ui ∈ K (i = , , . . . , n) such that

ξi+ < ‖ui‖[,] < ξi.

4 Example
Consider the following four-point BVP of delayed nonlinear fractional differential equa-
tions:⎧⎨

⎩D


+u(t) + f (t, u(t – 

 ), u(t + 
 )), t ∈ [, ],

u() = u′() = , u() = (I



+u)( 
 ) + (I




+u)( 
 ),

(.)

where f (t, x, y) = (t+t+)
 + x+y

 ,  ≤ t ≤ , x, y ≥ , q = /, τ = 
 , τ = 

 , α = , α = ,
p = 

 , p = 
 , ζ = 

 , ζ = 
 , m = . Choosing θ = 

 , r = , r = 
 , r = r′

 = 
 .

By a simple calculation, we get

σ = min


 ≤t≤ 


σ (t) = σ

(




)
=


√


,

,

σ = min

 ≤t≤ 



σ (t) = σ

(



)
=


√


,

,


 =  –
∑

i=

αiζ
pi+q–
i �(q)

�(pi + q)
≈ ..

By Lemmas . and . and the aid of a computer, we obtain

ρ =
(∫ 


G(s) ds

)–

=

(∫ 



s( – s)q–

�(q – )
ds +

m–∑
i=

αi


�(pi + q)

∫ 


gi(ζi, s) ds

)–

=

(
q – 

�(q + )
+

m–∑
i=

αi


�(pi + q)

(∫ 


ζ

pi+q–
i ( – s)q– ds –

∫ ζi


(ζi – s)pi+q– ds

))–

=

(
q – 

�(q + )
+

m–∑
i=

αiζ
pi+q–
i (pi + q( – ζi))

�(pi + q + )q

)–

=
(




√
π

+




+





)–

≈ .

and

ρ =
(

σ (θ )
∫ –θ

θ

G(s) ds
)–

=
(

σ

(



))–
(∫ 






s( – s)q–

�(q – )
ds +

m–∑
i=

αi


�(pi + q)

∫ 





gi(ζi, s) ds

)–

= 

(


√
 – 

,
√

π
+

m–∑
i=

αi


�(pi + q)
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×
(∫ 






ζ
pi+q–
i ( – s)q– ds –

∫ ζi




(ζi – s)pi+q– ds
))–

= 

(


√
 – 

,
√

π
+

m–∑
i=

αi


�(pi + q)

[
ζ

pi+q–
i (q – )

qq –
(ζi – 

 )pi+q

pi + q

])–

= 
(


√

 – 
,

√
π

+

√

 – 



+


√
 – 

,


)–

≈ ..

Therefore, for (t, x, y) ∈ [ 
 , 

 ] × [ 
√


, , 

 ] × [ 
√


, , 

 ], we have

f (t, x, y) =
(t + t + )


+

x + y


≥ f

(



,


√


,
,


√


,

)

> f
(




, , 
)

= . > ρr ≈ ..

For (t, x, y) ∈ [, ] × [, 
 ] × [, 

 ], we obtain

f (t, x, y) =
(t + t + )


+

x + y


≤ f

(
,




,



)
= . < ρr ≈ .

and

f∞ = lim inf
x+y→+∞ min

t∈[,]

f (t, x, y)
x + y

= lim inf
x+y→+∞ min

t∈[,]


x + y

(
(t + t + )


+

x + y



)

= lim inf
x+y→+∞


x + y

(



+
x + y



)

≥ lim inf
x+y→+∞


x + y

(



+
(x + y)



)
= ∞.

Thus (H)-(H) hold. With the use of Theorem ., BVP (.) has at least two positive
solutions u and u such that  < 

 < ‖u‖[,] <  < ‖u‖[,].
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