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Abstract
In this paper, we study the initial-boundary-value problem for a generalized sixth
order Cahn-Hilliard type equation, which describes the separation properties of
oil-water mixtures when a substance enforcing the mixing of the phases is added.
The optimal control under boundary condition is given and the existence of optimal
solution is proved.
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1 Introduction
We consider the equation

ut = D
[
γ Du – a(u)Du –

a′(u)


|Du| + f (u) + kut – γDut

]
, (.)

in � × (, T), where � = (, ), γ > , k > , and γ >  with the initial and boundary
conditions

u(x, ) = u, in �, (.)

u(x, t) = Du(x, t) = Du(x, t) = , on ∂�. (.)

The function f (u) stands for the derivative of a potential F(u) with F(u), a(u) approxi-
mated, respectively, by a sixth and a second order polynomial

F(u) =
∫ u


f (s) ds = (u + )(u + h

)
(u – ), (.)

a(u) = au + a, (.)

where a > .
The free energy functional proposed by Gompper et al. [–] has the form

ψ(u) =
∫

�

ϕ(u,∇u,�u) dx,
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with the density given by

ϕ(u,∇u,�u) = f (u) +



a(u)|∇u| +


γ (�u).

Here u is the scalar order parameter, which is proportional to the local difference between
oil and water concentrations. The properties of the amphiphile and its concentration enter
model (.) implicitly via (.) and (.). F(u) has three minima at u = –, u = , and u = ,
which describe the oil, water and disordered microemulsion phases. In [–], the coeffi-
cient a(u) is approximated by the quadratic function (.) with constants a of arbitrary
sign and a positive.

Like in the classical Cahn-Hilliard the theory the order parameter u is a conserved quan-
tity. Thus it satisfies the conservation law

ut + ∇j = , (.)

with the mass flux j given by the constitutive equation

–j =
∂D
∂∇μ

= M∇μ, (.)

and μ representing the chemical potential

μ =
δψ

δu
+

δD
δut

, (.)

where D ≥ , the dissipation potential, has the form

D(ut ,∇ut ,∇μ) =



k(ut) +


γ|∇ut| +




M|∇μ|, (.)

and M is the mobility, k, γ are the viscosity coefficients corresponding to the rate of the
order parameter and its spatial gradient.

The first variation δψ

δu is defined by the condition that

d
dλ

∫
�

ψ(u + λζ ,∇u + λ∇ζ ,�u + λ�ζ ) dx|λ= =:
∫

�

δψ

δu
ζ dx (.)

most hold for all test functions ζ ∈ C∞
 (�). In the case of free energy this leads to the

following expressions:

δψ

δu
= f (u) – a(u)�u –

a′(u)


|∇u| + γ�u, (.)

δD
δut

= kut – γ�ut . (.)

From the above discussions we know that

μ = f (u) – a(u)�u –
a′(u)


|∇u| + γ�u + kut – γ�ut . (.)
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Combining (.)-(.) we get the following conserved evolution system:

ut – ∇(M∇μ) = ,

μ = f (u) – a(u)�u –
a′(u)


|∇u| + γ�u + kut – γ�ut ,

where � ⊂R
 is a bounded domain with the boundary ∂�, occupied by the ternary mix-

ture, and (, T) is the time interval. We endow this system with the initial and boundary
condition (.) and (.), in this paper we consider the one-dimensional case with M = .

Schimperna and Pawłow [] studied (.) when γ =  with logarithmic potential

F(r) = ( – r) log( – r) + ( + r) log( + r) –
σ


r, σ > .

They investigated the behavior of the solutions to the sixth order system as the parameter
γ tended to , the uniqueness and regularization properties of the solutions have been
discussed.

Pawłow and Zaja̧czkowski [] proved that the problem (.)-(.) with k = γ =  under
consideration is well posed in the sense that it admits a unique global smooth solution
which depends continuously on the initial datum.

In past decades, the optimal control of distributed parameter system had received much
attention in the academic field. A wide spectrum of problems in applications can be solved
by methods of optimal control, such as chemical engineering and vehicle dynamics. Mod-
ern optimal control theories and applied models are not only represented by ODEs, but
also by PDEs. Kunisch and Volkwein solved open-loop and closed-loop optimal control
problems for the Burgers equation [], Armaou and Christofides studied the feedback con-
trol of Kuramto-Sivashing equation [].

Recently, many authors studied the optimal control problem for the pseudo-parabolic
equation, such as Tian et al. [–], Zhao and Liu [].

In this paper, we consider the optimal control problem for the following equation:

(
u – kDu + γDu

)
t –

γ

γ
D(u – kDu + γDu

)
+

γ

γ
Du

+ D
((

a(u) –
γ k
γ

)
Du +

a′(u)


|Du|
)

= Df (u) + B∗ω, (.)

with (.)-(.).
When y = u – kDu + γDu, we take the distributed optimal control problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minJ (y,ω) = 
‖Cy – z‖

S + δ
‖ω‖

L(,T ;Q),

s.t. yt – γ

γ
Dy + γ

γ
Du

+ D((a(u) – γ k
γ

)Du + a′(u)
 |Du|) – Df (u) = B∗ω,

y(x, ) = y = u – kDu(x, ) + γDu(x, ),

u(x, t) = Du(x, t) = Du(x, t) = .

(.)

For fixed T > , we set � = (, ) and Q = � × (, T). Let Q ⊂ Q be an open set with
positive measure.
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Let V = H
(, ), H = L(, ); V ∗ = H–(, ), and H∗ = L(, ) are dual spaces, respec-

tively, and we have

V ↪→ H = H∗ ↪→ V ∗.

The extension operator B∗ ∈ L(L(, T ; Q), L(, T ; V ∗)) is given by

B∗q =

⎧⎨
⎩

q, q ∈ Q,

, q ∈ Q/Q.
(.)

The space W (, T ; V ) is defined by

W (, T ; V ) =
{

y, y ∈ L(, T ; V ), yt ∈ L(, T ; V ∗)},

which is a Hilbert space endowed with the common inner product.
The plan of the paper is as follows. In Section , we prove the existence of the weak

solution in a special space. The optimal control is discussed in Section , and the existence
of an optimal solution is proved.

2 Existence of weak solution
Consider the following the sixth order Cahn-Hilliard type equation:

(
u – kDu + γDu

)
t –

γ

γ
D(u – kDu + γDu

)
+

γ

γ
Du

+ D
((

a(u) –
γ k
γ

)
Du +

a′(u)


|Du|
)

= Df (u) + B∗ω, (.)

under the initial value

u(x, ) = u,

and boundary condition

u(x, t) = Du(x, t) = Du(x, t) = ,

where B∗ω ∈ L(, T ; V ∗) and the control item ω ∈ L(, T ; Q).
Let y = u – kDu + γDu; the above problem is rewritten as

⎧⎪⎪⎨
⎪⎪⎩

yt – γ

γ
Dy + γ

γ
Du + D((a(u) – γ k

γ
)Du + a′(u)

 |Du|) – Df (u) = B∗ω,

y(x, ) = y = u – kDu + γDu,

u(x, t) = Du(x, t) = Du(x, t) = ,

(.)

with (.)-(.).
Now, we give the definition of the weak solution to the problem (.) in the space

W (, T ; V ).
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Definition . A function y(x, t) ∈ W (, T ; V ) is called a weak solution to problem (.),
if

d
dt

(y,φ) +
γ

γ
(Dy, Dφ) –

γ

γ
(Du, Dφ)

–
(

D
(

a(u) –
γ k
γ

)
Du +

a′(u)


|Du|, Dφ

)
+

(
Df (u), Dφ

)
=

(
B∗ω,φ

)
V∗ ,V ,

for all φ ∈ V , a.e. t ∈ [, T] and y ∈ H are valid.

Theorem . The problem (.) admits a weak solution y(x, t) ∈ W (, T ; V ) in the interval
[, T], if B∗ω ∈ L(, T ; V ∗) and y ∈ H .

Proof Employ the standard Galerkin method.
The differential operator A = –∂

x is a linear unbounded self-adjoint operator in H with
D(A) dense in H , where H is a Hilbert space with a scalar product (·, ·) and norm ‖ · ‖.

There exists an orthogonal basis {ψi} of H . Let {ψi}∞i= be the eigenfunctions of the op-
erator A = –∂

x with

Aψj = λjψj,  < λ ≤ λ ≤ · · · , as j → ∞.

For n ∈N, we define the discrete ansatz space by

Vn = span{ψ,ψ, . . . ,ψn} ⊂ V .

Set yn(t) = yn(x, t) =
∑n

i= yn
i (t)ψi(x) and require yn(, ·) → y in H holds true.

To prove the existence of a unique weak solution to the problem (.), we are going to
analyze the limiting behavior of sequences of smooth functions {yn} and {un}.

Performing the Galerkin procedure for the problem (.), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn,t – γ

γ
Dyn + γ

γ
Dun

+ D((a(un) – γ k
γ

)Dun + a′(un)
 |Dun|) – Df (un) = B∗ω,

yn(x, ) = yn, = un, – kDun(x, ) + γDun(x, ),

un(x, t) = Dun(x, t) = Dun(x, t) = .

(.)

According to ODE theory, there is a unique solution to (.) in the interval [, tn]. We
should show that the solution is uniformly bounded when tn → T .

As a first step, multiplying the first equation of (.) by

μn = γ Dun – a(un)Dun –
a′(un)


|Dun| + f (un) + kun,t – γDun,t ,

and integrating with respect to x, we obtain

d
dt

E(un) + ‖Dμn‖ + k‖un,t‖ + γ‖Dun,t‖ =
(
B∗ω,μn

)
V∗ ,V , (.)
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where

E(un) =
∫ 



(
γ


∣∣Dun

∣∣ +
a(un)


|Dun| + F(un)

)
dx (.)

and

F(un) =
(
u

n + (h – )u
n + ( – h)u

n + h
)
. (.)

Applying a simple calculation, we have

F(un) ≥ Cu
n – C, (.)

where C >  and C ≥ .
Since B∗ω ∈ L(, T ; V ∗) is a control item, we assume

∥∥B∗ω
∥∥

V∗ ≤ M. (.)

Taking into account (.), (.), (.), (.), and integrating (.) with respect to time
from  to t, we know

∫ 



(
γ


∣∣Dun

∣∣ +
a


u

n|Dun| + Cu
n

)
dx

+
∫ t


‖Dμn‖ dt + k

∫ t


‖un,t‖ dt + γ

∫ t


‖Dun,t‖ dt

≤
∫ 



|a|


|Dun| dx + E(un,) + C +
∫ t



∣∣(B∗ω,μn
)

V∗ ,V

∣∣dt

≤ ε

∫ 



|a|


∣∣Dun
∣∣ dx + C(ε)

∫ 


u

n dx

+ E(un,) + C +
∫ t



∥∥B∗ω
∥∥

V∗‖μn‖V dt

≤ ε

∫ 



|a|


∣∣Dun
∣∣ dx + C(ε)ε

∫ 


u

n dx + C(ε)

+ E(un,) + C + C(ε)
∫ t



∥∥B∗ω
∥∥

V∗ dt + ε

∫ t



∥∥Dμn
∥∥ dt

= ε

∫ 



|a|


∣∣Dun
∣∣ dx + C(ε)ε

∫ 


u

n dx + C(ε)

+ E(un,) + C + C(ε)
∫ t



∥∥B∗ω
∥∥

V∗ dt + ε

∫ t


‖un,t‖ dt.

Choosing ε, ε, and ε sufficiently small, from the above inequality and the Poincaré in-
equality, we have

∫ 



∣∣Dun
∣∣ dx ≤ C, (.)

∫ 


|Dun| dx ≤ C, (.)
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∫ 


u

n dx ≤ C, (.)
∫∫

QT

|un,t| dx dt ≤ C. (.)

From (.), we know

∫ 


u

n dx ≤ C. (.)

By virtue of (.), (.), and (.), we obtain

‖un‖H ≤ C. (.)

By Sobolev’s imbedding theorem it follows from (.) that

‖un‖L∞ ≤ C, ‖Dun‖L∞ ≤ C. (.)

As a second step, multiplying (.) by Dun and integrating with respect to x, we obtain




d
dt

(∫ 


|Dun| dx + k

∫ 



∣∣Dun
∣∣ dx + γ

∫ 



∣∣Dun
∣∣ dx

)
+ γ

∫ 



∣∣Dun
∣∣ dx

= –
∫ 


Df (un)Dun dx +

∫ 


a(un)DunDun dx

+
∫ 



a′(un)


|Dun|Dun dx –
(
B∗ω, Dun

)
V∗ ,V . (.)

From a simple calculation, we have

a′(un) = aun, (.)

Df (un) = f ′(un)Dun + f ′′(un)(Dun), (.)

where

f ′(un) =
(
u

n + (h – )u
n + ( – h)

) ≥ –C, C > , (.)

f ′′(u) = u
n + (h – )un. (.)

Thus it follows from (.), (.), and (.) that




d
dt

(∫ 


(Dun) dx + k

∫ 



∣∣Dun
∣∣ dx + γ

∫ 



∣∣Dun
∣∣ dx

)
+ γ

∫ 



∣∣Dun
∣∣ dx

≤ –
∫ 



(
f ′(un)Dun + f ′′(un)|Dun|

)
Dun dx

+
∫ 



(
au

n + a
)
DunDun dx

+
∫ 



a′(un)


|Dun|Dun dx +
∥∥B∗ω

∥∥
V∗

∥∥Dun
∥∥

V
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≤ C

∫ 



∣∣Dun
∣∣ dx + C

(‖un‖
L∞ + ‖un‖L∞

)‖Dun‖L∞
∫ 


DunDun dx

+ |a|‖un‖
L∞

∫ 


DunDun dx + |a|

∫ 


DunDun dx

+ |a|
∫ 


un|Dun|Dun dx + C(ε)

∥∥B∗ω
∥∥

V∗ + ε

∫ 



∣∣Dun
∣∣ dx

≤ γ



∫ 



∣∣Dun
∣∣ dx + C, (.)

where ε is sufficiently small.
By the Gronwall inequality, (.) implies

∫∫
QT

∣∣Dun
∣∣ dx dt ≤ C, (.)

∫
�

∣∣Dun
∣∣ dx ≤ C. (.)

As a third step, multiplying (.) by Dun and integrating with respect to x, we obtain

d
dt

(



∫
�

∣∣Dun
∣∣ dx + δ

∫
�

∣∣Dun
∣∣ dx + γ

∫
�

∣∣Dun
∣∣ dx

)
+ γ

∫
�

∣∣Dun
∣∣ dx

= –
∫

�

f ′(un)DunDun dx

–
∫

�

D(a(un)
∣∣Dun

∣∣)Dun dx –
∫

�

D
(

a′(un)


|Dun|
)

Dun dx

= –
∫

�

f ′(un)DunDun dx

+
∫

�

D
(
a(un)

∣∣Dun
∣∣)Dun dx +

∫
�

D
(

a′(un)


|Dun|
)

Dun dx

= I + I + I. (.)

On account of (.) and (.), we know

I ≤ C

(
C(ε)

∫
�

|Dun| dx + ε

∫
�

∣∣Dun
∣∣ dx

)
.

On the other hand, by the Nirenberg inequality, we have

∥∥Dun
∥∥∞ ≤ ∥∥Dun

∥∥ 
 ‖Dun‖ 

 . (.)

Hence, by the Hölder and Young inequalities, we obtain

|I| =
∣∣∣∣
∫

�

D
(
au

n + a
)(

Dun
)
Dun dx

∣∣∣∣

≤ a‖un‖∞‖Dun‖∞
(∫

�

(
Dun

) dx
) 


(∫

�

∣∣Dun
∣∣ dx

) 
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+ C
∥∥Du

∥∥∞‖un‖∞
(∫

�

u
n dx

) 

(∫

�

∣∣Dun
∣∣ dx

) 


≤ C(ε)C
∫

�

∣∣Dun
∣∣ dx.

Similarly,

|I| =
∣∣∣∣
∫

�

D
(

a′(un)


|Dun|
)

Dun dx
∣∣∣∣

≤ a‖Dun‖
∞

(∫
�

|Dun| dx
) 


(∫

�

∣∣Dun
∣∣ dx

) 


+ a‖un‖∞‖Dun‖∞
(∫

�

(
Dun

) dx
) 


(∫

�

∣∣Dun
∣∣ dx

) 


≤ C(ε)C
∫

�

∣∣Dun
∣∣ dx + C,

the ε is sufficiently small.
Therefore, by the Gronwall inequality, we have

sup
<t<T

∫
�

(
Dun

) dx ≤ C, (.)

∫∫
QT

∣∣Dun
∣∣ dx dt ≤ C. (.)

From a simple calculation, we have

‖yn‖V =
∥∥un – kDun + γDun

∥∥
V

≤ C
(‖un‖ + ‖Dun‖ +

∥∥Dun
∥∥ +

∥∥Dun
∥∥ +

∥∥Dun
∥∥ +

∥∥Dun
∥∥)

.

From (.), (.), (.), and (.), we obtain

‖yn‖L(,T ;V ) ≤ C. (.)

As a fourth step, from (.), (.), (.), and the Sobolev embedding theorem, we have

‖yn,t‖V∗ ≤ ∥∥B∗ω
∥∥

V∗ +
∥∥Dun

∥∥ +
∥∥∥∥D

((
a(un) –

γ k
γ

)
Dun +

a′(un)


|Dun|
)∥∥∥∥

+
∥∥Df (un)

∥∥
≤ ∥∥B∗ω

∥∥
V∗ +

∥∥Dun
∥∥ + C‖un‖

L∞
∥∥Dun

∥∥ + C‖un‖L∞
∥∥Dun

∥∥

+C‖un‖
L∞‖Dun‖ + C

≤ C
∥∥Dun

∥∥ + C.

Then

‖yn,t‖L(,T ;V∗) ≤ C.
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Thus, we have:
(i) For every t ∈ [, T], the sequence {yn}n∈N is bounded in L(, T ; H) as well as in

L(, T ; V ), which is independent of the dimension of the ansatz space n.
(ii) For every t ∈ [, T], the sequence {yn,t}n∈N is bounded in L(, T ; V ∗), which is

independent of the dimension of the ansatz space n.
Hence, we get {yn,t}n∈N ⊂ W (, T ; V ), and {yn,t}n∈N weak in W (, T ; V ), weak star in

L∞(, T ; H) and strong in L(, T ; H) to a function y(x, t) ∈ W (, T ; V ). Obviously, the
uniqueness of the solution is easy to obtain []. We omit it here. �

To ensure that the norm of weak solution in the space W (, T ; V ) can be controlled by
the initial value and the control item, we need the following theorem.

Theorem . If B∗ω ∈ L(, T ; V ∗) and y ∈ H , then there exist constants C >  and C >
, such that

‖y‖
W (,T ;V ) ≤ C

(‖y‖
H + ‖ω‖

L(,T ;Q)
)

+ C. (.)

Proof Similar to the proof of Theorem ., we obtain

‖u‖ ≤ C, ‖Du‖ ≤ C, ‖u‖V ≤ C,
∥∥Du

∥∥ ≤ C. (.)

Multiplying the equation by y and integrating the equation with respect to x, we obtain




d
dt

‖y‖
H +

γ

γ
‖Dy‖

H

=
γ

γ

∫ 


DyDu dx +

∫ 


D

((
a(u) –

γ k
γ

)
Du +

a′(u)


|Du|
)

Dy dx

–
∫ 


DyDf (u) dx +

(
B∗ω, y

)
V∗ ,V . (.)

From the Hölder and Young inequalities, we have

γ

γ

∫ 


DyDu dx ≤ C(ε)‖Du‖ + ε‖Dy‖. (.)

From (.), we have

∫ 


D

((
a(u) –

γ k
γ

)
Du +

a′(u)


|Du|
)

Dy dx

≤ (‖u‖
L∞ + C

)‖Dy‖∥∥Du
∥∥ + C‖u‖

L∞‖Du‖L∞
∥∥Du

∥∥
L∞‖Dy‖

+ ‖Du‖‖Dy‖ ≤ ε‖Dy‖ + C

and

–
∫ 


DyDf (u) dx ≤ C

∫ 


Dy dx ≤ C‖Dy‖ + C ≤ C. (.)
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Note that

(
B∗ω, y

)
V∗ ,V ≤ ∥∥B∗ω

∥∥
V∗‖y‖V . (.)

From (.)-(.), we have




d
dt

‖y‖
H +

γ

γ
‖Dy‖

H ≤ ε‖Dy‖
H + C

∥∥B∗ω
∥∥

V∗ + C. (.)

Integrating the above inequality with respect to t yields

‖y‖
H ≤ ‖y‖

H + C
∥∥B∗ω

∥∥
L(,T ;V∗) + C. (.)

By (.), (.), and (.), we deduce that

‖yt‖
V∗ ≤ ∥∥B∗ω

∥∥
V∗ +

γ

γ
‖y‖

V +
γ

γ
‖Du‖

+
∥∥∥∥D

(
a(u)Du +

a′(u)


|Du|
)∥∥∥∥ +

∥∥Df (u)
∥∥

≤ ∥∥B∗ω
∥∥

V∗ + C‖y‖
V + C

≤ ‖y‖
H + C

∥∥B∗ω
∥∥

L(,T ;V∗) + C. (.)

From (.) and (.), we have

‖y‖W (,T ;V ) = ‖y‖L(,T ;V ) + ‖yt‖L(,T ;V∗)

≤ C
(‖y‖

H + ‖ω‖
L(,T ;Q)

)
+ C.

The proof is completed. �

3 Optimal problem
In this section, we will study the distributed optimal control and the existence of the op-
timal solution is obtained based on Lions’ theory.

We study the following problem when ω ∈ L(, T ; Q),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minJ (y,ω) = 
‖Cy – z‖

S + δ
‖ω‖

L(,T ;Q),

s.t. yt – γ

γ
Dy + γ

γ
Du + D((a(u) – γ k

γ
)Du + a′(u)

 |Du|) – Df (u) = B∗ω,

y(x, ) = y = u – kDu(x, ) + γDu,

u(x, t) = Du(x, t) = Du(x, t) = ,

where y = u – kDu + γDu.
As we know that there exists a weak solution y to (.), due to u = ( – k∂

x + γ∂

x )–y,

we know that there exists a weak solution u to (.). Let there be given an observation
operator C ∈ L(W (, T ; V ), S), in which S is a real Hilbert space and C is continuous.

We choose a performance index of tracking type

J (y,ω) =


‖Cy – z‖

S +
δ


‖ω‖

L(,T ;Q), (.)

where z ∈ S is a desired state and δ >  is fixed.



Shi et al. Boundary Value Problems  (2015) 2015:58 Page 12 of 16

The optimal control problem as regards the further generalized sixth order Cahn-
Hilliard equation is

minJ (y,ω), (.)

where (y,ω) satisfies the problem (.).
Let X = W (, T ; V ) × L(, T ; Q) and Y = L(, T ; V ) × H .
We define an operator e = e(e, e) : X → Y by

e(y,ω) = e
(
e(y,ω), e(y,ω)

)
,

where

⎧⎪⎪⎨
⎪⎪⎩

e(y,ω) = (D)–(yt – γ

γ 
Dy + γ

γ 
Du

+ D((a(u) – γ k
γ

)Du + a′(u)
 |Du|) – Df (u) – B∗ω),

e = y(x, ) – y,

and D is an operator from H(, ) to H–(, ).
Then (.) is rewritten as

minJ (y,ω) subject to e = e(y,ω) = .

Now, we have the following theorem.

Theorem . There exists an optimal control solution to the problem.

Proof Let (y,ω) ∈ X satisfy the equation e = e(y,ω) = . In view of (.), we have

J (y,ω) ≥ δ


‖ω‖L(,T ;Q).

From Theorem ., we have

‖y‖W (,T ;V ) → ∞ yields ‖ω‖L(,T ;Q) → ∞.

Hence

J (y,ω) → +∞, when ‖y,ω‖X → ∞. (.)

As the norm is weakly lowered semi-continuous [], we find that J is weakly lowered
semi-continuous.

Since J (y,ω) ≥  for all (y,ω) ∈ X holds, there exists

η = inf
{
J (y,ω)|(y,ω) ∈ X such that e(y,ω) = 

}
,

which means that there exists a minimizing sequence {(yn,ωn)}n∈N in X such that

η = lim
n→∞J

(
yn,ωn) and e = e

(
yn,ωn) = , ∀n ∈N.
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From (.), there exists an element (y∗,ω∗) ∈ X such that

yn ⇀ y∗, y ∈ W (, T ; V ), (.)

ωn ⇀ ω∗, ω ∈ L(, T ; Q), (.)

when n → ∞.
From (.), we have

lim
n→∞

∫ T



(
yn(t) – y∗(t),φ(t)

)
V∗ ,V dt = , ∀φ ∈ L(, T ; V ).

Since W (, T ; V ) is compactly embedded into L(, T ; L∞) and continuously embedded
into C(, T ; H), we derive that yn → y∗ strongly in L(, T ; L∞) and yn → y∗ strongly in
C(, T ; H), as n → ∞. Then we also derive that un → u∗, Dun → Du∗, Dun → Du∗,
Dun → Du∗, Dun → Du∗ strongly in C(, T ; H), as n → ∞.

As the sequence {yn}n∈N converges weakly, ‖yn‖W (,T ;V ) is bounded. Also, we see that
‖yn‖L(,T ;L∞) is bounded based on the embedding theorem.

Since yn → y∗ strongly in L(, T ; L∞), we derive that ‖y∗‖L(,T ;L∞), ‖u∗‖L(,T ;L∞),
‖Du∗‖L(,T ;L∞) and ‖Du∗‖L(,T ;L∞) are bounded.

Notice that
∣∣∣∣
∫ T



∫ 



(
Df (un) – Df

(
u∗))ψ dx dt

∣∣∣∣
=

∣∣∣∣
∫ T



∫ 


D

(
f (un) – f

(
u∗))Dψ dx dt

∣∣∣∣
≤ C

∣∣∣∣
∫ T



∫ 



(
(un)Dun + (un)Dun + Dun

–
(
u∗)Du∗ –

(
u∗)Du∗ – Du∗)Dψ dx dt

∣∣∣∣
≤

∫ T


‖un‖

L∞
∥∥Dun – Du∗∥∥

H‖Dψ‖H dt

+
∫ T



∥∥(un) –
(
u∗)∥∥

H

∥∥Du∗∥∥
L∞‖Dψ‖H dt

+
∫ T



∥∥(un)∥∥
L∞

∥∥Dun – Du∗∥∥
H‖Dψ‖H dt

+
∫ T



∥∥(un) –
(
u∗)∥∥

H

∥∥Du∗∥∥
L∞‖Dψ‖H dt

+
∫ T



∥∥Dun – Du∗∥∥
H‖Dψ‖H dt

≤ ‖un‖
C(,T ;L∞)

∥∥Dun – Du∗∥∥
L(,T ;H)‖Dψ‖L(,T ;H)

+
(‖un‖

C(,T ;L∞) +
∥∥u∗∥∥

C(,T ;L∞)

)∥∥Du∗∥∥
C(,T ;L∞)

∥∥un – u∗∥∥
L(,T ;H)

× ‖Dψ‖L(,T ;H) + ‖un‖
C(,T ;L∞)

∥∥Dun – Du∗∥∥
L(,T ;H)‖Dψ‖L(,T ;H)

+
(‖un‖C(,T ;L∞) +

∥∥u∗∥∥
C(,T ;L∞)

)∥∥un – u∗∥∥
L(,T ;H)

∥∥Du∗∥∥
C(,T ;L∞)
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× ‖Dψ‖L(,T ;H) +
∥∥Dun – Du∗∥∥

C(,T ;H)‖Dψ‖L(,T ;H)

→ , ∀ψ ∈ L(, T ; V ). (.)

As we know

∣∣∣∣
∫ T



∫ 



(
D

(
a(un)Dun +

a′(un)


|Dun|
)

– D
(

a
(
u∗)Du∗ +

a′(u∗)


∣∣Du∗∣∣
))

ψ dx dt
∣∣∣∣

=
∣∣∣∣
∫ T



∫ 


D(a(un)Dun – a

(
u∗)Du∗)ψ dx dt

+
∫ T



∫ 


D

(
a′(un)


|Dun| –

a′(u∗)


∣∣Du∗∣∣
)

ψ dx dt
∣∣∣∣

= |I + I|.

Note that

|I| =
∣∣∣∣
∫ T



∫ 


D

((
a(un) –

γ k
γ

)
Dun –

(
a
(
u∗) –

γ k
γ

)
Du∗

)
ψ dx dt

∣∣∣∣
≤

∣∣∣∣
∫ T



∫ 


D

((
a(un) + a –

γ k
γ

)
Dun

–
(

a
(
u∗) + a –

γ k
γ

)
Du∗

)
Dψ dx dt

∣∣∣∣
=

∣∣∣∣
∫ T



∫ 


D

(
a(un)Dun – a

(
u∗)Du∗)Dψ dx dt

+
∫ T



∫ 


D

((
a –

γ k
γ

)
Dun –

(
a –

γ k
γ

)
Du∗

)
Dψ dx dt

∣∣∣∣
=

∣∣I
 + I


∣∣.

For I
 , we have

∣∣I

∣∣ =

∣∣∣∣
∫ T



∫ 



(
aunDunDun – au∗Du∗Du∗ + a(un)Dun

– a
(
u∗)Du∗)Dψ dx dt

∣∣∣∣
≤ |a|

∫ T


‖un‖L∞‖Dun‖L∞

∥∥Dun – Du∗∥∥
H‖Dψ‖H dt

+ |a|
∫ T



∥∥un – u∗∥∥
H‖Dun‖L∞

∥∥Du∗∥∥
L∞‖Dψ‖H dt

+ |a|
∫ T



∥∥u∗∥∥
L∞

∥∥Dun – Du∗∥∥
H

∥∥Du∗∥∥
L∞‖Dψ‖H dt

+ |a|
∫ T



(‖un‖L∞ +
∥∥u∗∥∥

L∞
)∥∥Dun

∥∥
L∞

∥∥un – u∗∥∥
H‖Dψ‖H dt
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+ |a|
∫ T



∥∥u∗∥∥
L∞

∥∥Dun – Du∗∥∥
H‖Dψ‖H dt

≤ |a|‖un‖C(,T ;L∞)‖Dun‖C(,T ;L∞)
∥∥Dun – Du∗∥∥

L(,T ;H)‖Dψ‖L(,T ;H)

+ |a|
∥∥un – u∗∥∥

L(,T ;H)‖Dun‖C(,T ;L∞)
∥∥Du∗∥∥

C(,T ;L∞)‖Dψ‖L(,T ;H)

+ |a|
∥∥u∗∥∥

C(,T ;L∞)

∥∥Dun – Du∗∥∥
L(,T ;H)

∥∥Du∗∥∥
C(,T ;L∞)‖Dψ‖L(,T ;H)

+ |a|‖un‖C(,T ;L∞)
∥∥Dun

∥∥
L(,T ;L∞)

∥∥un – u∗∥∥
C(,T ;H)‖Dψ‖L(,T ;H)

+
∥∥u∗∥∥

C(,T ;L∞)

∥∥Dun
∥∥

L(,T ;L∞)

∥∥un – u∗∥∥
C(,T ;H)‖Dψ‖L(,T ;H)

+ |a|
∥∥u∗∥∥

C(,T ;L∞)

∥∥Dun – Du∗∥∥
L(,T ;H)‖Dψ‖L(,T ;H)

→ , ∀ψ ∈ L(, T ; V ).

Also we have

I
 =

∫ T



∫ 


D

((
a –

γ k
γ

)
Dun –

(
a –

γ k
γ

)
Du∗

)
Dψ dx dt

≤
∫ T



(
a –

γ k
γ

)∥∥(
Dun – Du∗)∥∥

H‖Dψ‖H dt

≤
(

a –
γ k
γ

)∥∥(
Dun – Du∗)∥∥

C(,T ;H)‖Dψ‖L(,T ;H)

→ , ∀ψ ∈ L(, T ; V ).

Further, similar to (.), we have

I → , ∀ψ ∈ L(, T ; V ).

From (.), we have

∣∣∣∣
∫ T



∫ 



(
B∗ωn – B∗ω∗)ψ dx dt

∣∣∣∣ → , ∀ψ ∈ L(, T ; V ).

In view of the above discussion, we can conclude that

e
(
y∗,ω∗) = , ∀n ∈N.

Since y∗ ∈ W (, T ; V ), we have y∗() ∈ H . From yn ⇀ y∗ in W (, T ; V ), we can infer that
yn() ⇀ y∗(). Thus we obtain

(
yn() – y∗(),ψ

) → , ∀ψ ∈ H ,

which means that e(y∗,ω∗) = , ∀n ∈N.
Hence, we can derive that e(y∗,ω∗) = , ∀n ∈N.
In conclusion, there exists an optimal solution (y∗,ω∗) to the problem. We can infer that

there exists an optimal solution (y∗,ω∗) to the viscous generalized Cahn-Hilliard equation
due to u = ( – k∂

x + γ∂

x )–y. �
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