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Abstract
In this paper, we consider an inverse problem to determine a source term in the
parabolic equation, once the measured data are obtained at a later time. In general,
this problem is ill-posed, therefore the Tikhonov regularization method with a priori
and a posteriori parameter choice rule strategies is proposed to solve the problem. In
the theoretical results, a priori error estimate between the exact solution and its
regularized solution is obtained. For estimating the errors between the regularized
solution and its exact solution, numerical experiments have been carried out. From
the numerical results it shows that the a posteriori parameter choice rule method has
a better convergence speed in comparison with the a priori parameter choice rule
method.
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1 Introduction
Groundwater is crucial to human being, environment and economy, because a large por-
tion of drinking water comes from groundwater, and it is extracted for commercial, in-
dustrial and irrigation uses. Groundwater also sustains stream flow during dry periods
and plays an important role in the function of streams, wetlands and other aquatic en-
vironments. Therefore, protecting the safety and security of groundwater is essential for
environment and communities. In recent years, mathematical models have become an ef-
ficient tool to study the groundwater system, whereby there are two notable approaches
in dealing with groundwater modeling, namely the forward and backward approaches.
The former is going to predict unknown parameters at a later time from previous given
conditions by solving appropriate governing equations, while the latter is going to deter-
mine unknown physical parameters, which could not be observed at a previous time. Most
of groundwater models are distributed parameter models, where the parameters used in
the modeling equations are not directly obtained from physical observations, but from
trial-and-error and graphical fitting techniques. If large errors are included in mathemat-
ical model structure, model parameters, sink/source terms and boundary conditions, the
model cannot produce accurate results. To deal with this issue, the inverse problem of pa-
rameter identification has been applied. In groundwater applications such as in finding a
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previous pollution source intensity from observation data of the pollutant concentrations
at a later time, or in designing the final state of melting and freezing processes, it is nec-
essary to construct a pollution/heat source at any given time from the final outcome state
data. The groundwater inverse problem has been studied since the middle of s by
McLaughin (), Yeh (), Kuiper (), Carrera (), Ginn and Cushman ()
and Sun (), etc. (see [–]). Some remarkable results on this research area should be
mentioned by McLaughlin and Townley () [] and Poeter and Hill () []. Under
consideration of a solute diffusion, the flow and self-purifying function of watershed sys-
tem, the concentration of pollution u(x, t) at any time in a watershed is described by the
following one-dimensional linear parabolic equation:

∂u
∂t

– η
∂u
∂x + ν

∂u
∂x

+ γ u = P(x, t), x ∈ �, t > , (.)

where � ∈R is the spatial studied domain, η is the diffusion coefficient, ν is mean velocity
of water in the watershed, and γ is the self-purifying function of the watershed, P(x, t) is
the source term causing the pollution function u(x, t). By setting

w(x, t) = u(x, t) exp

(
ν

η
x –

(
ν

η
+ γ

)
t
)

and

F(x, t) = P(x, t) exp

((
ν

η
+ γ

)
t –

ν

η
x
)

,

equation (.) becomes

∂w
∂t

– η
∂w
∂x = F(x, t).

This equation is well known as a parabolic heat equation with the time-dependent coeffi-
cient and has been investigated for the heat source with either temporal [–] or spatial-
dependent [–] only. There are few studies on identification of the source term depend-
ing on both time and space in the case of a separable form of F(x, t), i.e., F(x, t) = ϕ(t)f (x),
where ϕ(t) is a given function. For instance, Hasanov [] identified the heat source in
the separable form of F(x, t) = F(x)H(t) for the spatial dependent coefficient in the heat
conduction equation ut = (k(x)ux)x + F(x)H(t) under the variational method. However,
there are still limited results in the case with the diffusion coefficient η dependent on
time.

In this study, we consider the equation for groundwater pollution as follows:

∂u
∂t

–
∂

∂x

(
a(t)

∂u
∂x

)
= ϕ(t)f (x), (x, t) ∈ (,π ) × (, T), (.)

with initial and final conditions

u(x, ) = , u(x, T) = g(x), x ∈ (,π ), (.)
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and boundary conditions

u(, t) = u(π , t) = . (.)

Here, a(t) >  is a temporal dependent diffusion coefficient, g(x) and ϕ(t) are given func-
tions. An objective of this study is to determine the source term f (x) from the noisy ob-
served data set of ϕ(t) and g(x).

Let ‖ · ‖ and 〈·, ·〉 be the norm and the inner product in L(,π ), respectively. Now, we
take an orthonormal basis in L(,π ) satisfying the boundary condition (.); in particular,
the basic function

√

π

sin(nx) for n ∈ N satisfies that condition. Then, by an elementary
calculation, problem (.) under conditions (.) and (.) can be transformed into the
following corresponding problem:

d
dt
〈
u(x, t), sin(nx)

〉
+ na(t)

〈
u(x, t), sin(nx)

〉
= ϕ(t)

〈
f (x), sin(nx)

〉
, t ∈ (, T), (.)

〈
u(x, ), sin(nx)

〉
= ,

〈
u(x, T), sin(nx)

〉
=
〈
g(x), sin(nx)

〉
. (.)

By setting A(t) =
∫ t

 a(s) ds, we can solve the ordinary differential equation (.) with con-
ditions (.), we thus obtain

〈
f (x), sin(nx)

〉
= enA(T)

(∫ T


enA(t)ϕ(t) dt

)–〈
g(x), sin(nx)

〉
, (.)

which leads to

f (x) =
∞∑

n=

enA(T)
(∫ T


enA(t)ϕ(t) dt

)–

gn sin(nx), (.)

where gn = 
π
〈g(x), sin(nx)〉.

Note that enA(T) increases rather quickly once n becomes large. Thus, the exact data
function g(x) must satisfy that gn decays at least as the same speed of enA(t). However, in
application the input data of g(x) from observations will never be exact due to the mea-
surements. We assume that the observed data functions of g(x) and ϕ(t) are gε(x) ∈ L(,π )
and ϕε(t) ∈ L(, T), respectively, and they satisfy

‖gε – g‖ ≤ ε, ‖ϕε – ϕ‖ ≤ ε, (.)

where ε >  represents a noise from observations.
The aim of this paper is to determine a conditional stability and provide the revised

generalized Tikhonov regularization method. In addition, the stability estimate between
the regularized solution and the exact solution is obtained. For implementation of this
method, we impose an a priori bound on the data

‖f ‖Hk (,π ) ≤ M, k ≥ , (.)

where M ≥  is a constant, and ‖ · ‖Hk (,π ) denotes the norm in the Sobolev space Hk(,π )
of order k, which can be naturally defined in terms of Fourier series whose coefficients
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decay rapidly; namely

Hk(,π ) :=
{

f ∈ L(,π ) : ‖f ‖Hk (,π ) < ∞}
, (.)

equipped with the norm

‖f ‖Hk (,π ) =

√√√√ ∞∑
n=

(
 + n

)kf 
n ,

where fn defined by fn = 〈f , Xn〉, Xn =
√


π

sin(nx) is the Fourier coefficient of f .
As a regularization method, the Tikhonov method has been used to solve ill-posed prob-

lems in a number of publications. However, most of previous works focus on an a priori
choice of the regularization parameter. There is usually a defect in any a priori method;
i.e., the a priori choice of the regularization parameter depends obviously on the a priori
bound M of the unknown solution. In fact, the a priori bound M cannot be known ex-
actly in practice, and working with a wrong constant M may lead to a poor regularization
solution. In this paper, we mainly consider the a posteriori choice of a regularization pa-
rameter for the mollification method. Using the discrepancy principle, we provide a new
a posteriori parameter choice rule.

The outline of this paper is as follows. In Section , a conditional stability is introduced.
A Tikhonov regularization and its convergence under an a priori parameter choice rule
is presented in Section . Similarly to Section , another Tikhonov regularization and its
convergence under a posteriori parameter choice rule is described in Section . In Sec-
tion , we introduce two numerical examples, which are implemented from the proposed
regularization methods, the numerical results are compared with the exact solutions.

2 Conditional stability
Let a,ϕ,ϕε : [, T] → R be continuous functions. We suppose that there exist constants
B, B, C, C, D, D >  such that

B ≤ ϕ(t) ≤ B, C ≤ ϕε(t) ≤ C, D ≤ a(t) ≤ D. (.)

Hereafter, let us set

A(t) – A(T) = B(t), 
(n, h) =
∫ T


enB(t)h(t) dt, (.)

where h plays a role as ϕ and ϕε by implication. Then we can obtain the following condi-
tional stability.

Lemma . For all continuous functions h ∈ [E, E], then

(

(n, h)

)k ≤
⎧⎨
⎩

Ek
n–kD–k

 ( – e–nDT )k , k ≥ ,

Ek
 n–kD–k

 ( – e–DT )k , k < ,
(.)

for n ∈N.
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Proof The proof is simple by elementary calculation. �

Theorem . If there exists M ≥  such that ‖f ‖Hk (,π ) ≤ M, then

‖f ‖ ≤
(

D

B( – e–DT )

) k
k+

M


k+ ‖g‖ k
k+ . (.)

Proof Using Holder’s inequality, we first have

‖f ‖ =
∞∑

n=

(∫ T


enB(t)ϕ(t) dt

)–

g


k+
n g

k
k+

n

≤
[ ∞∑

n=

(∫ T


enB(t)ϕ(t) dt

)–(k+)

g
n

] 
k+
( ∞∑

n=

g
n

) k
k+

. (.)

Then, from (.), the inequality becomes

‖f ‖ ≤
[ ∞∑

n=

(∫ T


enB(t)ϕ(t) dt

)–k

f 
n

] 
k+

‖g‖ k
k+ . (.)

We pay attention to the integral on the right-hand side by direct estimate and computation.
From (.), we thus get

‖f ‖ ≤
(

Dk


[B( – e–DT )]k

) 
k+
( ∞∑

n=

nkf 
n

) 
k+

‖g‖ k
k+

≤
[

D

B( – e–DT )

] k
k+ ‖f ‖


k+
Hk (,π )‖g‖ k

k+ . (.)

Hence, the theorem has been proved. �

3 Tikhonov regularization under an a priori parameter choice rule
We define a linear operator K : L(,π ) → L(,π ) as follows:

Kf (x) =
∞∑

n=

〈f , Xn〉
∫ T


enB(t) dtXn(x) =

∫ π


k(x, ξ )f (ξ ) dξ , (.)

where k(x, ξ ) =
∑∞

n=
∫ T

 enB(t) dtXn(x)Xn(ξ ). Due to k(x, ξ ) = k(ξ , x), K is self-adjoint. Next,
we prove its compactness. Let us consider the finite rank operators Km by

Kmf (x) =
m∑

n=

〈f , Xn〉
∫ T


enB(t) dtXn(x). (.)

Then, from (.) and (.), we have

‖Kmf – Kf ‖ =
∞∑

n=m+

(∫ T


enB(t) dt

)

f 
n ≤ 

mD


∞∑
n=m+

f 
n ≤ 

mD

‖f ‖. (.)
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Therefore, ‖Km – K‖ →  in the sense of operator norm in L(L(,π ); L(,π )), as
m → ∞. K is also a compact operator. Next, the singular values for the linear self-adjoint
compact operator are

σn =
∫ T


enB(t) dt, (.)

and the corresponding eigenvectors Xn are known as an orthonormal basis in L(,π ).
From (.), the inverse source problem introduced above can be formulated as an operator
equation

(Kf )(x) = g(x). (.)

In general, such a problem is ill-posed, therefore we aim at solving it by using the Tikhonov
regularization method, i.e., to minimize the following quantity in L(,π ):

‖Kf – g‖ + μ‖f ‖. (.)

Applying Theorem . in [], the value of expression (.) has a minimum value at fμ,
which satisfies

K∗Kfμ(x) + μfμ(x) = K∗g(x). (.)

Due to singular value decomposition for a compact self-adjoint operator, we have

fμ(x) =
∞∑

n=

(
μ +

(∫ T


enB(t)ϕ(t) dt

))– ∫ T


enB(t)ϕ(t) dt〈g, Xn〉Xn(x). (.)

If the given data is noised, we can establish

f ε
μ (x) =

∞∑
n=

(
μ +

(∫ T


enB(t)ϕε(t) dt

))– ∫ T


enB(t)ϕε(t) dt〈gε , Xn〉Xn(x). (.)

From (.), (.) and (.), we get

fμ(x) =
∞∑

n=


(n,ϕ)
μ + (
(n,ϕ)) 〈g, Xn〉Xn(x), (.)

f ε
μ (x) =

∞∑
n=


(n,ϕε)
μ + (
(n,ϕε)) 〈gε , Xn〉Xn(x). (.)

In this work, we will deduce an error estimate for ‖f – f ε
μ‖ and show convergence rate

under a suitable choice of regularization parameters. It is clear that the entire error can be
decomposed into the bias and noise propagation as follows:

∥∥f – f ε
μ

∥∥≤ ‖f – fμ‖ +
∥∥fμ – f ε

μ

∥∥. (.)

We first give the error bound for the noise term.
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Lemma . If the noise assumption holds, and assume that ‖g – gε‖ ≤ ε and ‖ϕ –
ϕε‖L[,T] ≤ ε, then the solution depends continuously on the given data. Moreover, we have
the following estimate:

∥∥fμ – f ε
μ

∥∥≤ ‖f ‖(μ + D–
 BC)

μTBC
‖ϕ – ϕε‖L[,T] +


μ

‖g – gε‖. (.)

Proof We notice that

fμ – f ε
μ =

∞∑
n=

(

(n,ϕ)

μ + (
(n,ϕ)) gnXn –

(n,ϕε)

μ + (
(n,ϕε)) gnXn

)

+
∞∑

n=

(

(n,ϕε)

μ + (
(n,ϕε)) gnXn –

(n,ϕε)

μ + (
(n,ϕε)) gε
nXn

)

= A + A. (.)

We consider two following estimates by diving them into two steps.
Step . Estimate ‖A‖:

‖A‖ ≤
∞∑

n=

[
μ
(n, |μ – με |) + 
(n,ϕ)
(n,ϕε)
(n, |ϕ – ϕε |)

[μ + (
(n,ϕ))][μ + (
(n,ϕε))]

]

g
n

≤
∞∑

n=

[
(μ + 
(n,ϕ)
(n,ϕε))
(n, |ϕ – ϕε |)

μ
(n,ϕ)
(n,ϕε)

]

g
n . (.)

Notice that


(n,ϕ)
(n,ϕε) ≤ BC

(∫ T


enB(t) dt

)

,



(
n, |ϕ – ϕε |

)≤ ‖ϕ – ϕε‖L[,T]

(∫ T


enB(t) dt

) 


.

(.)

It follows that

‖A‖ ≤ ‖ϕ – ϕε‖L[,T](μ + BC(
∫ T

 enB(t) dt))
μTBC

‖f ‖

≤ ‖ϕ – ϕε‖L[,T](μ + n–D–
 BC( – e–nDT ))

μTBC
‖f ‖

≤ ‖f ‖(μ + D–
 BC)

μTBC
‖ϕ – ϕε‖L[,T]. (.)

Step . Estimate ‖A‖:

‖A‖ ≤
√√√√ ∞∑

n=

(
(n,ϕε))

μ + (
(n,ϕε))

∣∣gn – gε
n
∣∣ ≤ 

μ
‖g – gε‖. (.)

Combining (.) and (.), the proof is completed. �
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In order to obtain the boundedness of bias, we usually need some a priori conditions. By
Tikhonov’s theorem, the operator K– is restricted to the continuous image of a compact
set M. Thus, we assume that f is in a compact subset of L(,π ). Hereafter, we assume
that ‖f ‖Hk (,π ) ≤ M for k > .

Lemma . If the a priori bound holds, then

‖f – fμ‖ ≤
⎧⎨
⎩

max{, D


[B(–e–DT )] }Mμ
k
 ,  < k ≤ ,

max{, D


[B(–e–DT )] }Mμ, k > .
(.)

Proof From (.) and (.), we deduce that

‖f – fμ‖ ≤
∞∑

n=

μ

(
(n,ϕ))(μ + (
(n,ϕ))) g
n

≤
∞∑

n=

P(n)
( + n)kg

n
(
(n,ϕ)) , (.)

where

P(n) =
μ

(μ + (
(n,ϕ)))

(
 + n)–k . (.)

Next, we estimate P(n). Without loss of generality, we assume that μ– 
 is not an integer,

therefore, the right-hand side of (.) can be divided into the sum of A and A as follows:

A =
n∑
n=

P(n)
( + n)kg

n
(
(n,ϕ)) , A =

∞∑
n=n+

P(n)
( + n)kg

n
(
(n,ϕ)) , (.)

where n ≤ μ– 
 ≤ n + . In the term A, we have

P(n) ≤ μnD


[B( – e–DT )]

(
 + n)–k ≤ D


[B( – e–DT )] μn–k . (.)

For  < k ≤ , we deduce that

P(n) ≤ D


[B( – e–DT )] μk+ ≤ D


[B( – e–DT )] μk . (.)

For k > , it yields

P(n) ≤ D


[B( – e–DT )] μ. (.)

In addition, we observe in the term A that

P(n) ≤ (
 + n)–k ≤ μk . (.)
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From (.)-(.), we thus obtain

P(n) ≤
⎧⎨
⎩

max{, D


[B(–e–DT )] }μk ,  < k ≤ ,

max{, D


[B(–e–DT )] }μ, k > .
(.)

Hence, by using the above assumption, we conclude that

‖f – fμ‖ ≤
⎧⎨
⎩

max{, D


[B(–e–DT )] }Mμ
k
 ,  < k ≤ ,

max{, D


[B(–e–DT )] }Mμ, k > .
(.)

�

Theorem . Assuming that the a priori condition and the noise assumption hold, the
following estimates are obtained.

(a) If  < k ≤  and choose μ = ( ε
M )


k+ , then

∥∥f – f ε
μ

∥∥≤ P
[‖f ‖(ε 

k+ + D–
 BCM


k+
)
ε

k
k+ + ε

k+
k+ + ε


k+
]
, (.)

where P is a constant and depends on constants T , B, C, D, D, and M (shown in
Section ).

(b) If k >  and choose μ = ( ε
M ) 

 , then

∥∥f – f ε
μ

∥∥≤ Qε

[
‖f ‖

(
 +

D–
 BC

M
ε

)
+ 
]

, (.)

where Q is a constant and depends on T , B, C, D, D, M.

Proof From Lemma . and Lemma ., we can obtain the proof easily. Indeed, for  < k ≤
, using μ = ( ε

M )


k+ we have

∥∥f – f ε
μ

∥∥ ≤ ‖f ‖
TBC

(
 +

D–
 BC

μ

)
‖ϕ – ϕε‖L[,T] +


μ

‖g – gε‖

+ max

{
,

D


[B( – e–DT )]

}
Mμ

k


≤ ‖f ‖
TBC

(
ε


k+ + D–

 BCM


k+
)
ε

k
k+ +




M


k+ ε
k+
k+

+ max

{
,

D


[B( – e–DT )]

}
Mε


k+ . (.)

Besides, for k > , choosing μ = ( ε
M ) 

 will lead to the following estimate:

∥∥f – f ε
μ

∥∥ ≤ ‖f ‖
TBC

(
 +

D–
 BC

M
ε

)
ε +




M

 ε




+ max

{
,

D


[B( – e–DT )]

}
M


 ε


 . (.)

�
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Remark . In the case if the time-dependent coefficient a(t) is not perturbed, then the
corresponding inverse problem can be simplified by the variable transform as follows:

τ =
∫ t


a(s) ds = A(t), u(x, t) = w(x, τ ). (.)

Now, equation (.) becomes

wτ (x, τ ) – wxx(x, τ ) =
ϕ(t)
a(t)

∣∣∣∣
t=A–(τ )

f (x).

Since ϕ(t)
a(t) |t=A–(τ ) is known, then all existing results for identifying the source with constant

coefficients in heat equation are applicable. However, if a(t) is perturbed as aε(t), the in-
verse source problem will be more complicated than (.). To the best of our knowledge,
it is difficult to use the variable τ as in (.) for solving the inverse source problem in
the case that a(t) is perturbed. Therefore, we choose the direct method to solve (.) and
mention the result in the case that a(t) is perturbed. Indeed, in the following theorem, we
introduce a regularized solution Fε

μ and obtain the convergence rates as the a priori pa-
rameter choice rule. The case for the a posteriori parameter choice rule is similarly proven
and it is not described here due to the length of this manuscript.

Theorem . Assume that the source term f ∈ H(,π ) and there exists a positive number
M such that

‖f ‖H(,π ) ≤ M.

Suppose that the term a is noised by the perturbed data aε ∈ C([, T]) in such a way that

‖aε – a‖C([,T]) = sup
≤t≤T

∣∣aε(t) – a(t)
∣∣≤ ε.

Then we construct a regularized solution Fε
μ satisfying

lim
ε→

∥∥Fε
μ – f

∥∥ = ,

where

Fε
μ(x) =

∞∑
n=

(
μ +

(∫ T


enBε (t)ϕε(t) dt

))– ∫ T


enBε (t)ϕε(t) dt〈gε , Xn〉Xn(x) (.)

and

Bε(t) = Aε(t) – Aε(T), Aε(t) =
∫ t


aε(s) ds.

Moreover, by choosing μ = ε

 , we have the following estimate:

∥∥Fε
μ – f

∥∥≤ Qε

 ,
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where Q is a constant and depends on T , B, B, C, C, D, D, D, D, M (shown in
Section ).

Proof Since aε ∈ C([, T]), there exist two positive numbers D, D such that

D ≤ aε(t) ≤ D.

First, we denote


ε(n, h) =
∫ T


enBε (t)h(t) dt,

then

Fε
μ(x) =

∞∑
n=


ε(n,ϕε)
μ + (
ε(n,ϕε)) 〈gε , Xn〉Xn(x).

Defining the functions Gε
μ(x), Rε

μ(x) by

Gε
μ(x) =

∞∑
n=


ε(n,ϕε)
μ + (
ε(n,ϕε)) 〈g, Xn〉Xn(x),

Rε
μ(x) =

∞∑
n=


(n,ϕε)
μ + (
(n,ϕε)) 〈g, Xn〉Xn(x),

it is clear that

∥∥Fε
μ – f

∥∥≤ ∥∥Fε
μ – Gε

μ

∥∥ +
∥∥Gε

μ – Rε
μ

∥∥ +
∥∥Rε

μ – fμ
∥∥ + ‖fμ – f ‖. (.)

It is obvious that ‖Rε
μ – fμ‖ = ‖A‖, which is given in (.), and using (.) we obtain the

following inequality:

∥∥Rε
μ – fμ

∥∥ = ‖A‖ ≤ ‖f ‖(μ + D–
 BC)

μTBC
‖ϕ –ϕε‖L[,T] ≤ ‖f ‖(μ + D–

 BC)
μTBC

ε. (.)

We estimate ‖Fε
μ – Gε

μ‖ as follows:

∥∥Fε
μ – Gε

μ

∥∥≤
√√√√ ∞∑

n=

(
ε(n,ϕε))

μ + (
ε(n,ϕε))

∣∣gn – gε
n
∣∣ ≤ 

μ
‖g – gε‖ ≤ ε

μ
. (.)

The term ‖Gε
μ – Rε

μ‖ is bounded in the following manner:

∥∥Gε
μ – Rε

μ

∥∥ =
∞∑

n=

[

ε(n,ϕε)

μ + (
ε(n,ϕε)) –

(n,ϕε)

μ + (
(n,ϕε))

]

g
n

≤
∞∑

n=

[μ + 
(n,ϕε)
ε(n,ϕε)][
(n,ϕε) – 
ε(n,ϕε)]

[μ + (
(n,ϕε))][μ + (
ε(n,ϕε))] g
n

≤
∞∑

n=

[μ + 
(n,ϕε)
ε(n,ϕε)][
(n,ϕε) – 
ε(n,ϕε)]

μ|
(n,ϕε)||
ε(n,ϕε)| g
n . (.)
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Since B(t) ≤ –D(T – t) ≤ , Bε(t) ≤ –D(T – t) ≤ , and from (.) and (.), we have


(n,ϕε)
ε(n,ϕε) =
∫ T


enBε (t)ϕε(t) dt

∫ T


enB(t)ϕ(t) dt ≤ BCT (.)

and


(n,ϕε)
ε(n,ϕε) ≥
∫ T


e–nD(T–t)ϕ(t) dt

∫ T


e–nD(T–t)ϕε(t) dt

=
BC

DD

( – e–nDT )( – e–nDT )
n . (.)

In addition, the term g
n is bounded by

g
n =

(∫ T


enB(t)ϕ(t) dt

)

f 
n

≤
(∫ T


e–Dn(T–t)ϕ(t) dt

)

f 
n

=
B

( – e–nDT )f 
n

D
n . (.)

It is easy to see that for c, d ≥ ,
∣∣ec – ed∣∣≤ max

{|c – d|ec, |c – d|ed}.

Using this inequality, we obtain

∣∣
(n,ϕε) – 
ε(n,ϕε)
∣∣ =

∣∣∣∣
∫ T



(
enBε (t) – enB(t))ϕε(t) dt

∣∣∣∣
≤ C

∫ T


n∣∣Bε(t) – B(t)

∣∣max
(
enBε (t), enB(t))dt

≤ Cn
∫ T



(∫ T

t

∣∣aε(s) – a(s)
∣∣ds

)
max

(
enBε (t), enB(t))dt

≤ εCTn max

(∫ T


enB(t) dt,

∫ T


enBε (t) dt

)

≤ εCTn max

(∫ T


e–Dn(T–t) dt,

∫ T


e–Dn(T–t) dt

)

≤ εCTn max

(
 – e–nDT

Dn ,
 – e–nDT

Dn

)

≤ εCT
min(D, D)

. (.)

Combining (.), (.), (.), (.) and (.), we get

∥∥Gε
μ – Rε

μ

∥∥ ≤ εC
D

 D
T(μ + BCT)

μ min(D
, D

)C
D



×
∞∑

n=

n ( – e–nDT )

( – e–nDT )( – e–nDT )
f 
n
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≤ εC
D

 D
T(μ + BCT)

μ min(D
, D

)C
D



× 
( – e–DT )( – e–DT ) ‖f ‖

H(,π ). (.)

This implies that

∥∥Gε
μ – Rε

μ

∥∥≤ Q
ε

μ ‖f ‖H(,π ) ≤ QM
ε

μ , (.)

where

Q =
CDDT(μ + BCT)

 min(D, D)CD


( – e–DT )( – e–DT )

.

Combining (.), (.), (.), (.) and Lemma ., we get

∥∥Fε
μ – f

∥∥ ≤ ∥∥Fε
μ – Gε

μ

∥∥ +
∥∥Gε

μ – Rε
μ

∥∥ +
∥∥Rε

μ – fμ
∥∥ + ‖fμ – f ‖

≤ ε

μ
+ QM

ε

μ +
‖f ‖(μ + D–

 BC)
μTBC

ε

+ max

{
,

D


[B( – e–DT )]

}
Mμ.

By choosing μ = ε

 and noting that ‖f ‖ ≤ ‖f ‖H(,π ) ≤ M, we obtain

∥∥Fε
μ – f

∥∥ ≤ ε




+ QMε


 +

M(μ + D–
 BC)

TBC
ε




+ max

{
,

D


[B( – e–DT )]

}
Mε




≤ Qε

 ,

where

Q =
ε





+ QM +

M(μ + D–
 BC)

TBC
+ max

{
,

D


[B( – e–DT )]

}
M.

The proof is completed. �

4 Tikhonov regularization under a posteriori parameter choice rule
In this section, we consider an a posteriori regularization parameter choice in Morozov’s
discrepancy principle (see in [, ]). First, we introduce the following lemma.

Lemma . Set ρ(μ) = ‖Kf ε
μ – gε‖ and assume that  < ε < ‖gε‖, then the following results

hold:
(a) ρ(μ) is a continuous function.
(b) ρ(μ) →  as μ → .
(c) ρ(μ) → ‖gε‖ as μ → ∞.
(d) ρ(μ) is a strictly increasing function.
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Proof All results are derived from

ρ(μ) =

√√√√ ∞∑
n=

(
μ

μ + (
(n,ϕ))

)(
gε

n
). (.)

�

Let us define a function H(y) as follows:

H(y) =

⎧⎨
⎩

yy( – y)–y, y ∈ (, ),

, y = {; }.
(.)

It is clear that  < H(y) ≤  since we have

sup
x>

xy

 + x
= H(y), y ∈ [, ]. (.)

Lemma . Choose τ >  such that  < τε < ‖gε‖, then there exists a unique regularization
parameter μ >  such that ‖Kf ε

μ –gε‖ = τε. Moreover, if the a priori condition with k ∈ (, ]
and the noise assumptions hold, we have the following inequality:

ε

μk+ ≤ P
τ – 

H
(

 – k


)
M, (.)

where P is constant and dependent on the constants k, T , B, C, D, D.

Proof The uniqueness of regularization parameter μ >  is derived from Lemma .. We
thus only need to prove the inequality. First, we notice that

τε =

√√√√ ∞∑
n=

(
μ

μ + (
(n,ϕε))

)(
gε

n
)

≤
√√√√ ∞∑

n=

(
μ

μ + (
(n,ϕε))

)(
gn – gε

n
)

+

√√√√ ∞∑
n=

(
μ
(n,ϕ)

(μ + (
(n,ϕε)))( + n)k

) ( + n)k(gn)

(
(n,ϕ)) . (.)

Due to μ

μ+(
(n,ϕε )) ≤  and setting

K(n) =
μ
(n,ϕ)

(μ + (
(n,ϕε)))( + n)k , (.)

we then have

τε ≤ ε +

√√√√ ∞∑
n=

K(n)
( + n)k(gn)

(
(n,ϕ)) . (.)
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Now, we estimate K(n) as follows:

K(n) ≤ ( μ


(n,ϕε ) )–k
(n,ϕ)(
(n,ϕε))k–

(( μ


(n,ϕε ) ) + )( + n)k μk+

≤ H
(

 – k


)
μk+BCD–

 D–k


( – e–DT )k–

n(k–)( + n)k

≤ H
(

 – k


)
μk+BCD–

 D–k

(
 – e–DT)k–. (.)

Therefore, combining (.) and (.), we conclude that

τε ≤ ε + BCD–
 D–k


(
 – e–DT)k–H

(
 – k



)
μk+M, (.)

which gives the desired result. �

Theorem . Assume that the a priori condition and the noise assumptions hold, and there
exists τ >  such that  < τε < ‖gε‖. Then we choose a unique regularization parameter
μ >  such that

∥∥f – f ε
μ

∥∥≤
⎧⎨
⎩

ε
k

k+ P,  < k ≤ ,

ε

 Q, k > ,

(.)

where constants P and Q are dependent on the constants T , μ, k, τ , B, B, C, C, D, D

and M.

Proof For  < k ≤ , we have

∥∥f – f ε
μ

∥∥ =
∞∑

n=



(n,ϕ)

[
gn –

(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

]

+
∞∑

n=

[

(n,ϕ)

μ + (
(n,ϕ)) –

(n,ϕε)

μ + (
(n,ϕε))

]
gε

n . (.)

It follows that

∥∥f – f ε
μ

∥∥ ≤ 
∞∑

n=


(
(n,ϕ))

[
gn –

(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

]

+ 
∞∑

n=

([

(n,ϕ)

μ + (
(n,ϕ)) –

(n,ϕε)

μ + (
(n,ϕε))

]
gε

n

)

. (.)

We set K and K as follows:

K(n) =


(
(n,ϕ))

[
gn –

(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

] 
k+
[

gn –
(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

] k
k+

, (.)

K(n) =
([


(n,ϕ)
μ + (
(n,ϕ)) –


(n,ϕε)
μ + (
(n,ϕε))

]
gε

n

)

. (.)
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Afterwards, we estimate ‖f – f ε
μ‖ by considering the following inequalities. First, we see

that
∞∑

n=

K(n) ≤ L
k

k+
 L


k+
 , (.)

where

L =
∞∑

n=

(
gn –

(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

)

, (.)

L =
∞∑

n=

(

(n,ϕ)

)–(k+)
(

gn –
(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

)

. (.)

Now, we estimate L and L as follows:

L


 ≤

√√√√ ∞∑
n=

(
gn – gε

n
) +

√√√√ ∞∑
n=

(
gε

n –
(
(n,ϕ))

μ + (
(n,ϕ)) gε
n

)

≤ ( + τ )ε, (.)

L


 ≤

√√√√ ∞∑
n=

(

(n,ϕ)

)–(k+)g
n +

√√√√ ∞∑
n=

(

(n,ϕ)

)–(k+)
(

(
(n,ϕ))

μ + (
(n,ϕ))

)(
gε

n
). (.)

We assign L and L to the two terms of the sum on the right-hand side of (.), we now
continue to estimate these terms by the following direct computation:

L ≤
√√√√ ∞∑

n=

(

(n,ϕ)

(
 + n

))–k ( + n)kg
n

(
(n,ϕ))

≤
√√√√ ∞∑

n=

(
nD

B( – e–DT )( + n)

)k ( + n)kg
n

(
(n,ϕ))

≤
(

D

B( – e–DT )

)k

M (.)

and

L ≤
√√√√ ∞∑

n=

(

(n,ϕ)

)–(k+)
(

(
(n,ϕ))

μ + (
(n,ϕ))

)(
gn – gε

n
)

+

√√√√ ∞∑
n=

(

(n,ϕ)

)–(k+)
(

(
(n,ϕ))

μ + (
(n,ϕ))

)

(gn). (.)

In (.), we denote two terms on the right-hand side by L and L. Then, using Theo-
rem . and (.), we estimate them as follows:

L ≤
√√√√ ∞∑

n=

μ–(k+)
( ( μ


(n,ϕ) )k+

( μ


(n,ϕ) ) + 

)(
gn – gε

n
)

≤ μ–(k+)H
(

k + 


)
ε
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≤ P
τ – 

H
(

 – k


)
H
(

k + 


)
M

≤ P
τ – 

(
H
(

 – k


))

M, (.)

L ≤
√√√√ ∞∑

n=

(

(n,ϕ)

)–(k+)(gn) ≤
(

D

B( – e–DT )

)k

M. (.)

Then from (.)-(.) we have

∞∑
n=

K(n) ≤ [
( + τ )ε

] k
k+

[

(

D

B( – e–DT )

)k

M +
P

τ – 

(
H
(

 – k


))

M
] 

k+
. (.)

Next, the term K(n) is estimated. Similarly, we recall (.)-(.), it shows that

√√√√ ∞∑
n=

K(n) ≤
√√√√ ∞∑

n=

([

(n,ϕ)

μ + (
(n,ϕ)) –

(n,ϕε)

μ + (
(n,ϕε))

](
gε

n – gn
))

+

√√√√ ∞∑
n=

([

(n,ϕ)

μ + (
(n,ϕ)) –

(n,ϕε)

μ + (
(n,ϕε))

]
gn

)

≤ ‖ϕε – ϕ‖L[,T]
(
P‖gε – g‖ + ‖f ‖). (.)

Combining (.), (.) and (.), the first part of (.) with  < k ≤  is deduced. Fur-
thermore, we can obtain the second part of (.) with k >  by embedding Hk into H.

�

5 Numerical examples
In order to estimate the errors between the proposed regularized solution and its exact
solution, the numerical experiments have been carried out. Two different numerical ex-
amples corresponding to k = T =  are introduced in this section. The first example is to
consider a situation where a in equation (.) is a constant, and the function f is obtained
from exact data function. The second example is to consider an example where a is a non-
constant function, and f is obtained from observation data of g and ϕ.

The couple of (gε ,ϕε), which are determined below, serves as the measured data with a
random noise as follows:

gε(·) = g(·)
(

 +
ε · rand(·)

‖g‖
)

, (.)

ϕε(·) = ϕ(·) + ε · rand(·), (.)

where rand(·) ∈ (–, ) is a random number. Hence, we can easily verify the following in-
equality:

‖g – gε‖ ≤ ε

and

‖ϕ – ϕε‖ ≤ ε.
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In addition, we can take the regularization parameter for the a priori parameter choice
rule μ = ( ε

M ) 
 , where M plays a role as a priori condition computed by ‖f ‖H(,π ). The

absolute and relative errors between regularized and exact solutions are estimated. The
regularized solutions are defined by

f ε
μ (x) =


π

N∑
n=


(n,ϕε)
μ + (
(n,ϕε))

〈
gε(x), sin(nx)

〉
sin(nx), (.)


(n,ϕε) =
∫ 


en(A(t)–A())ϕε(t) dt, (.)

where N is the truncation number; whereby N = , is chosen in the examples.
In general, the whole numerical procedure is shown in the following steps.
Step . Choose L and K to generate temporal and spatial discretizations in the manner

that

xj = j�x, �x =
π

K
, j = , K , (.)

ti = i�t, �t =

L

, i = , L. (.)

Obviously, the higher value of L and K will provide a more stable and accurate numerical
calculation; however, in the following examples L = K =  are satisfied.

Step . Setting f ε
μ (xj) = f ε

μ,j and f (xj) = fj, we construct two vectors containing all discrete
values of f ε

μ and f denoted by �ε
μ and � , respectively, as shown below:

�ε
μ =

[
f ε
μ, f ε

μ, · · · f ε
μ,K– f ε

μ,K
] ∈R

K+, (.)

� = [f f · · · fK– fK ] ∈ R
K+. (.)

Step . Error estimate between the exact and regularized solutions.
Absolute error estimation:

E =

√√√√ 
K + 

K∑
j=

∣∣f ε
μ (xj) – f (xj)

∣∣. (.)

Relative error estimation:

E =

√∑K
j= |f ε

μ (xj) – f (xj)|√∑K
j= |f (xj)|

. (.)

5.1 Example 1
As mentioned above, in this example we consider the coefficient a as a constant, and f is
an exact data function. Particularly, we consider a type of problem (.)-(.) as follows:

⎧⎪⎪⎨
⎪⎪⎩

ut – uxx = –(et – ) sin x; (x, t) ∈ (,π ) × (, ),

u(x, ) = , u(x, ) = –(e – ) sin x; x ∈ [,π ],

u(, t) = u(π , t) = ; t ∈ [, ].

(.)

This implies that a(t) = , ϕ(t) = et – , g(x) = –(e – ) sin x and f (x) = – sin x.
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It is easy to see that u(x, t) = –(et – ) sin x is the unique solution of the problem.
Next, we establish the regularized solution according to the composite Simpson’s rule:

f ε
μ (x) =

e – 


(
 +

ε · rand(·)√
π‖g‖

)

(,ϕε)

μ + (
(,ϕε)) sin x, (.)


(,ϕε) =


M

[
h(t) + 

L
 –∑
i=

h(ti) + 

L
∑

i=

h(ti–) + h(tM)

]
, (.)

h(ti) = e(ti–)(ϕ(ti) + ε · ∣∣rand(ti)
∣∣). (.)

In practice, it is very difficult to obtain the value of M without having an exact solution.
We thus try taking M = , leading to μ = ε




 for the a priori parameter choice rule,

and μ = ε



 for the a posteriori parameter choice rule based on (.) with τ = ..

5.2 Example 2
Similar to the first example; however, in this example we consider the coefficient a is not
a constant, i.e., it is temporally dependent a(t) = t + , then A(t) – A() = t + t – ; we
choose

g(x) = e
∑

m=

sin(mx), ϕ(t) = . (.)

Thus, the exact solution is obtained by

f (x) =
e

π

,∑
n=



(n, )

∑
m=

〈
sin(mx), sin(nx)

〉
sin(nx), (.)


(n, ) =


n

(
 – e–n)

. (.)

Unlike the first example, from the analytical solution, we can have the estimate ‖f ‖H(,π ) <
, which implies that μ = ( ε

, ) 
 for the a priori parameter choice rule. Afterwards,

based on (.) with τ = . again, we can compute the regularization parameter for the

a posteriori parameter choice rule, μ = ε



, . Therefore, the regularized solution can be
computed by

f ε
μ (x) = e

(
 +

ε · rand(·)√
π‖g‖

) ∑
n=

n( – e–n )( + ε · rand(·))
nμ + (( + ε · rand(·))( – e–n ))

sin(nx). (.)

Tables  and  show the absolute and relative error estimates between the exact solution
and its regularized solution for both, the a priori and the a posteriori, parameter choice
rules in the numerical examples. In the first example, as shown in Table , when the co-
efficient a is constant, and f is an exact data function, the convergence speed of both pa-
rameter choice rule methods are quite similar and slow as ε tends to . Whereas, in the
second example shown in Table , when the coefficient a is temporally dependent, and f
is obtained from the measured data, the convergence speed of the a posteriori parameter
choice rule is better than that of the a priori parameter choice rule (by second order) as ε

tends to .
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Table 1 Error estimate between the exact solution and its regularized solution for the a priori
parameter and the a posteriori parameter choice rules in Example 1

ε Eμ1
1 Eμ1

2 Eμ2
1 Eμ2

2

5.0E–01 2.19973047E–01 6.25280883E–01 2.37722314E–01 6.75733186E–01
1.0E–01 4.84352308E–02 1.37678794E–01 5.74458438E–02 1.63291769E–01
5.0E–02 2.61788488E–02 7.44142701E–02 2.83719452E–02 8.06482211E–02
1.0E–02 8.18020277E–03 2.32525051E–02 8.06299020E–03 2.29193244E–02
5.0E–03 5.77361943E–03 1.64117100E–02 5.73993055E–03 1.63159482E–02
1.0E–03 4.80971954E–03 1.36717917E–02 4.54649392E–03 1.29235639E–02
5.0E–04 4.67487514E–03 1.32884919E–02 4.54039711E–03 1.29062335E–02
1.0E–04 4.48497982E–03 1.27487080E–02 4.41615901E–03 1.25530824E–02
5.0E–05 4.44987772E–03 1.26489290E–02 4.41003343E–03 1.25356703E–02
1.0E–05 4.41942400E–03 1.25623633E–02 4.40598999E–03 1.25241767E–02

Table 2 Error estimation between the exact solution and its regularized solution for both the
a priori parameter choice rule and the a posteriori parameter choice rule in Example 2

ε Eμ1
1 Eμ1

2 Eμ2
1 Eμ2

2

5.0E–01 8.73911561E+01 6.23557272E–01 1.68095756E+02 1.19940433E+00
1.0E–01 1.73478908E+01 1.23781444E–01 1.68873801E+01 1.20495587E–01
5.0E–02 9.04295359E+00 6.45236855E–02 1.05889724E+01 7.55549079E–02
1.0E–02 2.51478744E+00 1.79436234E–02 1.77559899E+00 1.26693331E–02
5.0E–03 1.33146975E+00 9.50036234E–03 7.94414569E–01 5.66834224E–03
1.0E–03 4.04066751E–01 2.88311509E–03 1.79227628E–01 1.27883296E–03
5.0E–04 2.24155836E–01 1.59940671E–03 8.74185405E–02 6.23752667E–04
1.0E–04 7.42023262E–02 5.29451745E–04 1.85142488E–02 1.32103693E–04
5.0E–05 4.58148569E–02 3.26900209E–04 9.69012336E–03 6.66814607E–05
1.0E–05 1.56186641E–02 1.11442988E–04 1.86120018E–03 1.32801185E–05

Figure 1 A comparison between the exact solution and its regularized solution for the a priori
parameter choice rule in Example 1.
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Figure 2 A comparison between the exact solution and its regularized solution for the a posteriori
parameter choice rule in Example 1.

Figure 3 A comparison between the exact solution and its regularized solution for the a priori
parameter choice rule in Example 2.
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Figure 4 A comparison between the exact solution and its regularized solution for the a posteriori
parameter choice rule in Example 2.

In addition, Figures  and  show comparison between the exact solution and its regular-
ized solution for the a priori parameter and the a posteriori parameter choice rules in the
first example, respectively. It again shows that the regularized solution was strong oscil-
lated around the exact solution when ε around . in both parameter choice rule methods;
nevertheless, it converges to the exact solution as ε tends to . In the second example, Fig-
ures  and  show the same tendency as in the first example for both methods.

6 Conclusion
In this study, we solved problem (.)-(.) to recover temperature function of the un-
known sources in the parabolic equation with the time-dependent coefficient (i.e., inho-
mogeneous source) by suggesting two methods, the a priori and a posteriori parameter
choice rules.

In the theoretical results, we obtained the error estimates of both methods based on a
priori condition. From the numerical results, it shows that the regularized solutions are
convergent to the exact solutions. Furthermore, it also shows that the a posteriori param-
eter choice rule method is better than the a priori parameter choice rule method in terms
of the convergence speed.
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