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Abstract
This paper is concerned with the following Kirchhoff-type problems with a
nonsmooth potential: –(a + b

∫
� |∇u|2 dx)�u ∈ ∂ j(x,u) for a.a. x ∈ �, u = 0 on ∂�.

Using the nonsmooth mountain pass theorem, the nonsmooth local linking theorem,
and the nonsmooth fountain theorem, we establish the existence and multiplicity of
solutions for the problem. All this is based on the nonsmooth critical point. Some
recent results in the literature are generalized and improved.
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multiple solutions

1 Introduction
In recent years, various Kirchhoff-type problems have been widely discussed by lots of
authors. The Kirchhoff mode is an extension of the classical D’Alembert’s wave equation
for free vibrations of elastic strings, which takes into account the changes in length of
the string produced by transverse vibrations. Some interesting studies of the Kirchhoff
equations can be found in [–] and references therein. Especially, there exist lots of papers
focused on studying the following Kirchhoff-type equations:

⎧
⎨

⎩

–(a + b
∫
�

|∇u| dx)�u = f (x, u) in �,

u|∂� = ,
(.)

where f is a continuous function. For example, Perera and Zhang [] derived nontrivial
solutions for problem (.) with the help of the Yang index and critical groups. In [], Chen
et al., by employing fibering map methods and the Nehari manifold, discussed problem
(.) with concave and convex nonlinearities and obtained the existence of multiple pos-
itive solutions. Recently, Liang et al. in [] firstly studied the bifurcation phenomena of
problem (.) with the right-hand side of the first equation replaced by νf (x, u) by using
the topological degree and variational methods.

As is well known, many free boundary problems and obstacle problems may be re-
duced to partial differential equations with discontinuous nonlinearities. Among these
problems, we have the seepage surface problem [], the obstacle problem [], and the
Elenbaas equation [] and so on. Based on these results, the theory of nonsmooth varia-
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tional analysis has been developed rapidly. For a comprehensive understanding, we refer
to the monographs of [–].

Inspired by the above results, a natural question arises: what will happen when the po-
tential function f is discontinuous in problem (.)? This is the main point of interest in
our paper to study. For this purpose, we consider the following Kirchhoff-type problems
with a nonsmooth potential (hemivariational inequality):

⎧
⎨

⎩

–(a + b
∫
�

|∇u| dx)�u ∈ ∂j(x, u) for a.a. x ∈ �,

u =  on ∂�,
(.)

where � ⊆ R
N is a bounded domain with a C-boundary ∂� (N = , , ), a, b > . By

∂j(x, u) we denote the generalized subdifferential of u �→ j(x, u).

Remark . If we let a =  and b = , then problem (.) turns into
⎧
⎨

⎩

–�u ∈ ∂j(x, u) for a.a. x ∈ �,

u =  on ∂�.
(.)

Problem (.) is a well-known semilinear elliptic equation with a nonsmooth potential and
there exist many results focused on discussing problem (.); see [–] and references
therein.

To the best of our knowledge, there exist few results on studying the Kirchhoff-type
problems with nonsmooth potentials. We will face at least two difficulties in treating prob-
lem (.). Firstly, the presence of discontinuities probably leads to no solution of problem
(.) in general. Therefore, in order to overcome this difficulty, our approach is based on
the nonsmooth critical point theorem for locally Lipschitz functions due to Chang [].
Specifically, we consider such a function f , which is locally essentially bounded measurable
and we fill the discontinuity gaps of f , replacing f by an interval ∂j(x, u) = [f –(x, u), f +(x, u)],
where

f –(x, u) = lim
δ→+

ess inf
|t–u|<δ

f (x, t), f +(x, u) = lim
δ→+

ess sup
|t–u|<δ

f (x, t).

Secondly, it is well known that the classic (AR)-condition (see (J)) guarantees that every
(PS)c sequence is bounded. However, in our Theorems . and ., we abandon the classic
(AR)-condition and have to find new conditions (see (J)-(J)) to ensure that every (PS)c

sequence is bounded.
In our article, we need the following assumptions:

(J) j : � ×R → R is a function, and j(·, u) is measurable for all u ∈ R and j(x, ·) is locally
Lipschitz for almost all x ∈ �;

(J) for almost all x ∈ �, all u ∈ R and all ω ∈ ∂j(x, u), we have

|ω| ≤ c
(|u|p– + 

)
for some  < p < ∗ =

⎧
⎨

⎩

, if N = ,

∞, if N = , 

for some c > ;
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(J) for almost all x ∈ �, we have

lim sup
|u|→+∞

j(x, u(x))
|u(x)| ≤ α,

where α ≤ b
c


, and c satisfies

∫
�

|u| dx ≤ c
(

∫
�

|∇u| dx);
(J) there exist q >  and M >  such that for almost all x ∈ �, all |u| ≥ M and all ω ∈

∂j(x, u), we have  < qj(x, u) ≤ ωu;
(J) there exists δ > , such that a

 λku + b
c


λ

ku ≤ j(x, u) ≤ a
 λk+u + b

c


u, for a.a. x ∈ �

and all |u| ≤ δ, k ∈N (λk denotes the variational characterization (see (.) and (.)));
(J) j(x, u) = j(x, –u) ∀x ∈ �, u ∈ R;
(J) there exists M >  such that for a.a. x ∈ �, all |u| ≥ M and all ω ∈ ∂j(x, u), we have

j(x, u) ≤ uω;
(J) lim|u|→+∞ j(x,u)

u → +∞ uniformly for almost all x ∈ �;
(J) lim|u|→+∞(ωu – j(x, u)) → +∞ as |u| → +∞, and there exist σ >  + 

∗– and a posi-
tive constant l such that |ω|σ ≤ l(ωu – j(x, u))|u|σ for |u| large and for a.a. x ∈ � and
ω ∈ ∂j(x, u);

(J) limx→
j(x,u)
|u| ≤ λ

 a uniformly for a.a. x ∈ �.

Our main results are the following:

Theorem . If hypotheses (J), (J), (J), (J), and j(x, ) =  for a.a. x ∈ � are satisfied,
then problem (.) has at least one nontrivial solution.

Theorem . If hypotheses (J), (J), (J), (J), and j(x, ) =  for a.a. x ∈ � are satisfied,
then problem (.) has at least two nontrivial solutions.

Motivated by [], we obtain the existence of infinitely solutions for problem (.).

Theorem . If hypotheses (J), (J), (J), and (J) are satisfied, then problem (.) has
infinitely many large energy solutions.

Theorem . If hypotheses (J) and (J) are used in place of (J), then the conclusion of
Theorem . holds.

Theorem . If hypothesis (J) is used in place of (J), then the conclusion of Theorem .
holds.

Remark . (i) It is not difficult to see that there exist many functions, which, respec-
tively, satisfy Theorem . and Theorem .. For example, for simplicity, we drop the x-
dependence

j(u) =

⎧
⎨

⎩


 c|u| 

 if |u| ≥ ,

 c|u| if |u| < ,
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where  < c ≤ 
λa.

j(u) =

⎧
⎨

⎩

θ|u| 
 if |u| < ,

θ|u| if |u| ≥ ,

for some θ > . Then it is easy to check that j(u) satisfies Theorem . and j(u) satisfies
Theorem ..

(ii) Since we do not assume j(x, u) >  in hypothesis (J), the assumption (J) cannot
imply (J). So Theorem . and Theorem . are two different theorems. Furthermore,
there exist functions j(x, u), which satisfy all hypotheses of Theorem . and Theorem .,
while they do not satisfy hypothesis (J). For example

j(u) =

⎧
⎨

⎩


 |u| 

 if |u| ≥ ,

 |u| if |u| < .

Then j(u) satisfies all conditions of Theorem . and Theorem ., while it does not satisfy
Theorem ..

(iii) There exist lots of functions which satisfy all assumptions of Theorem ., while
they do not satisfy (J) and (J), for example, for small ε > , let

j(u) =

⎧
⎨

⎩

|u|+ε + ε|u| sin( |u|ε
ε

) if |u| ≥ ,

[ + ε sin( 
ε
)]|u| if |u| < .

Then j does not satisfy (J) and (J). This means that Theorem . is different from The-
orem . and Theorem ..

This paper is divided into three sections. In Section , we recall some basic definitions
and propositions which will be used in the sequel. In Section , we give the proof of the
main results.

2 Preliminaries
In this section we state some definitions and lemmas, which will be used throughout this
paper. First of all, we give some definitions: (X,‖ · ‖) will denote a (real) Banach space
and (X∗,‖ · ‖∗) its topological dual. While un → u (respectively, un ⇀ u) in X means the
sequence {un} converges strongly (respectively, weakly) in X. As usual, ∗ denotes the crit-
ical Sobolev exponent, i.e., ∗ = N

N– if  < N , and ∗ = +∞ if  ≥ N . We denote by | · |p
the usual Lp-norm. The n-dimensional Lebesgue measure of a set E ∈ R

n is denoted by
|E|. Since � is a bounded domain, X ↪→ Lr(�) continuously for r ∈ [, ∗], compactly for
r ∈ [, ∗), and there exists cr > , such that

|u|r ≤ cr‖u‖, ∀u ∈ X.

Definition . A function I : X → R is locally Lipschitz if for every u ∈ X there exist a
neighborhood U of u and L >  such that for every ν,η ∈ U

∣
∣I(ν) – I(ω)

∣
∣ ≤ L‖ν – η‖.
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Definition . Let I : X → R be a locally Lipschitz functional, u, ν ∈ X: the generalized
derivative of I in u along the direction ν ,

I(u;ν) = lim sup
ω→u,τ→+

I(ω + τν) – I(ω)
τ

.

It is easy to see that the function ν �→ I(u;ν) is sublinear, continuous and so is the
support function of a nonempty, convex, and ω∗-compact set ∂I(u) ⊂ X∗, defined by

∂I(u) =
{

u∗ ∈ X∗ :
〈
u∗,ν

〉
X ≤ I(u;ν) for all v ∈ X

}
.

If I ∈ C(X), then

∂I(u) =
{

I ′(u)
}

.

Clearly, these definitions extend those of the Gâteaux directional derivative and gradient.

A point x ∈ X is a critical point of I , if  ∈ ∂I(u). It is easy to see that, if u ∈ X is a
local minimum of I , then  ∈ ∂I(u). For more on locally Lipschitz functionals and their
subdifferential calculus, we refer the reader to Clarke [].

Definition . If I : X → R is a locally Lipchitz function, then we say that I satisfies the
nonsmooth C-condition, if the following holds:

Every sequence {un} ⊂ X, such that

I(un) → c and
(
 + ‖un‖X

)
mI(un) → ,

where mI(un) = infu∗
n∈∂I(x,un) ‖u∗

n‖X∗ , has a strongly convergent subsequence.

In the following, we introduce the eigenvalues of the negative Laplacian with a Dirichlet
boundary condition. By {un}n≥ we denote the corresponding eigenfunctions. We know
that {un}n≥ ⊂ C

(�) is an orthonormal basis of L(�) and an orthogonal basis of H
(�).

Also λn → +∞ as n → +∞. λ is isolated and simple, and u ∈ C
(�) is the only eigenfunc-

tion with constant sign. Furthermore, we derive the following variational characterization
of {λn}n≥:

λ = min

{ |∇u|
|u|

: u ∈ H
(�), u �= 

}

=
|∇u|
|u|

. (.)

For n ≥ , we have

λn = min

{ |∇u|
|u|

: u ∈ H
(�), u ⊥ {u, . . . , un–}, u �= 

}

= max

{ |∇u|
|u|

: u ∈ H
(�), u ∈ span{uk}n

k=, u �= 
}

=
|∇un|
|un|

. (.)

The following properties can be found in [].
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(p)  < λ < λ < · · · < λn.
(p) |∇u| ≥ λ|u| for all u ∈ H

(�).
(p) There exists an eigenfunction u corresponding to λ such that u ∈ int(C

(�̄)) as well
as |u|L(�) = .

Next, we list the nonsmooth mountain pass theorem.

Theorem . (Nonsmooth mountain pass theorem []) If there exist u ∈ X and r > ,
such that ‖u‖X > r,

max
{

I(), I(u)
} ≤ inf‖u‖=r

I(u)

and I satisfies the nonsmooth C-condition with

c = inf
γ∈�

sup
t∈[,]

I
(
γ (t)

)
,

where � = {γ ∈ C([, ]; X) : γ () = ,γ () = u}, then c ≥ inf‖u‖=r I(u) and c is a critical
value of I . Moreover, if c = inf{I(u) : ‖u‖ = r}, then there exists a critical point u of I with
I(u) = c and ‖u‖ = r (i.e., KI

c ∩ ∂Br �= ∅).

Recently, Kandilakis et al. [] proved a multiplicity result under the so-called local link-
ing conditions. The result is a nonsmooth version of result due to Brézis and Nirenberg
[].

Theorem . If X is a reflexive Banach space, X = Y ⊕V with dim Y < +∞, I : X →R is a
locally Lipschitz function which is bounded below and satisfies the nonsmooth C-condition;
we have I() = , infX I <  and there exists r > , such that

⎧
⎨

⎩

I(u) ≤  if u ∈ Y ,‖u‖ ≤ r,

I(u) ≥  if u ∈ V ,‖u‖ ≤ r
(local linking condition),

then I has at least two nontrivial critical points.

In the following, we introduce a nonsmooth version fountain theorem which was proved
by Dai []. The smooth fountain theorem was established by Bartsh in [, ].

Definition . Assume that the compact group G acts diagonally on V k

g(v, . . . , vk) = (gv, . . . , gvk),

where V is a finite dimensional space. The action of G is admissible if every continuous
equivariant map ∂U → V k–, where U is an open bounded invariant neighborhood of 
in V k , k ≥ , has a zero.

Example . The antipodal action G = Z on V = R is admissible.
We consider the following situation:
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(A) The compact group G acts isometrically on the Banach space X =
⊕

m∈N Xm, the space
Xm are invariant and there exists a finite dimensional space V such that, for every
m ∈N, Xm � V and the action of G on V is admissible.

In the theorem, we will use the following notations:

Yk =
k⊕

m=

Xm, Zk =
∞⊕

m=k

Xm,

Bk =
{

u ∈ Yk : ‖u‖ ≤ ρk
}

, Nk =
{

u ∈ Zk : ‖u‖ = rk
}

,

(.)

where ρk > rk > .

The following lemma is very important when we use the fountain theorem to prove
infinite solutions for problem (.).

Lemma . (see []) If  ≤ p < ∗, then we have

βk = sup
u∈Zk ,‖u‖=

|u|p → , k → ∞.

Theorem . Under assumption (A), let I : X →R be an invariant locally Lipshitz func-
tional. If for every k ∈N, there exists ρk > rk >  such that

(A) ak = maxu∈Yk ,‖u‖=ρk I(u) ≤ ;
(A) bk = infu∈Zk ,‖u‖=rk I(u) → ∞, k → ∞;
(A) I satisfies the nonsmooth (PS)c condition for every c > ,

then I has an unbounded sequence of critical values.

In this paper we let X = H
(�) be the Sobolev space equipped with the norm ‖u‖ =

|∇u|.
We say that u is a weak solution to problem (.), if u ∈ X and

(
a + b‖u‖)

∫

�

∇u · ∇v dx –
∫

�

ωv dx = ,

for all v ∈ X and ω ∈ ∂j(x, u) a.e. on �.
Seeking a weak solution of problem (.) is equivalent to finding a critical point of the

energy function I : X →R for problem (.), defined by

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j
(
x, u(x)

)
dx, ∀u ∈ X. (.)

I is Lipschitz continuous on bounded sets, hence it is locally Lipschitz (see [], p.).

3 Proof of the main results
In order to give the proofs of our main results, we firstly prove the following lemma.

Lemma . If (J) and (J) hold, assume that {un}n≥ ⊆ X is a bounded sequence with
mI(un) → , then {un}n≥ ⊆ X has a convergent sequence.
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Proof Since {un} ⊂ X is bounded and the embedding X ↪→ Lr(�) is compact for all r ∈
[, ∗), passing to a subsequence, we may assume that

un ⇀ u in X, un → u in Lr(�), un → u(x) for a.a. x ∈ �,
∣
∣un(x)

∣
∣ ≤ k(x) for a.a. x ∈ � and all n ≥ , with k ∈ Lr(�)+.

(.)

Note that

〈
u∗

n – u∗, un – u
〉

=
(

a + b
∫

�

|∇un| dx
)∫

�

∇un · ∇(un – u) dx

–
(

a + b
∫

�

|∇u| dx
)∫

�

∇u · ∇(un – u) dx –
∫

�

(ωn – ω)(un – u) dx

=
(

a + b
∫

�

|∇un| dx
)∫

�

∣
∣∇(un – u)

∣
∣ dx – b

(∫

�

|∇u| dx –
∫

�

|∇un| dx
)

·
∫

�

∇u · ∇(un – u) dx –
∫

�

(ωn – ω)(un – u) dx

≥ min{a, }‖un – u‖ – b
(∫

�

|∇u| dx –
∫

�

|∇un| dx
)∫

�

∇u · ∇(un – u) dx

–
∫

�

(ωn – ω)(un – u) dx,

where u∗ ∈ ∂I(u), u∗
n ∈ ∂I(un), ω ∈ ∂j(x, u) and ωn ∈ ∂j(x, un) for almost all x ∈ �, then we

obtain

min{a, }‖un – u‖ ≤ 〈
u∗

n – u∗, un – u
〉
+ b

(∫

�

|∇u| dx –
∫

�

|∇un| dx
)

·
∫

�

∇u · ∇(un – u) dx +
∫

�

(ωn – ω)(un – u) dx. (.)

From (.) and the boundedness of {un} in X, we have

b
(∫

�

|∇u| dx –
∫

�

∇|un| dx
)

·
∫

�

∇u · ∇(un – u) dx → , (.)

as n → +∞. Furthermore, from (J) and the Hölder inequality

∫

�

(ωn – ω)(un – u) dx ≤
∫

�

|ωn – ω||un – u|dx

≤
∫

�

c
(|un|p– + |u|p– + 

)|un – u|dx

≤ c|�| 
 |un – u| + c|un – u|p

(|un|p–
p + |u|p–

p
)

≤ c|�| 
 |un – u| + c|un – u|p,
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where c, c are some positive constants. Since |un –u| →  and |un –u|p →  as n → +∞,
we infer that

∫

�

(ωn – ω)(un – u) dx → , (.)

as n → +∞. Note that

〈
u∗

n – u∗, un – u
〉 →  as n → +∞. (.)

Hence, from (.)-(.), we deduce that ‖un – u‖ → . This means that {un}n≥ ⊆ X has a
convergent sequence. �

Remark If we use ( + ‖un‖)mI(un) →  in place of mI(un) → , the proposition remains
true.

In the following, we will use the nonsmooth mountain pass theorem to prove Theo-
rem ..

Proof of Theorem .
Claim . I satisfies the nonsmooth C-condition.
Let {un}n≥ ⊆ X such that

∣
∣I(un)

∣
∣ ≤ M for all n ≥  and

(
 + ‖un‖

)
mI(un) →  as n → ∞, (.)

where M > . From Lemma ., we only need to prove that {un}n≥ ⊆ X is a bounded
sequence. It follows from (.) that

–
〈
u∗

n, un
〉

= –
(

a + b
∫

�

|∇un| dx
)∫

�

|∇un| dx +
∫

ωnun dx ≤ εn, (.)

and

qa


∫

�

|∇un| dx +
qb


‖un‖ –
∫

�

qj
(
x, un(x)

)
dx ≤ qM, (.)

where εn → , u∗
n ∈ ∂I(un), ωn ∈ ∂j(x, un) a.a. on �. Adding (.) and (.), we obtain

a
(

q


– 
)

‖un‖ + b
(

q


– 
)

‖un‖ +
∫

�

(
ωnun – qj

(
x, un(x)

))
dx ≤ εn + qM. (.)

By virtue of (J), we have

a
(

q


– 
)

‖un‖ + b
(

q


– 
)

‖un‖ +
∫

|un|<M

(
ωnun – qj

(
x, un(x)

))
dx ≤ εn + qM. (.)

Since a, b > , q > , from (.) and (J), we deduce that

a
(

q


– 
)

‖un‖ + b
(

q


– 
)

‖un‖ ≤ M, (.)
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for some M >  and all n ≥ , then from (.), we deduce that

{un}n≥ ⊆ X is bounded.

Hence, from Lemma ., we find that I satisfies the nonsmooth C-condition.
By virtue of (J) and (J), there exists c >  such that

j(x, u) ≤ a

λ|u| + c|u|p

for almost all x ∈ �, and all u ∈ R, then we obtain

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j(x, u) dx

≥ a

‖u‖ –

aλ


|u| +

b


‖u‖ – c

∫

�

|u|p dx

≥ b


‖u‖ – ccp
p‖u‖p,

where cp
p satisfies |u|pp ≤ cp

p‖u‖p. Since p > , set r = ( b
ccp

p
)p–, then for all  < r < r we

have

inf
{

I(u) : ‖u‖ = r
}

> . (.)

Claim . There exists u ∈ X with ‖u‖ > r >  such that I(u) < .
Let N be the Lebesgue-null set outside which hypotheses (J), (J), and (J) hold. Let

x ∈ � \ N and u ∈R with |u| ≥ M. We set

h(x, τ ) = j(x, τu), τ ≥ .

It is obvious that h(x, ·) is locally Lipschitz and from the nonsmooth chain rule (see Clark
[], p.), we obtain

∂h(x, τ ) ⊆ ∂u(x, τu)u,

thus

τ∂h(x, τ ) ⊆ ∂u(x, τu)τu.

By virtue of hypothesis (J), we obtain

τh′(x, τ ) ≥ qh(x, τ )

for all x ∈ � \ N and a.a. τ ≥ . Consequently

q
τ

≤ h′(x, τ )
h(x, τ )



Yuan and Huang Boundary Value Problems  (2015) 2015:36 Page 11 of 18

for all x ∈ � \ N and a.a. τ ≥ . Integrating from  to τ > , we derive

ln τ
q
 ≤ ln

h(x, τ)
h(x, )

⇒ τ
q
 h(x, ) ≤ h(x, τ).

Hence we have shown that for x ∈ � \ N, |u| ≥ M > , and τ ≥ , we have

τ qj(x, u) ≤ j(x, τu). (.)

Then for all u ≥ M, due to (.), we have

j(x, u) = j
(

x,
u

M
M

)

≥
(

u
M

)q

j(x, M). (.)

For all u ≤ –M, we obtain

j(x, u) = j
(

x,
u

–M
(–M)

)

≥
( |u|

M

)q

j(x, –M). (.)

From hypothesis (J) we can find c >  such that

∣
∣j(x, u)

∣
∣ ≤ c. (.)

for all x ∈ � \ N and all |u| ≤ M. Together with (.)-(.), we infer that

j(x, u) ≥ c|u|q – c, (.)

for a.a. x ∈ �, all u ∈R and some c, c > . From (.), for v ∈ X \ {} and t > , we obtain

I(tv) =
at


‖v‖ +

bt


‖v‖ –

∫

�

j(x, tv) dx

≤ at


‖v‖ +

bt


‖v‖ – ctq

∫

�

|v|q dx + c|�|.

Note that q > , which implies I(tv) → –∞ as t → +∞. So we can choose a t large enough
such that I(tv) < , and set u = tv, then u is the desired element.

Define

� =
{
γ ∈ C

(
[, ], X

)
: γ () = ,γ () = u

}
, c = inf

γ∈�
sup

t∈[,]
I
(
γ (t)

)
,

then c ≥ inf‖u‖=r I(u). From I() = , Claims , , (.), and the nonsmooth mountain pass
theorem, we infer that there exists a point u ∈ X such that

I(u) = c ≥ inf
{

I(u) : ‖u‖ = r
}

> , (.)

 ∈ ∂I(u). (.)
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From (.) it immediately follows that u �= . By (.), on account of [] (p.) we thus
have

(
a + b‖u‖)

∫

�

∇u · ∇v dx =
∫

�

ωv dx ∀v ∈ X,ω ∈ ∂j(x, u) a.a. on �,

which evidently means

⎧
⎨

⎩

–(a + b
∫
�

|∇u| dx)�u = ω for a.a. x ∈ �,

u =  on ∂�,

where ω ∈ ∂j(x, u) a.a. on �. Hence the function u ∈ X turns out to be a nontrivial solution
for problem (.). �

Proof of Theorem . We consider the orthogonal decomposition X = Y ⊕ V , where Y =
Ek =

⊕k
i= E(λi), E(λi) be the eigenvalue space (i = , , . . .) and V = E⊥

k .
Claim . I is coercive.
From (J) and (J), we have

j
(
x, u(x)

) ≤ α
∣
∣u(x)

∣
∣ + c (.)

for almost all x ∈ � and some c > . Then

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j
(
x, u(x)

)
dx

≥ a

‖u‖ +

b


‖u‖ – α

∫

�

∣
∣u(x)

∣
∣ dx – c|�|

≥ a

‖u‖ +

b


‖u‖ – αc
‖u‖ – c|�|

≥ a

‖u‖ – c|�| (

see (J)
)
.

This means that I(u) is coercive and so it is bounded below and satisfies the nonsmooth
(PS)c.

Claim . I satisfies a local linking at  with respect to (Y , V ).
For u ∈ V , (J) and (J) mean that

j(x, u) <
a

λk+|u| +

b
c


|u| + c|u|p, (.)

for some c >  and a.a. x ∈ �, u ∈R. Then

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j
(
x, u(x)

)
dx

≥ a

‖u‖ +

b


‖u‖ –
a

λk+

∫

�

|u| dx –
b

c


∫

�

|u| dx – c

∫

�

|u|p dx

≥ b

‖u‖ – ccp

p‖u‖p,
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where cp
p satisfies

∫
�

|u|p dx ≤ cp
p(

∫
�

|∇u| dx). Since p > , letting r = ( b
ccp

p
)p–, for all

 < r < r, we have I(u) ≥ . For u ∈ Y , from (J), there exists r >  with ‖u‖ ≤ r = δ
μ

.
When |u| ≤ μ‖u‖ ≤ δ.

j(x, u) ≥ a

λku +

b
c


λ

k|u|.

Since dimYk = k < +∞, then

I(u) ≤ a

‖u‖ +

b


‖u‖ –
a

λk|u| –

b
c


λ

k|u| ≤ .

Choosing r = min{r, r}, we find that I satisfies a local linking at  with respect to (Y , V ).
If infu∈X I(u) <  = I(), from Theorem ., we obtain two nontrivial critical points

û, û ∈ X of I , and hence two nontrivial solutions of problem (.).
If infu∈X I(u) = , then all y ∈ Y \ {} with ‖y‖ ≤ r satisfy

I(y) = inf
y∈X

I(u)

and so all are the nontrivial critical points of I , and hence we find a continuum of nontrivial
solutions of problem (.). In both cases, by standing regularity theory, these solutions
belong in C

(�̄). �

In the following, we choose an orthonormal basis (ej) of X and we define Xj = Rej. We
will use the nonsmooth fountain theorem with the antipodal action of Z to prove Theo-
rem ..

Proof of Theorem . From the proof of Theorem ., we have already checked that I(u)
satisfies the nonsmooth (PS)c. Note that I is an even functional. We only need to prove
that for k large enough there exist ρk > rk >  such that

(A) ak = maxu∈Yk ,‖u‖=ρk I(u) ≤ ,
(A) bk = infu∈Zk ,‖u‖=rk I(u) → ∞, as k → +∞.

For u ∈ Yk (see (.)), from Claim  in Theorem , there exist M > , α > , and α > 
such that

j(x, u) ≥ α|u|q – α (.)

for a.a. x ∈ � and all u ∈R. From (.), we have

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j(x, u) dx

≤ a

‖u‖ +

b


‖u‖ – α|u|qq – α|�|. (.)

Noting that dimYk < +∞, so all norms of Yk are equivalent. Then, from (.), we can find
ρk >  large enough such that

ak = max
u∈Yk ,‖u‖=ρk

I(u) ≤ . (.)
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For u ∈ Zk , letting βk = supu∈Zk ,‖u‖= |u|p, k = , , . . . , from Lemma . and the mean value

theorem, we have βk →  as k → ∞. Set rk = (b–αpβ
p
k )


–p for u ∈ Zk with ‖u‖ = rk . By

virtue of (J), we derive

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j(x, u) dx

≥ a

‖u‖ +

b


‖u‖ – α

∫

�

|u|p dx – c|�|

≥ a

‖u‖ +

b


‖u‖ – αβ
p
k ‖u‖p – c|�|

=
a

(
b–αpβ

p
k
) 

–p +
(




–

p

)
(
b–) p

–p
(
αpβ

p
k
) 

–p – c|�|

for some α, c > . Since p >  and βk →  as k → +∞, we obtain

bk = inf
u∈Zk ,‖u‖=rk

I(u) → +∞ as k → +∞. (.)

So from (.), (.), and noting that I(u) satisfies the nonsmooth (PS)c, by the nons-
mooth fountain theorem, we deduce Theorem .. �

Proof of Theorem . From the proof of Theorem ., we need to prove that any (PS)c

sequence is bounded and the condition (A) is satisfied. For u ∈ Yk , by virtue of (J) and
(J), we know that for any c > , there exist constants M > , |u| ≥ M, and c >  such
that

j(x, u) ≥ c|u| – c

for a.a. x ∈ �, all u ∈R. Then

I(u) =
a

‖u‖ +

b


‖u‖ –
∫

�

j(x, u) dx

≤ a

‖u‖ +

b


‖u‖ – c|u| + c|�|.

Since all norms are equivalent on the finitely dimensional space Yk , we can find some θ > 
such that

I(u) ≤ a

‖u‖ –

(

cθ –
b


)

‖u‖ + c|�|. (.)

Let c > b
θ

. Then, from (.), we can find ρk >  large enough such that

ak = max
u∈Yk ,‖u‖=ρk

I(u) ≤ . (.)

So the condition (A) holds.
Next, we show that I satisfies the nonsmooth (PS)c on X. Let {un}n≥ ⊆ X such that

∣
∣I(un)

∣
∣ ≤ M for all n ≥  and mI(un) →  as n → +∞. (.)
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Recalling that u∗
n ∈ ∂I(un) a.a. on �, from (.), we obtain

–
〈
u∗

n, un
〉

= –
(

a + b
∫

�

|∇un| dx
)∫

�

|∇un| dx +
∫

�

ωnun dx ≤ εn (.)

and

a
∫

�

|∇un| dx + b‖un‖ –
∫

�

j(x, un) dx ≤ M, (.)

where ωn ∈ ∂j(x, un) a.a. on �. Adding (.) and (.), we have

a‖un‖ +
∫

�

(
ωnun – j(x, un)

)
dx ≤ εn + M.

Then in a similar way as used in the proof of Theorem ., we can infer that {un}n≥ ⊆ X
is bounded in X. From Lemma ., we find that I satisfies the nonsmooth (PS)c. Hence we
complete the proof of Theorem .. �

Proof of Theorem . From the proofs of Theorem . and Theorem ., it is necessary to
show that every (PS)c sequence {un}n≥ ⊂ X of I is bounded in X. Let {un}n≥ ⊆ X be a
sequence, such that

∣
∣I(un)

∣
∣ ≤ M and mI(un) → .

Remember that u∗
n ∈ ∂I(un) a.e. on � and mI(un) = ‖u∗

n‖X∗ for n ≥ . From Lemma ., we
only need to show that {xn}n≥ ⊂ X is bounded in X. Supposing that {un}n≥ ⊆ X is not
bounded in X, we may assume that ‖un‖ → +∞ as n → +∞, and we have

M +  + ‖un‖ ≥ I(un) –
〈
u∗

n, un
〉

= a‖un‖ +
∫

�

(
ωnun – j(x, un)

)
dx

≥ min{, a}‖un‖ +
∫

�

(
ωnun – j(x, un)

)
dx, (.)

where ωn ∈ ∂j(x, un(x)) a.a. on �. From (.), for n large enough, we obtain

M +  ≥ min{, a}‖un‖ – ‖un‖ +
∫

�

(
ωnun – j(x, un)

)
dx

≥
∫

�

(
ωnun – j(x, un)

)
dx. (.)

Let

yn =
un

‖un‖ ∀n ≥ .

Then ‖yn‖ = . Note that

〈u∗
n, un〉

‖un‖ =
a‖un‖

‖un‖ +
b‖un‖

‖un‖ –
∫
�

ωnun dx
‖un‖ ,
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where ωn ∈ ∂j(x, un(x)) a.e. on �. Since 〈u∗
n, un〉 ≤ ‖u∗

n‖X∗‖un‖ and ‖u∗
n‖X∗ → , we have

lim sup
n→+∞

∫
�

ωnun dx
‖un‖ = b,

and

lim inf
n→+∞

∫
�

ωnun dx
‖un‖ = b,

for ωn ∈ ∂j(x, un(x)) a.a. on �, then we obtain

lim
n→+∞

∫
�

ωnun dx
‖un‖ = b. (.)

In the following, we will prove

lim
n→+∞

∫
�

ωnun dx
‖un‖ = , (.)

where ωn ∈ ∂j(x, un(x)) a.a. on �. For convenience, we set H(x, u) = ωnun –j(x, un) for ωn ∈
∂j(x, un(x)) a.a. x ∈ �. h(ρ) = inf{H(x, u) : x ∈ �, |u| ≥ ρ}, �n(α,β) = {x ∈ � : α ≤ |un(x)| <
β} and Eβ

α = inf{H(x,u)
|u| : x ∈ �,α ≤ |u| < β}. Then from (J) and (J), we have h(ρ) → +∞

as ρ → +∞ and for large α > , h(α) > , Eβ
α > , and

H(x, un) ≥ Eβ
α |un|, ∀x ∈ �n(α,β).

By virtue of (J) and (.), for large n and α with α < β , we have

M +  ≥
∫

�n(,α)
H(x, un) dx +

∫

�n(α,β)
H(x, un) dx +

∫

�n(β ,+∞)
H(x, un) dx

≥
∫

�n(,α)
H(x, un) dx + Eβ

α

∫

�n(α,β)
|un| dx + h(β)

∣
∣�n(β , +∞)

∣
∣.

Then

M + 
‖un‖ ≥ 

‖un‖

∫

�n(,α)
H(x, un) dx

+
Eβ

α

‖un‖

∫

�n(α,β)
|un| dx + h(β)

|�n(β , +∞)|
‖un‖ . (.)

From (J), we know that 
‖un‖

∫
�n(,α) H(x, un) dx is bounded. Hence from (.) and noting

that limβ→+∞ h(β) → +∞, we derive that


‖un‖

∫

�n(α,β)
H(x, un) dx and


‖un‖

∫

�n(β ,+∞)
H(x, un) dx
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are bounded and limβ→+∞ |�n(β ,+∞)|
‖un‖ =  uniformly in n. Without loss of generality, we

assume that ∗ < +∞, therefore from the Hölder inequality, for any r ∈ [, ∗]


‖un‖

∫

�n(β ,+∞)
|yn|r dx ≤ 

‖un‖ r
∗

(∫

�n(β ,+∞)

(|yn|r
) ∗

r dx
) r

∗ ∣
∣
∣
∣
|�n(β , +∞)|

‖un‖

∣
∣
∣
∣

∗–r
∗

≤ cr
∗

‖un‖ r
∗

∣
∣
∣
∣
|�n(β , +∞)|

‖un‖

∣
∣
∣
∣

∗–r
∗

→ 

as β → +∞ uniformly in n.
Since ‖un‖ → +∞, we can find a positive integral number N such that ‖un‖ ≥  if n >

N. Setting r = σ
σ– , and noting that σ >  + 

∗– , we obtain r ∈ (, ∗] and σ = r
r– . By virtue

of condition (J), we have

∣
∣
∣
∣

∫

�n(β ,+∞)

ωnun

‖un‖ dx
∣
∣
∣
∣ ≤

∫

�n(β ,+∞)

|ωn|
‖un‖|un| · y

n
‖un‖ dx

≤
[


‖un‖

∫

�n(β ,+∞)

( |ωn|
|un|

)σ

dx
] 

σ
[


‖un‖

∫

�n(β ,+∞)
|yn|r dx

] 
r

≤
[


‖un‖

∫

�n(β ,+∞)
lH(x, un) dx

] 
σ
[


‖un‖

∫

�n(β ,+∞)
|yn|r dx

] 
r

→  (.)

as β → +∞ uniformly in n and ωn ∈ ∂j(x, un) a.a. on �. Furthermore, from (J), we have

∣
∣
∣
∣

∫

�n(,α)

ωnun

‖un‖ dx
∣
∣
∣
∣ ≤

∫

�n(,α)

c(α)|yn|
‖un‖ dx →  (.)

as n → +∞, ωn ∈ ∂j(x, un) a.a. on �. c(α) is a positive constant, and


‖un‖

∣
∣
∣
∣

∫

�n(α,β)
ωnun dx

∣
∣
∣
∣ ≤

∫

�n(α,β)

c(α,β)|yn|
‖un‖ dx →  (.)

as n → +∞, ωn ∈ ∂j(x, un) a.a. on �. Then from hypothesis (J) and (.)-(.), we ob-
tain

b = lim
n→+∞

∫
�

ωnun dx
‖un‖ ≤ lim

n→+∞

∣
∣
∣
∣

∫

�n(,α)

ωnun

‖un‖ dx
∣
∣
∣
∣ + lim

n→+∞


‖un‖

∣
∣
∣
∣

∫

�n(α,β)
ωnun dx

∣
∣
∣
∣

+ lim
n→+∞

∣
∣
∣
∣

∫

�n(β ,+∞)

ωnun

‖un‖ dx
∣
∣
∣
∣ = ,

i.e., b = ; a contradiction to the fact b > . Hence {un}n≥ ⊆ X is a bounded sequence.
From Lemma ., we find that {un}n≥ satisfies (PS)c. Hence we complete the proof of
Theorem .. �
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