
Dai Boundary Value Problems  (2015) 2015:49 
DOI 10.1186/s13661-015-0307-7

R E S E A R C H Open Access

Existence of multi-valued solutions with
asymptotic behavior of parabolic
Monge-Ampère equation
Limei Dai*

*Correspondence:
lmdai@wfu.edu.cn
School of Mathematics and
Information Science, Weifang
University, Weifang, Shandong
261061, China

Abstract
In this paper, we extend the results of multi-valued solutions of elliptic
Monge-Ampère equation to parabolic Monge-Ampère equation. We use the Perron
method to prove the existence of multi-valued solutions with asymptotic behavior at
infinity of parabolic Monge-Ampère equation. Moreover, we prove that the
multi-valued solution is continuous in the whole space.
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1 Introduction
We consider the multi-valued solutions of the parabolic Monge-Ampère equation

–ut det
(
Du

)
= , (.)

where u = u(x, t) is convex in x and nonincreasing in t, x ∈ R
n, t ∈ R, and Du = D

xu
denotes the Hessian of u with respect to the variable x. The parabolic equation (.) was
first introduced by Krylov [] together with the other parabolic versions of elliptic Monge-
Ampère equation; see [] for a complete description and related results. Because of its
importance in stochastic theory, Krylov further discussed (.) in []. It is also relevant in
the study of deformation of surfaces by Gauss-Kronecker curvature [] and in a maximum
principle for parabolic equations []. Tso [] pointed out that (.) is the most appropriate
parabolic version of the elliptic Monge-Ampère equation det(Du) = f in the proof of the
Aleksandrov-Bakelman maximum principle of second order parabolic equations.

There is a vast literature on the parabolic Monge-Ampère equation (.); see [, –] etc.
In particular, Gutiérrez and Huang [] obtained a generalization of a theorem by Calabi.
Wang and Wang [] proved the existence of viscosity solutions by the approximation pro-
cedure and the nonlinear perturbation method, and they also obtained the regularity of
the viscosity solutions.

From the theory of analytic functions, we know that the typical two dimensional exam-
ples of multi-valued harmonic functions are

u(z) = Re
(
z


k
)
, z ∈C\{},

u(z) = Arg(z), z ∈C\{}
© 2015 Dai; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13661-015-0307-7
mailto:lmdai@wfu.edu.cn


Dai Boundary Value Problems  (2015) 2015:49 Page 2 of 12

and

u(z) = Re
(√

(z – )(z + )
)
, z ∈C\{±},

where C is the plural set.
There are many results as regards the multi-valued solutions. Evans [] and Caffarelli

[] studied the multi-valued harmonic functions. Evans [] has proved that the conduc-
tor potential of a surface with minimal capacity is a double-valued harmonic function.
In [], Caffarelli proved the Hölder continuity of the multi-valued harmonic functions.
Jin et al. [–] employed a level set method for the computation of multi-valued geo-
metric solutions to general quasilinear PDEs and multi-valued physical observables to the
semiclassical limit of the Schrödinger equations. In , Caffarelli and Li [] investi-
gated the multi-valued solutions of the Monge-Ampère equations. They first introduced
the geometric situation of the multi-valued solutions and then obtained the existence,
boundedness, regularity and the asymptotic behavior at infinity of the multi-valued vis-
cosity solutions. Recently, the author and Bao [] investigated the multi-valued solutions
of the Hessian equations. The author [] also studied the finitely valued and infinitely
valued solutions to the parabolic Monge-Ampère equation –ut det(Du) = f . For more de-
tailed introduction of the multi-valued solutions and other models in nonlinear PDEs, see
[, ] and []. In this paper, we extend some results of the multi-valued solutions in []
to the parabolic Monge-Ampère equation –ut det(Du) = f .

The geometric situation of the multi-valued solutions to the elliptic equations can be
found in []. The geometric situation of the multi-valued solutions to the parabolic equa-
tions is the following. Let n ≥ , Rn+

T = R
n × (, T], T > , � ⊂ R

n be a bounded strictly
convex domain with smooth boundary ∂�. Suppose � is homeomorphic in R

n to an
n dimensional closed disc, i.e., there exists a homeomorphism ψ : Rn → R

n such that
ψ(�) is an n dimensional closed disc. Let �t = � × {t},  < t < T . Then �t divides
Q = � × (, T] into two parts, denoted as Q+ = � × (t, T] and Q– = � × (, t]. We use
the convention that going through �t from Q– to Q+ denote the positive direction. Let
� = ∂� × {t}, Z be the set of integers, and

G =
(
R

n+
T \�) ×Z

denote a covering of R
n+
T \� with the following standard parameterization: fixing an

(x∗, t∗) ∈ R
n+
T \� and connecting (x∗, t∗) by a smooth curve in R

n+
T \� to a point (x, t) ∈

R
n+
T \�. If the curve goes through �t , m ≥  times in the positive direction, then we ar-

rive at (x, t, m) in G. If the curve goes through �t , m ≥  times in the negative direction,
then we arrive at (x, t, –m) in G.

For k ∈ Z, k ≥ , we introduce an equivalence relation ‘∼k ’ in G as follows: (x, t, m) and
(x̃, t̃, j) in G are ‘∼k ’ equivalent if x = x̃, t = t̃ and m – j is an integer multiple of k. Let

Gk = G/ ∼k ,

denote the k-sheet cover of Rn+
T \�.

The distance in Gk is defined as follows: For any (x, t, m), (x̃, t̃, j) ∈ Gk , suppose l((x, t, m),
(x̃, t̃, j)) is a smooth curve in Gk that connects the points (x, t, m) and (x̃, t̃, j), and let
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|l((x, t, m), (x̃, t̃, j))| denote the length of the curve. Define

d
(
(x, t, m), (x̃, t̃, j)

)
= inf

l

∣∣l
(
(x, t, m), (x̃, t̃, j)

)∣∣,

where the inf is taken over all smooth curves connecting (x, t, m) and (x̃, t̃, j). Then
d((x, t, m), (x̃, t̃, j)) is a distance.

Definition . We say a function u is continuous at (x, t, m) in Gk if

lim
d((x,t,m),(x̃,t̃,j))→

u(x̃, t̃, j) = u(x, t, m),

and u ∈ C(Gk) if for any (x, t, m) ∈ Gk , u is continuous at (x, t, m).
Similarly we say a function u ∈ C,(Gk) if Di

xDj
tu (i + j ≤ ) is continuous at (x, t, m) for

any (x, t, m) ∈ Gk .

Definition . A function u ∈ C(Q) is called parabolically convex in Q, if u is convex in
x and nonincreasing in t.

Our purpose of this paper is to study the existence of multi-valued viscosity solutions
with asymptotic behavior of the parabolic Monge-Ampère equation (.). We shall extend
the results of the elliptic equations to the parabolic equation (.). The main result of this
paper is the existence theorem of multi-valued solutions with prescribed asymptotic be-
havior at infinity.

Theorem . Let n ≥ , k ≥  and � = B() = {x : |x| ≤ }. Then for any cm ∈R,  ≤ m ≤ k,
there exist some constant β and a locally parabolically convex viscosity solution u ∈ C(Gk)
of

–ut det
(
Du

)
= , (x, t, m) ∈ Gk , (.)

satisfying

lim sup
|x|→∞

[
|x|n–

∣∣
∣∣u(x, t, m) –

(
–t +



|x| + cm

)∣∣
∣∣

]
< ∞, (.)

lim
(x,t)→(x̄,t)

u(x, t, m) = β , (x̄, t) ∈ �. (.)

This paper is arranged as follows. In Section , we give some lemmas and in Section ,
we shall prove Theorem ..

2 Preliminaries
For the reader’s convenience, we first give the definition of the viscosity solutions to the
parabolic Monge-Ampère equation

–ut det
(
Du

)
=  in Gk . (.)

See also [].
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Definition . A function u(x, t, m) ∈ C(Gk) is called a viscosity subsolution of (.), if
u(x, t, m) is locally parabolically convex, and for any σ ∈ C,(Gk), any (x̃, t̃) ∈ R

n+
T \�, sat-

isfying

u(x̃, t̃, m) = σ (x̃, t̃, m), u(x, t, m) ≤ σ (x, t, m), (x, t, m) ∈ Gk , t ≤ t̃,

we have

–σt(x̃, t̃, m) det
(
Dσ (x̃, t̃, m)

) ≥ .

A function u(x, t, m) ∈ C(Gk) is called a viscosity supersolution of (.), if u(x, t, m) is
locally parabolically convex, and for any σ ∈ C,(Gk) (Dσ (x̃, t̃, m) > ), any (x̃, t̃) ∈R

n+
T \�,

satisfying

u(x̃, t̃, m) = σ (x̃, t̃, m), u(x, t, m) ≥ σ (x, t, m), (x, t, m) ∈ Gk , t ≤ t̃,

we have

–σt(x̃, t̃, m) det
(
Dσ (x̃, t̃, m)

) ≤ .

A function u(x, t, m) ∈ C(Gk) is called a viscosity solution of (.), if u(x, t, m) ∈ C(Gk)
is both a viscosity subsolution and a viscosity supersolution of (.).

Let Q = � × (, T], ∂pQ = ∂� × (, T) ∪ � × {} be the parabolic boundary of Q, and
SQ = ∂� × (, T) be the side boundary of Q, SQ = ∂� × [, T]. The following lemmas and
remark can be found in [].

Lemma . Let �′ ⊂⊂ R
n be a bounded strictly convex domain,  ≤ t̄ < T , D′ = �′ × (t̄, T],

f ∈ C(Rn+
T ). Assume that u ∈ C(Rn+

T ), v ∈ C(D′) satisfy respectively

–ut det
(
Du

) ≥ f (x, t) in R
n+
T ,

–vt det
(
Dv

) ≥ f (x, t) in D′

and

u = v on ∂pD′,

u ≤ v on D′.
(.)

Set

w(x, t) =

{
u(x, t) in R

n+
T \D′,

v(x, t) in D′.

Then w ∈ C(Rn+
T ) and it satisfies in the viscosity sense

–wt det
(
Dw

) ≥ f (x, t) in R
n+
T .
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Remark . If t̄ = , then we only need u = v on SD′ in condition (.).

Lemma . Let �′ ⊂R
n be a bounded, strictly convex domain, ∂�′ ∈ C, Q′ = �′ × (, T],

SQ′ = ∂�′ × [, T], w(x, t) ∈ C,(Q′) and for x ∈ �
′, wt(x, t) = –. Then there exists some

constant C, depending only on n, w, Q′, such that, for any η ∈ ∂�′,  ≤ λ ≤ T , there exists
x̄(η,λ) ∈R

n satisfying

∣∣x̄(η,λ)
∣∣ ≤ C

and

pη,λ(x, t) < w(x, t) on Q′\{η,λ}, (.)

where

pη,λ(x, t) = w(η,λ) +


[∣∣x – x̄(η,λ)

∣
∣ –

∣
∣η – x̄(η,λ)

∣
∣] – (t – λ), (x, t) ∈ R

n+
T .

Lemma . Suppose that f ∈ C(Q) is nonnegative. Let S be a nonempty family of a sub-
solution of

–ut det
(
Du

)
= f in Q (.)

and

u(x, t) = sup
{

v(x, t)|v ∈ S
}

for (x, t) ∈ Q,

then u is a viscosity subsolution of (.).

3 Existence of multi-valued solutions with asymptotic behavior
In this section, we will prove Theorem ..

Proof We divide the proof into five steps.
Step . We construct a viscosity subsolution of (.).
Let

φ(x, t) = –t +


|x|, (x, t) ∈R

n+.

By Lemma ., for any η ∈ ∂�,  ≤ λ ≤ T , there exists x̄(η,λ) ∈R
n, |x̄(η,λ)| < ∞ such that

pη,λ(x, t) < φ(x, t) on Q\{η,λ},

where

pη,λ(x, t) = φ(η,λ) +


(∣∣x – x̄(η,λ)

∣∣ –
∣∣η – x̄(η,λ)

∣∣) – (t – λ), (x, t) ∈R
n+
T .

Then for any η ∈ ∂�,  ≤ λ ≤ T ,

pη,λ(η,λ) = φ(η,λ),

pη,λ(x, t) ≤ φ(x, t) on Q
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and

–(pη,λ)t det
(
D(pη,λ)

)
=  in R

n+
T .

Define

p(x, t) := sup
η∈∂�

≤λ≤T

pη,λ(x, t) in R
n+
T .

Then p satisfies

p(x, t) ≤ φ(x, t) on Q, (.)

p(x, t) = φ(x, t) on SQ, (.)

and in the viscosity sense,

–pt det
(
Dp

) ≥  in R
n+
T .

Set

W (x, t) =

{
φ(x, t) in Q,
p(x, t) in R

n+
T \Q.

By (.), W ∈ C(Rn+
T ). According to (.) and Remark ., W is parabolically convex and

satisfies in the viscosity sense

–Wt det
(
DW

) ≥  in R
n+
T . (.)

Fix some R >  such that

� ⊂⊂ BR . (.)

Let R = R. For a > , define

va(x, t) := –t + inf
BR ×(,T]

W +
∫ |x|

R

(
sn + a

) 
n ds, (x, t) ∈R

n+
T .

Then

Dijva =
(|x|n + a

) 
n –

[(
|x|n– +

a
|x|

)
δij –

axixj

|x|
]

, |x| > .

In virtue of the fact that for any constants a and b, the eigenvalues of the symmetric matrix
of the form axT x + bI are

λ
(
axT x + bI

)
=

(
a|x| + b, b, . . . , b

)
,
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then we have

Dva =
(
Rn + a

) 
n –

⎛

⎜⎜⎜
⎝

Rn–  · · · 
 Rn– + a

R · · · 
· · · · · · · · · · · ·
  · · · Rn– + a

R

⎞

⎟⎟⎟
⎠

,

where R = |x|. So va is parabolically convex and satisfies

–(va)t det
(
Dva

)
= , |x| > ,  ≤ t ≤ T .

Moreover, from the definition of R,

va(x, t) ≤ inf
BR ×(,T]

W +
∫ R



R

(
sn + a

) 
n ds

< inf
BR ×(,T]

W

≤ W (x, t), |x| ≤ R,  ≤ t ≤ T . (.)

Fix some R > R and choose a >  such that for a ≥ a,

va(x, t) > –t + inf
BR ×(,T]

W +
∫ R

R

(
sn + a

) 
n ds

≥ W (x, t), |x| = R,  ≤ t ≤ T .

It is easy to see that

va(x, t) = –t + inf
BR ×(,T]

W +
∫ |x|

R

s
((

 +
a
sn

) 
n

– 
)

ds +
∫ |x|

R

s ds

= –t + inf
BR ×(,T]

W +
∫ |x|

R

s
((

 +
a
sn

) 
n

– 
)

ds +


|x| – R



= –t +


|x| + cm + inf

BR ×(,T]
W +

∫ ∞

R

s
((

 +
a
sn

) 
n

– 
)

ds – cm

– R
 –

∫ ∞

|x|
s
((

 +
a
sn

) 
n

– 
)

ds, (x, t) ∈R
n+
T .

Let

μ(m, a) = inf
BR ×(,T]

W +
∫ ∞

R

s
((

 +
a
sn

) 
n

– 
)

ds – cm – R
.

As a result,

va(x, t) = –t +


|x| + cm + μ(m, a) – O

(|x|–n), when |x| → ∞. (.)
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For a ≥ a and  ≤ m ≤ k, define

um,a(x, t) =

{
max{W (x, t), va(x, t)} – μ(m, a), |x| ≤ R,  ≤ t ≤ T ,
va(x, t) – μ(m, a), |x| ≥ R,  ≤ t ≤ T .

From (.), we have

um,a(x, t) = –t +


|x| + cm – O

(|x|–n), when |x| → ∞.

By the definition of W and (.), (.), (.),

um,a(x, t) = –t +



– μ(m, a), (x, t) ∈ �.

Because μ(m, a) is continuous and monotonic increasing in a and for a → ∞, μ(m, a) →
∞,  ≤ m ≤ k, we can choose a ≥ a sufficiently large such that for a ≥ a,

W (x, t) – μ(m, a) = W (x, t) – inf
BR ×(,T]

W –
∫ ∞

R

s
((

 +
a
sn

) 
n

– 
)

ds + cm + R


≤ –T + cm ≤ –t +


|x| + cm, |x| ≤ R,  ≤ t ≤ T .

Clearly,

va(x, t) – μ(m, a) ≤ –t +


|x| + cm, a ≥ a, (x, t) ∈R

n+
T .

Therefore

um,a(x, t) ≤ –t +


|x| + cm, a ≥ a, (x, t) ∈R

n+
T .

By Lemma ., um,a ∈ C(Rn+
T ) is parabolically convex and satisfies in the viscosity sense

–(um,a)t det
(
Dum,a

) ≥  in R
n+
T .

It is clear that there exists a continuous function a(m)(a),  ≤ m ≤ k, satisfying

lim
a→∞ a(m)(a) = ∞,

and, for  ≤ m ≤ k,

μ
(
m, a(m)(a)

)
= μ(, a).

Thus there exists a ≥ a such that for a ≥ a, a(m)(a) > a,  ≤ m ≤ k. Set a()(a) = a, and
define

ua(x, t, m) = um,a(m)(a)(x, t), (x, t, m) ∈ Gk .
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Then for a ≥ a, ua ∈ C(Gk) is locally parabolically convex and satisfies

ua(x, t, m) = –t +


|x| + cm – O

(|x|–n), |x| → ∞,  ≤ t ≤ T ,

ua(x, t, m) ≤ –t +


|x| + cm, (x, t) ∈R

n+
T \�,

lim
(x,t)→(x̄,t)

ua(x, t, m) = –t +



– μ(, a), (x̄, t) ∈ �,

(.)

and in the viscosity sense,

–(ua)t det
(
Dua

) ≥ , (x, t, m) ∈ Gk .

Step . We define the Perron solution of (.).
For a ≥ a, let Sa denote the set of locally parabolically convex functions v ∈ C(Gk)

which can be extended to � and satisfy

–vt det
(
Dv

) ≥ , (x, t, m) ∈ Gk ,

lim sup
(x,t)→(x̄,t)

v(x, t, m) ≤ –t +



– μ(, a), (x̄, t) ∈ �,

v(x, t, m) ≤ –t +


|x| + cm, (x, t) ∈ R

n+
T \�,  ≤ m ≤ k.

Apparently, ua ∈ Sa and so Sa �= ∅. Define

ua(x, t, m) := sup
{

v(x, t, m)|v ∈ Sa
}

, (x, t, m) ∈ Gk .

Step . We prove that ua is a viscosity solution of (.).
By the definition of ua and Lemma ., ua is a viscosity subsolution of (.). We only

need to prove that ua is a viscosity supersolution of (.). For any (x̃, t̃) ∈R
n+
T \�, fix some

r >  such that  < t̃ – r < t̃ < t̃ + r ≤ T and Qr = Br(x̃) × (t̃ – r, t̃ + r] ⊂ Q\�. Then the
lifting of Qr into Gk is the union of k disjoint cylinders denoted as {Q(i)

r }k
i=. In each Q(i)

r , by
Theorem B in [], the Dirichlet problem

– ϕt det
(
Dϕ

)
=  in Q(i)

r ,

ϕ = ua on ∂pQ(i)
r

(.)

has a parabolically convex viscosity solution ϕ ∈ C(Q(i)
r ). According to the comparison

principle, we have

ua ≤ ϕ in Q(i)
r . (.)

Define

h(x, t, m) =

{
ϕ(x, t, m) in Q(i)

r ,
ua(x, t, m) in Gk\{Q(i)

r }k
i=.
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Next we prove that h ∈ Sa. Then ua ≥ h in Gk and so ua ≥ ϕ in Q(i)
r . By (.), ua = ϕ in Q(i)

r .
Consequently by the arbitrariness of (x̃, t̃), we know that ua is a viscosity solution of (.).

From Lemma ., h is a viscosity subsolution of (.). In order to prove h ∈ Sa, we only
need to prove

ϕ ≤ –t +


|x| + cm in Q(i)

r . (.)

In fact, we have

–ϕt det
(
Dϕ

)
=  = –gt det

(
Dg

)
in Q(i)

r ,

ϕ = ua ≤ g on ∂pQ(i)
r ,

where

g(x, t, m) = –t +


|x| + cm.

From the comparison principle,

ϕ ≤ g on Q(i)
r .

That is,

ϕ ≤ –t +


|x| + cm.

Thus (.) holds.
Step . We prove that (.) holds.
By the definition of ua,

ua ≤ ua ≤ –t +


|x| + cm.

From (.), we have for |x| → ∞,

–t +


|x| + cm – O

(|x|–n) ≤ ua ≤ –t +


|x| + cm + O

(|x|–n).

Therefore (.) holds.
Step . We prove that ua satisfies (.).
Because ua ∈ Sa and

lim
(x,t)→(x̄,t)

ua = –t +



– μ(, a),

then

lim inf
(x,t)→(x̄,t)

ua(x, t, m) ≥ –t +



– μ(, a), (x̄, t) ∈ �. (.)
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In the following, we prove

lim sup
(x,t)→(x̄,t)

ua(x, t, m) ≤ –t +



– μ(, a), (x̄, t) ∈ �. (.)

Let v ∈ Sa, (x̄, t) ∈ �, and (x, t) ∈ N (x̄, t), N (x̄, t) be the neighborhood of (x̄, t). Sup-
pose (xi, t) ∈N (x̄, t) and xi → x̄, then by the convexity of v in x, we have, for some constant
C,

v(x, t, m) – v(xi, t, m) ≤ C‖x – xi‖.

Then

v(x, t, m) ≤ v(xi, t, m) + C‖x – xi‖.

Thus

ua(x, t, m) ≤ v(xi, t, m) + C‖x – xi‖.

Sending i to infinity, we have

ua(x, t, m) ≤ –t +



– μ(, a) + C‖x – x̄‖.

It follows that (.) holds. Choose β = –t + 
 – μ(, a), then (.) is true with this β .

Theorem . is proved. �
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