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Abstract
In this paper the inverse scattering problem is considered for a version of the
one-dimensional Schrödinger equation with turning point on the half-line (0,∞). The
scattering data of the problem is defined and the fundamental equation is derived.
With the help of the derived fundamental equation, in terms of the scattering data,
the potential is recovered uniquely.
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1 Introduction and preliminaries
1.1 Introduction
Inverse problems of spectral analysis consist in recovering operators from their spectral
characteristics. Such problems often appear in mathematics, mechanics, physics, elec-
tronics, geophysics, meteorology, and other branches of the natural sciences. Inverse prob-
lems also play an important role in solving nonlinear evolution equations in mathematical
physics. Interest in this subject has been increasing permanently because of the appear-
ance of new important applications, and nowadays the inverse problem theory is devel-
oped intensively all over the world. The greatest success in spectral theory in general, and
in particular in inverse spectral problems, has been achieved for the Sturm-Liouville op-
erator y := –y′′ + q(x)y, which also is called the one-dimensional Schrödinger operator.

The main results on inverse spectral problems appeared in the second half of the th
century. We mention here the works by R Beals, G Borg, LD Faddeev, MG Gasymov,
IM Gelfand, BM Levitan, N Levinson, VA Marchenko, and others (see [] for details). An
important role in the inverse spectral theory for the Sturm-Liouville operator was played
by the transformation operator method (see [, ] and the references therein).

At present, other effective methods for solving inverse spectral problems have been cre-
ated; among them we point out the method of spectral mappings connected with ideas of
the contour integration method. This method seems to offer perspective for inverse spec-
tral problems. The created methods allowed one to solve a number of important problems
in various branches of the natural sciences.

The inverse scattering theory on the half-line and on the line was studied in [–], and
others. In [–] KR Mamedov studied the inverse scattering theory on the half-line with
spectral parameter contained in the boundary condition. Lately, there grew interest in the
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investigation of the boundary value problem by numerical methods; e.g. [] presented an
approximate construction of the Jost function for some Sturm-Liouville boundary value
problem in the case ρ(x) =  by means of the collocation method; in addition, [] is an
application of spectral analysis of one-dimensional Schrödinger operators in a magnetic
field. Also [, ] are applications of the discontinuous wave speed problem in a nonho-
mogeneous medium as in our case.

In the last  years there appeared many new areas for applications of inverse Sturm-
Liouville problems, among them boundary value problems with discontinuity conditions
inside the interval are connected with discontinuous material properties.

Many further applications were connected with the differential equation of the form
y′′ + q(x)y = r(x)y with turning points when the function r(x) has zeros and/or changes
sign. For example, we have turning points connected with physical situations in which
zeros correspond to the limit of motion of a wave mechanical particle bound by a poten-
tial field. Turning points appear also in elasticity, optics, geophysics, and other branches
of natural sciences. Moreover, a wide class of differential equations with Bessel-type sin-
gularities and their perturbations can be reduced to differential equations having turn-
ing points; further inverse problems for equations with turning points and singularities
help one to study blow-up solutions for some nonlinear integrable evolution equations of
mathematical physics (see []).

Inverse problems of the Sturm-Liouville equation with turning points and singularities
have been studied in [–], and other works.

The aim of the present paper is to investigate the inverse scattering problem on the half-
line [,∞) for some version of the one-dimensional Schrödinger equation with turning. In
the case of ρ(x) = , the inverse problem of scattering theory for (.) with boundary con-
dition not containing a spectral parameter was completely solved by Marchenko [, ],
Levitan [, ], Aktosun [], and Aktosun and Weder []. The discontinuous version
of ρ was studied by Gasymov and Levitan [, ], Darwish [], and Gasymov and the
author [, ]. In these papers, the solution of the inverse scattering problem on the half-
line [,∞) by using the transformation operator was reduced to the solution of two inverse
problems on the intervals [, a] and [a,∞). In the case ρ �=  the inverse scattering problem
was solved by the author, Guseinov, and Pashaev [, ] by using the new non-triangular
representation of the Jost solution of (.). It turns out that in this case the discontinu-
ity of the function ρ(x) strongly influences the structure of the representation of the Jost
solution and the fundamental equation of the inverse problem.

The direct and inverse problem of (.) with y()–hy() =  (see [, ]) has been solved
earlier by the so-called spectral distribution function, while the problem (.) with y() = 
has been studied in the works [, ] by the inverse scattering method. Furthermore,
the inverse scattering problem of the one-dimensional Schröodinger’s eigenvalue problem
with a discontinuous coefficient was studied when y() =  and y′() =  [, ] and [].
It should be mentioned that the spectrum of the boundary value problem (.)-(.) has
been previously investigated in [] when ρ(x) >  and the boundary condition y() = 
holds.

The present paper is organized as follows. Section  is an introduction and preliminar-
ies in which we demonstrate some historical and scientific survey to inverse scattering
problem. We introduce, from [], the basic definitions and results that are needed in the
subsequent investigation. In addition, the scattering data for the boundary value problem
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(.)-(.) are defined and some of its spectral properties are proved. In Section , the main
integral equation of the inverse scattering problem is derived, by its scattering data. Finally,
Section  is devoted to a proof of the uniqueness of both the main integral equation and
the solution of the inverse scattering problem.

1.2 Preliminaries
Consider the initial value problem

–y′′ + q(x)y = ηρ(x)y,  ≤ x < ∞, (.)

y′() – hy() = , h > , (.)

where

ρ(x) =

{
–;  ≤ x ≤ ,
;  < x < ∞,

(.)

q(x) is a finite real valued function which satisfies

∫ ∞


( + x)

∣∣q(x)
∣∣dx < ∞, (.)

and η is a complex spectral parameter. In [] the authors completely solved the direct
scattering problem of the problem (.)-(.), so that, following [] we state the main
definitions and results that are needed in the subsequent investigations.

The totality of the quantities

{
S(η),ηk , mk , k = , , . . .

}
(.)

is called the scattering data of the problem (.)-(.). Thus, the scattering data completely
determines the behavior of the normed eigenfunctions of the problem (.)-(.). Here S(η)
is the scattering function, ηk = iχk , η

k the eigenvalues and mk the normalizing numbers of
the problem (.)-(.), where

S(η) =
f ′(, –η) – hf (, –η)

f ′(,η) – hf (,η)
, (.)

where f ′(,η) – hf (,η) =  for Reη �= . From Lemmas . and . of [], the function
S(η) is continuous on the real line –∞ < η < ∞ and admits the properties S(η) = S(–η),
|S(η)| = , –∞ < η < ∞. The eigenvalues η

n = (iχn), χn > , n = , , . . . , and the normaliz-
ing numbers mn < , n = , , . . . , satisfy the asymptotic formulas

ηn = iχn = i
[
π

(
n +




)
–  +

co

nπ
+ o

(

n

)]
, co =


π

∫ 


q(t) dt, (.)

mn = –e–χn

{
 +

c

n
+ ◦

(

n

)}
, (.)

where

c =
h + 

π
+


π

∫ 


q(t) dt +


π

∫ ∞


q(t) dt.
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For all Reη �=  we have the following equality:

iηϕ(x,η)
f ′(,η) – hf (,η)

= f (x, –η) – S(η)f (x,η), (.)

where ϕ(x,η) is the solution of the problem (.)-(.) (ϕ(,η) = , ϕ′(,η) = h), and the
scattering function S(η) is given by (.) and satisfies the properties

S(η) = S(–η),
∣∣S(η)

∣∣ = , –∞ < η < ∞. (.)

In the following lemma we evaluate the asymptotic formula of the scattering function S(η).

Lemma . For –∞ < η < ∞, |η| → ∞, the scattering function S(η) satisfies the asymptotic
formula

S(η) = So(η) + ©
(


η

)
, (.)

where

So(η) =
fo(, –η)
fo(,η)

= e–iη coshη – i sinhη

coshη + i sinhη
. (.)

Proof By virtue of (.) in [], for Imη > , |η| → ∞,

f ′(,η) – hf (,η) = –iη fo(,η) + ©(
e– Imη+|Reη|), (.)

where fo(,η) = eiη(coshη + i sinhη), (.)

from which, in the special case for –∞ < η < ∞, |η| → ∞ we have

f ′(,η) – hf (,η) = –iη fo(,η)
[

 + ©
(

e|η|

ηfo(,η)

)]
. (.)

On the other hand, it is easy to see that

∣∣fo(,η)
∣∣ ≥ e|η|

√


, (.)

from (.) and (.) we deduce, for –∞ < η < ∞, |η| → ∞, that

f ′(,η) – hf (,η) = –iη fo(,η)
[

 + ©
(


η

)]
,

from which, by substitution into (.), the proof is completed. �

2 Formulation of the inverse scattering problem
The inverse scattering problem for the boundary value problem (.)-(.) consists of re-
covering the potential function q(x) and the number h by the scattering data. For this task
to be accomplished, we must answer the following two questions:

Are the coefficient q(x) and the number h uniquely defined by the scattering data (.)
of the problem (.)-(.)?
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What is the effective recovering method of q(x) and h by the scattering data (.)?

2.1 Derivation of the main integral equation
In this section we derive the Gelfand-Levitan integral equation of the inverse scattering
problem on the interval (,∞); this will be accomplished through Lemmas ., ., and
Theorem .. Let �n be the rectangular contour

�n =
{
|Reη| ≤ π

(
n +




)
,  ≤ Imη ≤ π

(
n +




)}
. (.)

Lemma . The following inequality holds true from below:

| coshη + i sinhη| ≥ Ce|Reη|, η ∈ �n,∀n. (.)

Proof Let η = σ + iχ , so that on the real line χ = , η ∈ �n it follows that | coshη+ i sinhη| =√




√
eσ + e–σ , from which

| coshη + i sinhη| ≥
√




√
e|σ | =

√



e|Reη|.

On the other hand for η any complex number we have

| coshη + i sinhη| ≥
√




√
eσ + e–σ –  =

√



e|σ |( – e–|σ |),

by which, for σ = π (n + 
 ), it follows that

| coshη + i sinhη| ≥
√




e|Reη|,

which completes the proof of the lemma. �

Since, from [], fo(,η) = eiη(coshη + i sinhη), and using Lemma ., we have

∣∣fo(,η)
∣∣ ≥ Ce– Imη+|Reη|, η ∈ �n,∀n. (.)

Lemma . For every x >  and η ∈ �n, n → ∞, we have the following asymptotic formula:

–iηϕ(x,η)
f ′(,η) – hf (,η)

– e–iηx – So(η)eiηx = ©
(

ex Imη

η

)
, (.)

where So(η) is given by (.).

Proof Following [], p., we see that the fundamental system ϕ(x,η), θ(x,η) of solutions
of (.), for  < x < ∞, with conditions ϕ(,η) = , ϕ′

(,η) = , θ(,η) = , θ ′
(,η) = , have

the representations

ϕ(x,η) =
sinη(x – )

η
+

∫ x


C(x, t)

sinη(t – )
η

dt, (.)

θ(x,η) = cosη(x – ) +
∫ x


D(x, t)cosη(t – ) dt, (.)
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where the kernels C(x, t) and D(x, t) have summable first order partial derivatives []. For
 < x < ∞ the solution ϕ(x,η) of (.) is a linear combination of ϕ(x,η), θ(x,η), so that, for
 < x < ∞,

ϕ(x,η) = ϕ′(,η)ϕ(x,η) + ϕ(,η)θ(x,η). (.)

We evaluate the asymptotic formulas for ϕ(x,η), θ(x,η), by integrating (.) and (.) by
parts, we have

ϕ(x,η) =
sinη(x – )

η
+ ©

(
e(x–) Imη

η

)
, (.)

θ(x,η) = cosη(x – ) + ©
(

e(x–) Imη

η

)
. (.)

Further, by virtue of (.) and (.) of [], we have

ϕ(,η) = coshη + ©
(

e|Reη|

η

)
, (.)

ϕ′(,η) = η sinhη + ©(
e|Reη|). (.)

Substituting (.)-(.) into (.), we have

ϕ(x,η) = sinhη sinη(x – ) + coshη cosη(x – ) + ©
(

e(x–) Imη+|Reη|

η

)
, (.)

when expressing sinη(x – ), cosη(x – ), in terms of the exponential functions, (.) takes
the form

ϕ(x,η) = eiηxfo(, –η) + e–iηxfo(,η) + ©
(

e(x–) Imη+|Reη|

η

)
, (.)

where fo(,η) is given by (.). Again from (.) of [], we have

f ′(,η) – hf (,η) = –iηeiη(coshη + i sinhη) + ©(
e(x–) Imη+|Reη|). (.)

Further, from (.) and (.), we have


f ′(,η) – hf (,η)

=


–iη fo(,η)

[
 + ©

(

η

)]
. (.)

From (.) and (.) we have

–iηϕ(x,η)
f ′(,η) – hf (,η)

=
(
eiηxSo(η) + e–iηx)[ + ©

(

η

)]
+ ©

(
e(x–) Imη+|Reη|

η

)
. (.)

From (.), for η ∈ �n, So(η) has the asymptotic formula

So(η) = ©(
e Imη

)
, (.)
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by the aid of (.), (.) takes the form

–iηϕ(x,η)
f ′(,η) – hf (,η)

= e–iηx + So(η)eiηx + ©
(

ex Imη

η

)
,

which completes the proof of the lemma. �

The following theorem deals with the formulation of the main integral equation, the so-
called (Gelfand-Levitan) integral equation of the inverse problem by its scattering data. It
should be noted, here, that {S(η),ηk = iχk , mk} is the scattering data of the problem (.)-
(.) and {So(η),ηo

k = iχo
k , mo

k} is the scattering data of the problem (.)-(.) with q(x) = ,
h = , So(η) is given by (.)

mo
k = –e–χo

k , χo
k = π

(
k +




)
. (.)

Theorem . For x > , we have the following integral equation:

H(x + y) + K(x, y) +
∫ ∞

x
K(x, y)H(x, y) dy =  (x ≤ y < ∞), (.)

where

H(x) =
∞∑

k=

(
h

e–χk x

mk
–

e–χo
k x

mo
k

)

+
∫ ∞

–∞

{
So(η) – S(η)

}
eiηx dη, x > , (.)

So(η), χo
k and mo

k are given by (.).

Proof Following (.) and (.) of [], we have

iηϕ(x,η)
f ′(,η) – hf (,η)

= f (x, –η) – S(η)f (x,η), (.)

f (x,λ) = eiλx +
∫ ∞

x
K(x, t)eiλt dt,  < x < ∞, (.)

where Imλ ≥ , K(x, x) = 

∫ x

 q(t) dt,  < x < ∞.
Substituting (.) into (.), we have

iηϕ(x,η)
f ′(,η) – hf (,η)

– e–iηx + So(η)eiηx

=
{

So(η) – S(η)
}

eiηx +
∫ ∞

x
K(x, t)e–iηt dt

+ So(η)
∫ ∞

x
K(x, t)eiηt dt

+
{

So(η) – S(η)
}∫ ∞

x
K(x, t)eiηt dt. (.)
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Multiplying both sides of (.) by eiηy

π
and integrating with respect to η on [–N , N] where

N is a positive integer, we have


π

∫ N

–N

[
iηϕ(x,η)

f ′(,η) – hf (,η)
– e–iηx + So(η)eiηx

]
eiηy dη

=


π

∫ N

–N

[{
So(η) – S(η)

}
eiη(x+y)]dη

+


π

∫ N

–N

{∫ ∞

x
K(x, t)e–iηt dt

}
eiηy dη

–


π

∫ N

–N

[
So(η)

{∫ ∞

x
K(x, t)eiηt dt

}
eiηy

]
dη

+


π

∫ N

–N

[{
So(η) – S(η)

}{∫ ∞

x
K(x, t)e–iηt dt

}]
eiηy dη. (.)

For convenience, we write (.) in the following abbreviated form:

ICI = IFP + IFP – ICI + IFP, (.)

where

ICI =


π

∫ N

–N

[
iηϕ(x,η)

f ′(,η) – hf (,η)
– e–iηx + So(η)eiηx

]
eiηy dη, (.)

IFP =


π

∫ N

–N

[{
So(η) – S(η)

}
eiη(x+y)]dη, (.)

IFP =


π

∫ N

–N

{∫ ∞

x
K(x, t)e–iηt dt

}
eiηy dη, (.)

ICI =


π

∫ N

–N

[
So(η)

{∫ ∞

x
K(x, t)eiηt dt

}
eiηy

]
dη, (.)

IFP =


π

∫ N

–N

[{
So(η) – S(η)

}{∫ ∞

x
K(x, t)e–iηt dt

}]
eiηy dη. (.)

We calculate ICI, ICI by means of contour integration over the contour �n, whereas, for
IFP, IFP, and IFP, we use the Fourier-Plancherel formulas. First for IFP, we see from (.)
that the function [So(η) – S(η)] ∈ L(–∞,∞), consequently, by the Fourier-Plancherel the-
orem, there exists a limiting function HS(x) ∈ L(–∞,∞), where

HS(x) def=


π

∫ ∞

–∞

[{
So(η) – S(η)

}
eiηx]dη, (.)

and, consequently,

lim
N→∞ IFP = HS(x + y) def=


π

∫ ∞

–∞

[{
So(η) – S(η)

}
eiη(x+y)]dη. (.)

Further, with the aid of the inversion formula of Fourier-Plancherel, we see that

lim
N→∞


π

∫ N

–N

{∫ ∞

x
K(x, t)e–iηt dt

}
eiηy dη = K(x, y)
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exists and hence

lim
N→∞ IFP = K(x, y), (.)

lim
N→∞ IFP =

∫ ∞

x
K(x, t)HS(t + y) dt. (.)

Now, by using the contour integration method, we calculate ICI, ICI.
Let Nn = π (n + 

 ), where n is an arbitrary positive integer, and �+
n = �n – [–π (n +


 ),π (n + 

 )], i.e. �+
n is the part of the contour �n which lies in the upper half of imag-

inary axis, Imη > . For simplicity, denote

�(x, y,η) = So(η)
{∫ ∞

x
K(x, t)e–iηt dt

}
eiηy. (.)

The function �(x, y,η) is analytic function in the half plane Imη >  except for its poles
ηo

k = iχo
k . We have


π i

∮
�n

�(x, y,η) dη =


π i

∫ Nn

–Nn

�(x, y,η) dη +


π i

∫
�+

n

�(x, y,η) dη. (.)

We prove that

lim
n→∞

∫
�+

n

�(x, y,η) dη = , (.)

in fact, using integration by parts we see that

∫ ∞

x
K(x, t)e–iηt dt = ©

(
e–x Imη

η

)
. (.)

Further, from (.), (.), and (.), we have

�(x, y,η) = ©
(

e–(x+y–) Imη

η

)
, η ∈ �+

n , (.)

on the vertical part of �+
n , for η ∈ �+

n , we have

∣∣∣∣
∫ π (n+ 

 )


©

(
e–(x+y–) Imη

η

)
dη

∣∣∣∣
≤ costant

π (n + 
 )

 – e–(x+y–)π (n+ 
 )

(x + y – )
→ , n → ∞. (.)

Similarly, for η ∈ horizontal part of �+
n , we have

∣∣∣∣
∫ π (n+ 

 )

–π (n+ 
 )

©
(

e–(x+y–)π (n+ 
 )

|η|
)

dη

∣∣∣∣ → , n → ∞, (.)

the proof of (.) is completed from (.) and (.).
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With the aid of the well-known residue formula, we have


π i

∮
�n

�(x, y,η) dη

=
n∑

k=

Res
η=ηo

k

�(x, y,η) = –
n∑

k=

fo(, –ηo
k)

ḟo(,ηo
k)

∫ ∞

x
K(x, t)eiηo

k (t+y) dt, (.)

from (.) it follows that fo(,–ηo
k )

ḟo(,ηo
k ) = ieχo

k , for ηo
k = iχo

k , from this (.) becomes

lim
n→∞


π i

∮
�n

�(x, y,η) dη

= –i
∫ ∞

x

{ ∞∑
k=

e–iχo
k (t+y)

mo
k

K(x, t)

}
dt, where mo

k = –e–χo
k . (.)

From (.) and (.), (.) takes the form

lim
n→∞ ICI = –i

∫ ∞

x

{ ∞∑
k=

e–iχo
k (t+y)

mo
k

K(x, t)

}
dt. (.)

We evaluate ICI. Let

�(x, y,η) =
[

iηϕ(x,η)
f ′(,η) – hf (,η)

– e–iηx + So(η)eiηx
]

eiηy; (.)

consider the integration


π i

∮
�n

�(x, y,η) dη =


π i

∫ Nn

–Nn

�(x, y,η) dη +


π i

∫
�+

n

�(x, y,η) dη. (.)

In a similar way to the integration ICI, it can be seen that limn→∞ 
π i

∫
�+

n
�(x, y,η) dη = .

Using the residue formula we have


π i

∮
�n

�(x, y,η) dη =


π i

∮
�n

[
iηϕ(x,η)

f ′(,η) – hf (,η)
– e–iηx

]
eiηy dη

+


π i

∮
�n

So(η)eiη(x+y) dη. (.)

It is easy to see that

Res
η=ηo

k

(
So(η)eiη(x+y)) =

–i
mo

k
eiχo

k (x+)y,

Res
η=ηo

k

[
iηϕ(x,η)

f ′(,η) – hf (,η)
– e–iηx

]
eiηy (.)

=
if (x,ηk)

mk
eiηk y =

h
mk

e–χk (x+y) + h
∫ ∞

x
K(x, t)


mk

e–χk (x+y) dt.
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Substituting (.) into (.), we get


π i

∮
�n

�(x, y,η) dη

= i
n∑

k=

{
–eiχo

k (x+)y

mo
k

+
he–χk (x+y)

mk
+ h

∫ ∞

x
K(x, t)

e–χk (x+y)

mk
dt

}
. (.)

From (.), as n → ∞, (.) becomes

lim
n→∞ ICI = i

∞∑
k=

{
–eiχo

k (x+)y

mo
k

+
he–χk (x+y)

mk
+ h

∫ ∞

x
K(x, t)

e–χk (x+y)

mk
dt

}
. (.)

By putting N = Nn in (.), passing to the limit as n → ∞, and taking into account (.),
(.), (.), (.), and (.), we have

H(x + y) + K(x, y) +
∫ ∞

x
K(x, t)H(t + y) dt =  ( < x < y < ∞). (.)

The integral equation (.) is still valid for x = y, this can be proved by continuity of
K(x, y) ≤ Cσ ( x+y

 ) and the continuity of H(ξ ) in the metric L(,∞). �

3 The uniqueness theorems
In this section we prove two theorems, first, the uniqueness theorem of the solution of the
main integral equation (.) on the interval (,∞), the second is the uniqueness of the
inverse scattering problem of (.)-(.) by its scattering data (.).

3.1 The uniqueness theorem of the main integral equation
We prove the uniqueness of the solution of the integral equation (.) with respect to
K(x, t).

Theorem . For every fixed x > , the solution β(y) ∈ L(x,∞) of the equation

α(y) + β(y) +
∫ ∞

x
β(t)H(t + y) dt =  (x ≤ y < ∞) (.)

is unique, where α(y) ∈ L(x,∞) is a given function

Proof It is sufficient to prove that the homogeneous integral equation

β(y) +
∫ ∞

x
β(t)H(t + y) dt =  (x ≤ y < ∞), (.)

has only the zero solution β(y) ≡  in the space L(x,∞).
Beside the boundary value problem (.)-(.), we consider the following boundary value

problem:

–y′′ + q(x)y = zy,  ≤ x < ∞, (.)

y′() – hy() = , h > , (.)
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with the same function q(x) of (.). We denote by J(x,η), where z = η, the Jost solution
of (.), with the property

J(x,η) = eiηx + o(), for x → ∞ (–∞ < η < ∞). (.)

We see, from [], that this solution, uniquely, exists and has the representation

J(x,η) = eiηx +
∫ ∞

x
K̃(x, t)eiηt dt. (.)

It is clear (.) and (.) are the same for  < x < ∞ and satisfy the same condition (.). We
deduce, from the last discussion, that f (x,η) = J(x,η),  < x < ∞, from which, using (.),
(.), we obtain

K(x, t) = K̃(x, t), for  < x ≤ t < ∞. (.)

Let S̃(η) denotes the scattering function of (.)-(.). From [], and keeping in mined that
the problem (.)-(.) has no negative eigenvalues, it can be seen that

H̃(x + y) + K̃(x, y) +
∫ ∞

x
K̃(x, t)H̃(t + y) dt =  (x ≤ y < ∞), (.)

where H̃(x) = 
π

∫ ∞
–∞{ – S̃(η)}eiηx dη. Subtracting (.) from (.) and using (.), we ob-

tain

H(x + y) – H̃(x + y) +
∫ ∞

x
K(x, t)

{
H(t + y) – H̃(t + y)

}
dt =  ( < x ≤ y < ∞). (.)

Putting y = x in (.), we have the following Volterra homogeneous integral equation:

H(x) – H̃(x) +
∫ ∞

x
K(x, ζ – x)

{
H(ζ ) – H̃(ζ )

}
dζ =  ( < x < ∞), (.)

which has the zero solution with respect to H(x) – H̃(x), so that

H(ζ ) ≡ H̃(ζ ), for  < ζ < ∞, (.)

from which (.) is written in the form

β(y) +
∫ ∞

x
β(t)H̃(t + y) dt =  (x ≤ y < ∞). (.)

By virtue of [], the last equation has only the zero solution β(y) = . �

3.2 The uniqueness theorem of inverse scattering problem
Theorem . The scattering data

{
S(η) (–∞ < η < ∞),ηn = iχn, mn (n = , , . . .)

}
(.)

of the problem (.)-(.) uniquely defines the potential q(x) of (.) and the number h of the
condition (.).
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Proof In Theorem ., we have constructed the function H(x), x > , and used it to de-
rive the main integral equation by the scattering data (.). From (.) we have q(x) =
– d

dx K(x, t), also from Theorem ., the function K(x, t) is unique for  < x < ∞ and con-
sequently the potential q(x),  < x < ∞, is unique. As a consequence of the uniqueness of
q(x) the functions f (,η) and f ′(,η) are uniquely defined.

We prove, now, the uniqueness of q(x) for  ≤ x ≤ . Consider the solution φ(x,η),
 ≤ x ≤ , of the problem (.) satisfying the initial conditions φ(,η) = , φ′(,η) = h.
Let W [f ,φ] be the Wronskian of the two independent solutions f (x,η), φ(x,η). By virtue
of W |x= = W |x=, we have

f (,η)φ(,η) – f ′(,η)φ(,η) = –
[
f ′(,η) – hf (,η)

]
. (.)

Replacing η by –η and keeping in mind that φ(x,η) = φ(x, –η), we have

f (, –η)φ(,η) – f ′(, –η)φ(,η) = –
[
f ′(, –η) – hf (, –η)

]
. (.)

Solving (.) and (.) for φ(,η), φ′(,η), then dividing the results by f ′(,η) – hf (,η),
we obtain

φ(,η)
f ′(,η) – hf (,η)

=
–
iη

{
f (, –η) – S(η)f (,η)

}
,

φ′(,η)
f ′(,η) – hf (,η)

=
–
iη

{
f ′(, –η) – S(η)f ′(,η)

}
,

(.)

from which we have

N(η) def=
φ(,η)
φ′(,η)

=
f (, –η) – S(η)f (,η)

f ′(, –η) – S(η)f ′(,η)
. (.)

It should be noted, here, that the function N(η) defined by (.) is well defined because
of the uniqueness of f (,η), f ′(,η). The functions φ(,η), φ′(,η) are entire functions, and
then N(η) is a meromorphic function for –∞ < η < ∞; indeed, by analytic continuation, it
is meromorphic in the whole complex plane. Further, the zeros and poles of N(η) are the
roots of the equations

φ(,η) = , (.)

φ′(,η) = , (.)

respectively. On the other hand, (.), (.) are regarded as the characteristic equations
of the two boundary value problems

– y′′ + q(x)y = –ηy,  ≤ x ≤ ,

y() = , y() = ,
(.)

– y′′ + q(x)y = –ηy,  ≤ x ≤ ,

y() = , y′() = .
(.)
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The two spectra of (.) and (.) can be considered known, so that, arguing as in [],
we deduce the uniqueness of q(x),  ≤ x ≤ . It remains to prove that the number h of the
boundary condition (.) is uniquely defined by (.).

Beside the boundary value problem (.)-(.), consider the boundary value problem of
(.) subject to the initial condition

y′() – hy() = , (.)

with the same weight function ρ(x) and potential q(x) of (.). Denote by {ηn}∞n= and
{̃ηn}∞n=, the eigenvalues of (.)-(.) and (.)-(.), respectively. Let the characteristic
equations of (.)-(.) and (.)-(.) be �(η) =  and �(η) = , respectively, where

�(η) = f ′(,η) – hf (,η), (.)

�(η) = f ′(,η) – hf (,η), (.)

where f (x,η) is the solution of (.)-(.) subject to f (,η) = , f ′(,η) = h. From (.) of
[] and (.) we have

mn =
�̇(η)f (,ηn)

ηn
. (.)

From (.), (.), and (.) we have

h – h = –
�̇(η)�(η)

ηnmn
. (.)

The functions �̇(η) and �(η) as entire functions are written in the form

�(η) = C
∞∏

n=

(
 –

η

ηn

)
,

�(η) = C

∞∏
n=

(
 –

η

η̃n

)
,

(.)

where the constants C, C are uniquely defined with the help of the asymptotic formulas

lim
Imη→∞

�(η)
ηWo(η)

= lim
Imη→∞

�(η)
ηWo(η)

= –i

and Wo(η) = eiη(coshη + i sinhη). From (.) and (.) we see that h – h is uniquely
defined; moreover, h is uniquely defined by (.) of [], h = A(, ), so that h is uniquely
defined, which completes the proof. �
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