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Abstract
In this paper, we study the initial-boundary value problem for one-dimensional
compressible magnetohydrodynamics (MHD) flows. Using the local estimates of
strong solutions to three-dimensional compressible MHD (obtained by Fan and Yu in
Nonlinear Anal. 69(10):3637-3660, 2008) and Sobolev’s inequalities, we get the unique
global classical solution (ρ ,u,b), where ρ ∈ C1([0, T ];H1([0, 1])), u ∈ H1([0, T ];H1([0, 1])),
and b ∈ C1([0, T ];H1([0, 1])) for any T > 0. Here, we emphasize that the initial density ρ0

is permitted to contain vacuum states and the initial velocity u0 and the magnetic
field b0 can be arbitrarily large. Also, both the viscosity coefficient μ and the resistivity
coefficient ν depend on the density ρ .

Keywords: global classical solutions; compressible magnetohydrodynamics flows;
vacuum states

1 Introduction
The mathematical model of magnetohydrodynamics (MHD) is used to simulate the mo-
tion of a conducting fluid under the effect of the electromagnetic field and has a very wide
range of applications in astrophysics, plasma, and so on. The governing equations of MHD
can be stated as follows (cf. [, ]):

⎧
⎪⎨

⎪⎩

ρt + (ρu)x = ,
(ρu)t + (ρu)x + Px(ρ) + 

 (b)x = (μ(ρ)ux)x,
bt + (bu)x = (ν(ρ)bx)x,

()

associated with the initial and boundary conditions:

{
(ρ, u, b)(, x) = (ρ, u, b)(x), for x ∈ [, ],
u|x=, = b|x=, = , for t ≥ .

()

The unknown functions ρ , u, P(ρ), and b denote the fluid density, velocity, pressure, and
magnetic field, respectively. The assumptions on the viscosity coefficient μ(ρ) and the
resistivity coefficient ν(ρ) depend on the density ρ , which is mainly due to the physical
meaning (cf. []). For simplicity, we only consider the polytropic gas, i.e., P = P(ρ) = aργ

with a >  and γ >  being constants.

© 2015 Su et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13661-015-0324-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0324-6&domain=pdf
mailto:mlsulynu@163.com


Su et al. Boundary Value Problems  (2015) 2015:62 Page 2 of 18

In this paper, we will focus on the existence of the global classical solutions to the initial-
boundary value problem ()-(). Before we present our main result, we first recall some of
the previous results concerning the compressible MHD. Lots of work has been done on
the global existence and the regularity of the solutions, we begin with the one-dimensional
case. The existence and uniqueness of local smooth solutions were proved firstly in [],
while the existence of global smooth solutions with small smooth initial data was shown
in []. The exponential stability of small smooth solutions was obtained in [, ]. Recently,
Fan et al. [, ] obtained the existence, the uniqueness and the Lipschitz continuous de-
pendence on the initial data of global weak solutions of compressible MHD when the ini-
tial data lie in the Lebesgue spaces. In addition, Fan et al. [] obtained the global strong
solutions to the planar compressible MHD with large initial data and vacuum.

For the multi-dimensional compressible MHD equations, there are also lots of mathe-
matical results. Volpert and Hudjaev [] first obtained the local smooth solutions to the
compressible MHD equations as mentioned before. Li et al. [] obtained the existence and
uniqueness of local strong solutions in time ith large initial data when the initial density
has a positive lower bound. Fan and Yu [] obtained the strong solutions to the com-
pressible MHD equations with vacuum. Kawashima [] obtained the smooth solutions
for two-dimensional compressible MHD equations when the initial data is a small pertur-
bation of a given constant state. Umeda et al. [] obtained the decay of solutions to the
linearized MHD equations. Li and Yu [] obtained the optimal decay rate of small smooth
solutions. In [, ], Hu and Wang obtained the global existence of weak solutions to the
isentropic compressible MHD equations and variational solutions to the full compress-
ible MHD equations; see also [–] for related results. Suen and Hoff [] obtained the
global low-energy weak solutions of the isentropic compressible MHD equations. Later,
Liu et al. [] obtained the global weak solution with discontinuous initial data when the
initial energy is small enough. Under the assumption that the initial energy is sufficiently
small, Li et al. [] obtained the large time existence of classical solutions to the com-
pressible MHD which may have large oscillations and vacuum. At the same time, they
also obtained the large time behavior as follows:

lim
t→∞

(
∥
∥ρ(·, t) – ρ̃

∥
∥

Lp +
∫

ρ/|u| dx +
∥
∥∇u(·, t)

∥
∥

Lr +
∥
∥∇b(·, t)

∥
∥

Lr

)

= ,

for r ∈ [, ) and

p ∈
{

(γ ,∞), if ρ̃ = ,
(,∞), if ρ̃ > .

The large time behavior was recently improved by Lv et al. in [], precisely speaking,

⎧
⎪⎨

⎪⎩

‖∇b‖Lp ≤ Ct–+(–p)/p, for p ∈ [, ],
‖∇u(·, t)‖Lp ≤ Ct–+/p, for p ∈ [, ],
‖P(·, t)‖Lr ≤ C(r)t–+/r , for r ∈ (,∞),

where C(r) and C both depend on ‖ρ‖L(R) as γ > /.
Here we point out that although there are many progress on compressible MHD equa-

tions, it is still an open question to obtain the global strong or smooth solutions to the
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full compressible MHD equations with large initial data and possible vacuum even in the
one-dimensional case; see [].

To proceed, we first introduce the notions and conventions used throughout the paper.
We denote

∫

f dx =
∫

I
f dx,

where I = (, ) is the space interval. For p ≥ , Lp = Lp(I) denotes the Lp space with the
norm ‖ · ‖Lp . For k ≥  and p ≥ , W k,p = W k,p(I) denotes the Sobolev space, whose norm
is denoted ‖ · ‖W k,p , and Hk = W k,. For k ≥  and  < α < , let Ck+α denote the Schauder
function space on I , whose kth order derivative is Hölder continuous with the exponent
α and with the norm ‖ · ‖Ck+α .

Our main result is stated as follows.

Theorem . Assume that ρ ≥ , ρ ∈ H, ρ
γ
 ∈ H, (u, b) ∈ H ∩ H

, and the initial
data satisfy the following compatibility conditions:

[
μ(ρ)ux

]

x(x) –
[
P(ρ)

]

x(x) = ρ(x)g(x), x ∈ [, ], ()

for a given function g ∈ H
. Furthermore, assume that the viscosity and the resistivity coef-

ficient satisfy

μ ∈ C[,∞),  < M ≤ μ(ρ) ≤ M
(
 + ργ

)
, for any ρ ≥ , ()

and

ν ∈ C[,∞),  < N ≤ ν(ρ), for any ρ ≥ , ()

where M, M, and N are some positive constants.
Then for any T >  there exists a unique global classical solution (ρ, u, b) to the initial-

boundary value problem ()-() satisfying

(ρ,ργ ) ∈ C
(
[, T]; H),

(
ρt , (ργ )t

) ∈ C
(
[, T]; H),

ρtt ∈ C
(
[, T]; L), ρ ≥ ,

(
ργ

)

tt ∈ L∞(
[, T]; L),

(ρu)t ∈ C
(
[, T]; H), (u, b) ∈ C

(
[, T]; H ∩ H


)
,

ut ∈ L∞(
[, T]; H


) ∩ L([, T]; H),

bt ∈ C
(
[, T]; H), btt ∈ C

(
[, T]; L).

Remark . For the assumption () on the initial data, which we called compatibility con-
dition, was first introduced in [] to study the viscous compressible fluid. After that, Kim
et al. studied the local well-posedness of compressible fluid in a series papers (cf. [–]).
Roughly speaking, the compatibility condition () is equivalent to the L-integrability of√

ρut at t = , which is natural and plays a crucial role in deducing the regularity of the
time derivatives of u.
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Remark . For mathematical technique, we assume that the viscosity μ(ρ) and the re-
sistivity coefficient ν(ρ) satisfy () and (), respectively. Precisely, the lower bound of μ(ρ)
and ν(ρ) will be used to improve the regularity of the velocity u and the magnetic fields b,
respectively. The upper bound of μ(ρ) will be used to deduce the upper bound of the den-
sity ρ , which plays a crucial role in the analysis of the classical solution of the compressible
MHD.

Remark . In Theorem ., because ρ ∈ H cannot imply ρ
γ
 ∈ H with γ ∈ (, ), we

assume that ρ
γ
 ∈ H as well as ρ ∈ H.

The rest of the paper is organized as follows. In Section , we prove Theorem . by
giving the initial density with a lower bound δ > , getting a sequence of approximate
solutions to ()-() and taking δ → + after making some uniform estimates for δ on the
approximate solutions.

2 Proof of Theorem 1.1
This section we devote to proving Theorem .. Since the proof of local existence and
uniqueness of strong solutions to the approximate problem is now standard in [], thus
we only focus on a priori estimates of the solutions to the initial-boundary value problem
()-(). For any given T ∈ (,∞), let (ρ, u, b) be the classical solution to ()-(). Then we
have the following basic energy estimate.

Lemma . For any  ≤ t ≤ T , one obtains that

sup
≤t≤T

∫
(
ρu + b + ργ

)
dx +

∫ T



∫
(
u

x + b
x
)

dx dt ≤ C, ()

where C is some generic constant depending on the initial data, the viscosity and electrical
resistivity, and may change line by line.

Proof Multiplying the second and third equations in () by u and b, integrating the re-
sulting equations over I and summing them together, then using integration by parts and
from the conditions () and (), we can show that () holds. This completes the proof.

�

Lemma . For any (s, y) ∈ QT , we have

 ≤ ρ(s, y) ≤ C. ()

Proof Denote

w(t, x) =
∫ t



[

μ(ρ)ux – ρu – ργ –



b
]

(s, x) ds +
∫ x


(ρu)(y) dy. ()

Differentiating () with respect to x and using the second equation in (), we have

wx = ρu,
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which together with () and Hölder’s inequality yields

∫

|wx|dx ≤ C.

From (), (), and (), we conclude

∫

|w|dx ≤ C.

Due to W , ↪→ L∞, one obtains

‖w‖L∞(QT ) ≤ C. ()

For any (s, y) ∈ QT , let x(t, y) satisfy

{
dx(t,y)

dt = u(t, x(t, y)),  ≤ t < s,
x(s, y) = y.

()

Denote

F(t, x) = exp

{∫ ρ(t,x)



μ(ξ )
ξ

dξ + w(t, x)
}

.

It is easy to verify

dF(t, x(t, y))
dt

=
∂F
∂t

+ u
∂F
∂x

= F
(

μ(ρ)
ρ

ρt + wt +
μ(ρ)

ρ
ρxu + ρu

)

= –
(

ργ +



b
)

F ,

which together with the definition of F(t, x) yields

dF(t, x(t, y))
dt

≤ . ()

Integrating () with respect to t over (, s) and using (), one obtains

F(s, y) ≤ F
(
, x(, y)

) ≤ C.

By the above inequality and (), we obtain

exp

{∫ ρ(s,y)



μ(ξ )
ξ

dξ

}

≤ exp
{

–w(s, y)
} ≤ C,

which together with () and () yields

ρ(s, y) ≤ C.
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From (), (), and (), it is easy to obtain

ρ(s, y) ≥ .

Therefore, we complete the proof of Lemma .. �

Lemma . plays a key role in the proof of Theorem ..

Lemma . For any  ≤ t ≤ T , one obtains

sup
≤t≤T

∫
(
u

x + b
x
)

dx +
∫ T



∫
(
ρu

t + b
t
)

dx dt ≤ C. ()

Proof Using the first equation in (), we rewrite the second equation in () as

ρut + ρuux +
(
ργ

)

x +


(
b)

x =
(
μ(ρ)ux

)

x. ()

Multiplying () by ut , integrating the resulting equation over I with respect to x, using
integration by parts and from Cauchy’s inequality, we conclude

∫

ρu
t dx +




d
dt

∫

μ(ρ)u
x dx

=
d
dt

∫

ργ ux dx +



d
dt

∫

bux dx –
∫

bbtux dx – γ

∫

ργ –ρtux dx

+



∫

μ′(ρ)ρtu
x dx –

∫

ρuuxut dx

≤ d
dt

∫

ργ ux dx +



d
dt

∫

bux dx +



∫

b
t dx + C

∫

bu
x dx

+ γ

∫

ργ –(ρu)xux dx –



∫

μ′(ρ)(ρu)xu
x dx

+



∫

ρu
t dx + C

∫

ρuu
x dx. ()

Multiplying the third equation in () by bt , integrating the resulting equation with respect
to x over I , using integration by parts and from Cauchy’s inequality, we obtain

∫

b
t dx +




d
dt

∫

ν(ρ)b
x dx

=



∫

ν ′(ρ)ρtb
x dx –

∫

bxubt dx –
∫

buxbt dx

≤ –



∫

ν ′(ρ)(ρu)xb
x dx +




∫

b
t dx + C

∫
(
b

xu + bu
x
)

dx. ()

Combining () and (), we obtain

∫
(
ρu

t + b
t
)

dx +
d
dt

∫
[
μ(ρ)u

x + ν(ρ)b
x
]

dx

≤ 
d
dt

∫

ργ ux dx +
d
dt

∫

bux dx + C
∫

(
bu

x + ρuu
x + b

xu)dx
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+ γ

∫

ργ –(ρu)xux dx –
∫

μ′(ρ)(ρu)xu
x dx –

∫

ν ′(ρ)(ρu)xb
x dx

≤ 
d
dt

∫

ργ ux dx +
d
dt

∫

bux dx

+ C
[(∫

ν(ρ)b
x dx

)(∫

μ(ρ)u
x dx

)

+
(∫

μ(ρ)u
x dx

)]

+ γ

∫

ργ u
x dx + γ

∫

ργ –ρxuux dx –
∫

μ′(ρ)ρxuu
x dx

–
∫

μ′(ρ)ρu
x dx –

∫

ν ′(ρ)ρxub
x dx –

∫

ν ′(ρ)ρuxb
x dx

≤ 
d
dt

∫

ργ ux dx +
d
dt

∫

bux dx

+ C
[(∫

ν(ρ)b
x dx

)(∫

μ(ρ)u
x dx

)

+
(∫

μ(ρ)u
x dx

)]

+ C
∥
∥μ(ρ)ux

∥
∥

L∞

(∫

μ(ρ)u
x dx +

∫

ν(ρ)b
x dx

)

+ γ

∫

ργ –ρxuux dx –
∫

μ′(ρ)ρxuu
x dx –

∫

ν ′(ρ)ρxub
x dx. ()

We will first estimate the last three terms in the right hand-side of (). We have

γ

∫

ργ –ρxuux dx

= γ

∫
ργ –

μ(ρ)
ρxu

[
μ(ρ)ux

]
dx

= γ

∫
ργ –

μ(ρ)
ρxu

[
μ(ρ)ux – ργ

]
dx + γ

∫
ργ –

μ(ρ)
ρxu dx

= γ

∫ (∫ ρ



ξγ –

μ(ξ )
dξ

)

x
u
[
μ(ρ)ux – ργ

]
dx + γ

∫ (∫ ρ



ξ γ –

μ(ξ )
dξ

)

x
u dx

= –γ

∫ (∫ ρ



ξγ –

μ(ξ )
dξ

)

ux
[
μ(ρ)ux – ργ

]
dx

– γ

∫ (∫ ρ



ξγ –

μ(ξ )
dξ

)

u
[
μ(ρ)ux – ργ

]

x dx – γ

∫ (∫ ρ



ξ γ –

μ(ξ )
dξ

)

ux dx

≤ C
∫

μ(ρ)u
x dx + C + C

∫

|u|
∣
∣
∣
∣ρut + ρuux +




b
∣
∣
∣
∣dx

≤ C
∫

μ(ρ)u
x dx + C +




∫

ρu
t dx + C

(∫

μ(ρ)u
x dx

)

.

Similarly,

–
∫

μ′(ρ)ρxuu
x dx

= –
∫

μ′(ρ)
μ(ρ)

ρxu
[
μ(ρ)ux

] dx

= –
∫

μ′(ρ)
μ(ρ)

ρxu
[
μ(ρ)ux – ργ

] dx +
∫

μ′(ρ)
μ(ρ)

ρxuργ dx – 
∫

μ′(ρ)ργ

μ(ρ)
ρxuux dx
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=
∫ (∫ ρ




μ(ξ )

dξ

)

x
u
[
μ(ρ)ux – ργ

] dx –
∫ (∫ ρ



μ′(ξ )ξ γ

μ(ξ )
dξ

)

x
u dx

– 
∫ (∫ ρ



μ′(ξ )ξγ

μ(ξ )
dξ

)

x
u
[
μ(ρ)ux – ργ

]
dx

= –
∫ (∫ ρ




μ(ξ )

dξ

)

ux
[
μ(ρ)ux – ργ

] dx

– 
∫ (∫ ρ




μ(ξ )

dξ

)

u
[
μ(ρ)ux dx – ργ

][
μ(ρ)ux – ργ

]

x dx

+
∫ (∫ ρ



μ′(ξ )ξ γ

μ(ξ )
dξ

)

ux dx + 
∫ (∫ ρ



μ′(ξ )ξγ

μ(ξ )
dξ

)

ux
[
μ(ρ)ux – ργ

]
dx

+ 
∫ (∫ ρ



μ′(ξ )ξν

μ(ξ )
dξ

)

u
[
μ(ρ)ux – ργ

]

x dx

≤ C
∥
∥μ(ρ)ux

∥
∥

L∞

∫

μ(ρ)u
x dx + C

∫

μ(ρ)u
x dx + C

+ 
∫ (∫ ρ



μ′(ξ )ξγ

μ(ξ )
dξ

)

u
(

ρut dx + ρuux +
b



)

dx

– 
∫ (∫ ρ




μ(ξ )

dξ

)

u
[
μ(ρ)ux – ργ

]
(

ρut + ρuux +
b



)

dx

≤ C
∥
∥μ(ρ)ux

∥
∥

L∞

∫

μ(ρ)u
x dx + C

∫

μ(ρ)u
x dx + C

+ C
(∫

μ(ρ)u
x dx

)

+ C
∫

ν(ρ)b
x dx.

Similarly,

–
∫

ν ′(ρ)ρxb
x dx

= –
∫

ν ′(ρ)ρxu
ν(ρ)

[
ν(ρ)bx

] dx

= –
∫ (∫ ρ



ν ′(ξ )
ν(ξ )

dξ

)

x
u
[
ν(ρ)bx

] dx

=
∫ (∫ ρ



ν ′(ξ )
ν(ξ )

dξ

)

ux
[
ν(ρ)bx

] dx + 
∫ (∫ ρ



ν ′(ξ )
ν(ξ )

dξ

)

uν(ρ)bx
[
ν(ρ)bx

]

x dx

=
∫ (∫ ρ



ν ′(ξ )
ν(ξ )

dξ

)

ux
[
ν(ρ)bx

] dx + 
∫ (∫ ρ



ν ′(ξ )
ν(ξ )

dξ

)

uν(ρ)bx
[
bt + (bu)x

]
dx

≤ C
∥
∥μ(ρ)ux

∥
∥

L∞

∫

ν(ρ)b
x dx +




∫

b
t dx + C

(∫

μ(ρ)u
x dx

)(∫

ν(ρ)b
x dx

)

+ C
(∫

μ(ρ)u
x dx

)

+ C
(∫

ν(ρ)b
x dx

)

.

Substituting all the above estimates into (), we obtain
∫

(
ρu

t + b
t
)

dx +
d
dt

∫
[
μ(ρ)u

x + ν(ρ)b
x
]

dx

≤ C
d
dt

∫
(
ργ ux + bux

)
dx + C

(∫

μ(ρ)u
x dx

)(∫

ν(ρ)b
x dx

)



Su et al. Boundary Value Problems  (2015) 2015:62 Page 9 of 18

+ C
(∫

μ(ρ)u
x dx

)

+ C
∥
∥μ(ρ)ux

∥
∥

L∞

∫
[
ν(ρ)b

x + μ(ρ)u
x
]

dx

+ C
∫

μ(ρ)u
x dx + C

∫

ν(ρ)b
x dx + C

(∫

ν(ρ)b
x dx

)

+ C. ()

Now, we focus on the estimate of ‖μ(ρ)ux‖L∞ . Due to (), W , ↪→ L∞, and Cauchy’s in-
equality, we conclude

∥
∥μ(ρ)ux

∥
∥

L∞ ≤ ∥
∥μ(ρ)ux – ργ

∥
∥

L∞ + C

≤ C
∫

{∣
∣μ(ρ)ux – ργ

∣
∣ +

∣
∣
[
μ(ρ)ux – ργ

]

x

∣
∣
}

dx + C

≤ C
∫

μ(ρ)|ux|dx + C
∫ ∣

∣
∣
∣ρut + ρuux +




bbx

∣
∣
∣
∣dx + C

≤ C
∫

μ(ρ)u
x dx + C

∫ (∫

ρu
t dx

) 


dx + C
∫

ν(ρ)b
x dx + C. ()

By (), (), and Cauchy’s inequality, one obtains

∫
(
ρu

t + b
t
)

dx +
d
dt

∫
[
μ(ρ)u

x + ν(ρ)b
x
]

dx

≤ C
d
dt

∫
(
ργ ux + bux

)
dx + C

(∫
[
μ(ρ)u

x + ν(ρ)b
x
]

dx
)

+ C. ()

Integrating () with respect to t over (, T) and using Cauchy’s inequality, we have

∫ T



∫
(
ρu

t + b
t
)

dx dt +
∫

[
μ(ρ)u

x + ν(ρ)b
x
]

dx

≤ C
∫

(
ργ ux + bux

)
dx +

∫ T



(∫
[
μ(ρ)u

x + ν(ρ)b
x
]

dx
)

dt + C

≤ 


∫

μ(ρ)u
x dx +




∫

ν(ρ)b
x dx +

∫ T



(∫
[
μ(ρ)u

x + ν(ρ)b
x
]

dx
)

dt + C,

where we have used the following interpolation inequality in one dimension:

‖b‖L ≤ C‖b‖ 

L‖bx‖



L .

Using Gronwall’s inequality and (), we complete the proof of Lemma .. �

Next, we focus on the L-estimates of ρt and ρx, which are independent on time t.

Lemma . For any  ≤ t ≤ T , one obtains

sup
≤t≤T

∫
(
ρ

t + ρ
x
)

dx ≤ C. ()

Proof Differentiating the first equation in () with respect to x, multiplying the resulting
equation by ρx, then integrating this new equation over I with respect to x and using in-
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tegration by parts, one deduces




d
dt

∫

ρ
x dx

= –



∫

ρ
x ux dx –

∫
ρρx[μ(ρ)ux]x

μ(ρ)
dx +

∫
ρμ′(ρ)ρ

x ux

μ(ρ)
dx

≤ C
∥
∥μ(ρ)ux

∥
∥

L∞

∫

ρ
x dx –

∫
ρρx

μ(ρ)

[

ρut + ρuux +
(
ργ

)

x +


(
b)

x

]

dx

≤ C
∫

ρu
t dx

∫

ρ
x dx + C

∫

ρ
x dx + C

∫

ρu
t dx

+ C‖b‖L∞
(∫

ρ
x dx

) 

(∫

b
x dx

) 


≤ C
(∫

μ(ρ)u
x dx + 

)(∫

ρ
x dx

)

+ C, ()

where we have used (), (), (), (), (), (), and Cauchy’s inequality. Then () together
with Gronwall’s inequality yields

sup
≤t≤T

∫

ρ
x dx ≤ C. ()

By the first equation in (), (), and (), one easily obtains

sup
≤t≤T

∫

ρ
t dx ≤ C. ()

Thus, we complete the proof of Lemma .. �

From now on, we start to deduce the higher a priori estimates. First, we consider the
L-estimates of uxx and bxx.

Lemma . For any  ≤ t ≤ T , one obtains

∫ T



∫
(
u

xx + b
xx

)
dx dt ≤ C. ()

Proof From the second equation in (), (), (), (), and (), we conclude

∫ T



∫

u
xx dx dt

≤ C
∫ T



∫

ρu
t dx dt + C

∫ T



(∫

u
x dx

)

dt + C
∫ T



∫

ρ
x dx dt

+ C
∫ T



(∫

b
x dx

)

dt + C
∫ T



∥
∥μ(ρ)ux

∥
∥

L∞

∫

ρ
x dx dt

≤ C. ()
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Similarly, we obtain

∫ T



∫

b
xx dx dt

≤ C
∫ T



∫

b
t dx dt + C

∫ T



(∫

b
x dx

)(∫

u
x dx

)

dt

≤ C. ()

Combining () and (), we obtain (). This completes the proof. �

Next, we deduce the L-estimates on uxt and bxt .

Lemma . For any  ≤ t ≤ T , one obtains

sup
≤t≤T

∫
(
ρu

t + b
t
)

dx +
∫ T



∫
(
u

xt + b
xt
)

dx dt ≤ C. ()

Proof Differentiating () with respect to t, multiplying the resulting equation by bt , then
integrating this new equation over I with respect to x and using integration by parts, we
obtain




d
dt

∫

ρu
t dx +

∫

μ(ρ)u
xt dx

= –
∫

ρuutuxt dx –
∫

ρtuutux dx –
∫

ρu
t ux dx

+
∫

bbtuxt dx + γ

∫

ργ –ρtuxt dx –
∫

μ′(ρ)ρtuxuxt dx. ()

Similarly, differentiating the third equation in () with respect to t, multiplying the result-
ing equation by bt , then integrating this new equation over I with respect to x and using
integration by parts, we have




d
dt

∫

b
t dx +

∫

ν(ρ)b
xt dx

= –



∫

b
t ux dx –

∫

bxbtut dx +



∫

bxb
t dx –

∫

ν ′(ρ)ρtbxbxt dx. ()

Combining () and (), one deduces that




d
dt

∫
(
ρu

t + b
t
)

dx +
∫

[
μ(ρ)u

xt + ν(ρ)b
xt
]

dx

= –
∫

ρuutuxt dx –
∫

ρtuutux dx –
∫

ρu
t ux dx + γ

∫

ργ –ρtuxt dx

–
∫

μ′(ρ)ρtuxuxt dx +
∫

bbtuxt dx –



∫

b
t ux dx –

∫

bxbtut dx

+



∫

bxb
t dx –

∫

ν ′(ρ)ρtbxbxt dx

≤ C‖ρ‖ 

L∞‖u‖L∞‖√ρut‖L‖uxt‖L + C‖u‖L∞‖ut‖L∞‖ρt‖L‖ux‖L
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+ C‖ux‖L∞‖√ρut‖
L + C‖ρ‖γ –

L∞ ‖ρt‖L‖uxt‖L

+ C
∥
∥μ′(ρ)

∥
∥

L∞‖ux‖L∞‖ρt‖L‖uxt‖L + C‖ux‖L∞‖bt‖
L

+ C‖b‖L∞‖bt‖L‖uxt‖L + C‖ut‖L∞‖bx‖L‖bt‖L

+ C‖bx‖L∞‖bt‖
L + C

∥
∥ν ′(ρ)

∥
∥

L∞‖bx‖L∞‖ρt‖L‖bxt‖L

≤ C
(
 + ‖uxx‖

L + ‖bxx‖
L

)(‖√ρut‖
L + ‖bt‖

L
)

+


∥
∥
√

μ(ρ)uxt
∥
∥

L +


∥
∥
√

ν(ρ)bxt
∥
∥

L + C, ()

where in the last inequality we have used Cauchy’s inequality, Hölder’s inequality,
Sobolev’s embedding inequality, (), (), (), and ().

It follows from () that

d
dt

∫
(
ρu

t + b
t
)

dx +
∫

[
μ(ρ)u

xt + ν(ρ)b
xt
]

dx

≤ C
(
 + ‖uxx‖

L + ‖bxx‖
L

)(‖√ρut‖
L + ‖bt‖

L
)

+ C,

which together with () and Gronwall’s inequality yields (). This completes the proof.
�

Lemma . For any  ≤ t ≤ T , one obtains that

sup
≤t≤T

∫
(
u

xx + b
xx

)
dx ≤ C. ()

Proof Rewrite () as

μ(ρ)uxx = ρut + ρuux + bbx + γργ –ρx – μ′(ρ)ρxux.

Thus, from () and Minkowski’s inequality, we obtain

‖uxx‖
L ≤ C‖√ρut‖

L + C‖ρ‖
L∞‖u‖

L∞‖ux‖
L + C‖b‖

L∞‖bx‖
L

+ C‖ux‖
L∞

∥
∥μ′(ρ)

∥
∥

L∞‖ρx‖
L + C‖ρ‖(γ –)

L∞ ‖ρx‖
L

≤ C‖√ρut‖
L + C‖ux‖

L + C‖bx‖
L + C‖ρx‖

L

+ C‖ux‖
L∞‖ρx‖

L , ()

which together with (), (), and () yields

sup
≤t≤T

‖uxx‖
L ≤ C, ()

where

sup
≤t≤T

‖ux‖L∞ ≤ C

can be shown from (), (), and ().
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Similarly, rewrite the third equation in () as

ν(ρ)bxx = bt + bxu + bux – ν ′(ρ)ρxbx.

From () and Minkowski’s inequality, we obtain

‖bxx‖
L ≤ C‖bt‖

L + C‖bx‖
L‖u‖

L∞ + C‖b‖
L∞‖ux‖

L + C
∥
∥ν ′(ρ)

∥
∥

L∞‖bx‖
L∞

≤ C‖bt‖
L + C‖bx‖

L‖ux‖
L + C‖bx‖

L∞‖ρx‖
L . ()

By the fact that W , ↪→ L∞, Sobolev’s embedding inequality, (), (), and (), we obtain

∥
∥ν(ρ)bx

∥
∥

L∞

≤ C
∫

(∣
∣ν(ρ)bx

∣
∣ +

∣
∣
[
ν(ρ)bx

]

x

∣
∣
)

dx

≤ C
∥
∥ν(ρ)

∥
∥

L∞‖bx‖L + C‖bt‖L + C‖bx‖L‖ux‖L

≤ C,

which together with (), (), (), and () yields

sup
≤t≤T

‖bxx‖
L ≤ C. ()

Combining () and (), one can show that () holds. This completes the proof. �

Lemma . For any  ≤ t ≤ T , one obtains

sup
≤t≤T

∫
[
ρ

xx + ρ
xt +

∣
∣
(
ργ

)

xx

∣
∣ +

∣
∣
(
ργ

)

xt

∣
∣]dx +

∫ T



∫
[
ρ

tt +
∣
∣
(
ργ

)

tt

∣
∣]dx dt ≤ C. ()

Proof Differentiating the first equation in () twice with respect to x, multiplying the re-
sulting equation by ρxx, then integrating this new equation over I with respect to x and
using integration by parts, we conclude




d
dt

∫

ρ
xx dx

= –



∫

ρ
xxux dx – 

∫

ρxρxxuxx dx –
∫

ρρxxuxxx dx

≤ C‖ux‖L∞
∫

ρ
xx dx + C‖ρx‖L∞‖ρxx‖L‖uxx‖L

+ C‖ρ‖L∞‖ρxx‖L‖uxxx‖L

≤ C
∫

ρ
xx dx + C

(
 + ‖ρxx‖L

)‖ρxx‖L + C‖uxxx‖
L

≤ C
∫

ρ
xx dx + C‖uxxx‖

L + C, ()
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where in the first inequality of () we have used Hölder’s inequality and (), and in the
second inequality of () we have used Sobolev’s inequality, Cauchy’s inequality, (), and
().

From the first equation in (), one can easily deduce

(
ργ

)

t +
(
ργ

)

xu + γργ ux = . ()

Like (), one obtains




d
dt

∫
∣
∣
(
ργ

)

xx

∣
∣ dx ≤ C

∫
∣
∣
(
ργ

)

xx

∣
∣ dx + C‖uxxx‖

L + C. ()

Combining () and (), it is easy to obtain

d
dt

∫
[
ρ

xx +
∣
∣
(
ργ

)

xx

∣
∣]dx ≤ C

∫
[
ρ

xx +
∣
∣
(
ργ

)

xx

∣
∣]dx + C

∫

u
xxx dx + C. ()

Differentiating () with respect to x, we obtain

μ(ρ)uxxx = ρxut + ρuxt + ρxuux + ρu
x + ρuuxx +

(
ργ

)

xx

+ b
x + bbxx – μ′′(ρ)ρ

x ux – μ′(ρ)ρxxux – μ′(ρ)ρxuxx, ()

which together with () gives

∫

u
xxx dx

≤ C‖ut‖
L∞‖ρx‖

L + C‖ρ‖
L∞‖uxt‖

L

+ C‖u‖
L∞‖ux‖

L∞‖ρx‖
L + C‖ρ‖

L∞‖ux‖
L∞‖ux‖

L

+ C‖ρ‖
L∞‖ux‖

L∞‖uxx‖
L +

∥
∥C

(
ργ

)

xx

∥
∥

L

+ C‖bx‖
L∞‖bx‖

L + C‖b‖
L∞‖bxx‖

L

+ C
∥
∥μ′′(ρ)

∥
∥

L∞‖ux‖
L∞‖ρx‖

L∞‖ρx‖
L

+ C
∥
∥μ′(ρ)

∥
∥

L∞‖ux‖
L∞‖ρxx‖

L + C
∥
∥μ′(ρ)

∥
∥

L∞‖ρx‖
L∞‖uxx‖

L

≤ C‖uxt‖
L‖ρx‖

L + C‖uxt‖
L + C‖ux‖

L‖uxx‖
L‖ρx‖

L

+ C‖uxx‖
L‖ux‖

L + C‖ux‖
L‖uxx‖

L

+ C
∥
∥
(
ργ

)

xx

∥
∥

L + C‖bxx‖
L‖bx‖

L + C‖uxx‖
L‖ρx‖

L‖ρxx‖
L

+ C‖uxx‖
L‖ρxx‖

L + C‖ρxx‖
L‖uxx‖

L

≤ C‖uxt‖
L + C

∥
∥
(
ργ

)

xx

∥
∥

L + C‖ρxx‖
L + C. ()

Combining () and (), we have

d
dt

∫
[
ρ

xx +
∣
∣
(
ργ

)

xx

∣
∣]dx ≤ C

[‖ρxx‖
L +

∥
∥
(
ργ

)

xx

∥
∥

L
]

+ C‖uxt‖
L + C,
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which together with () and Gronwall’s inequality yields

sup
≤t≤T

∫
[
ρ

xx +
∣
∣
(
ργ

)

xx

∣
∣]dx ≤ C. ()

Then, from the first equation in (), (), (), (), (), (), (), and (), we obtain

sup
≤t≤T

∫
[
ρ

xx +
∣
∣
(
ργ

)

xx

∣
∣]dx +

∫ T



∫
[
ρ

tt +
∣
∣
(
ργ

)

tt

∣
∣]dx dt ≤ C. ()

Combining () and (), we can show that () holds. This completes the proof. �

Remark . It follows from (), (), and () that

∫ T



∫

u
xxx dx dt ≤ C. ()

Lemma . For any  ≤ t ≤ T , one obtains

sup
≤t≤T

∫
(
u

xt + b
xt
)

dx +
∫ T



∫
(
ρu

tt + b
tt
)

dx dt ≤ C. ()

Proof From (), we have

ρutt + ρtut + ρtuux + ρutux + ρuuxt +
(
ργ

)

xt +


(
b)

xt =
[
μ(ρ)ux

]

xt . ()

Multiplying () by utt , integrating the resulting equation over I with respect to x, using
integration by parts, and from () and Cauchy’s inequality, one obtains




d
dt

∫

μ(ρ)u
xt dx +

∫

ρu
tt dx

=



∫

μ′(ρ)ρtu
xt dx –

∫

μ′(ρ)ρtuxuxtt dx –
∫

ρtututt dx

–
∫

ρtuuxutt dx –
∫

ρutuxutt dx –
∫

ρuuxtutt dx

+
(
ργ

)

tuxtt dx +



∫
(
b)

tuxtt dx

≤ C
∥
∥μ′(ρ)

∥
∥

L∞‖ρt‖L∞
∫

μ(ρ)u
xt dx –

d
dt

∫

μ′(ρ)ρtuxuxt dx

+
∫

μ′′(ρ)ρ
t uxuxt dx +

∫

μ′(ρ)ρttuxuxt dx +
∫

μ′(ρ)ρtu
xt dx

–



d
dt

∫

ρtu
t dx +




∫

ρttu
t dx –

d
dt

∫

ρtuuxut dx

+
∫

ρttuuxut dx +
∫

ρtu
t ux dx +

∫

ρtuuxtut dx +



∫

ρu
tt dx

+ C
∫

ρuu
xt dx +

d
dt

∫
(
ργ

)

tuxt dx –
∫

(
ργ

)

ttuxt dx

+



d
dt

∫
(
b)

tuxt dx –



∫
(
b)

ttuxt dx. ()
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Differentiating the third equation in () with respect to t, one obtains

btt + (bu)xt =
(
ν(ρ)bx

)

xt . ()

Multiplying () by btt , integrating the resulting equation with respect to x over I , using
integration by parts, and from () and Cauchy’s inequality, one deduces




d
dt

∫

ν(ρ)b
xt dx +

∫

ρ
tt dx

=



∫

ν ′(ρ)ρtb
xt dx –

∫

ν ′(ρ)ρtbxbxtt dx –
∫

(bxtu + bxut + btux + buxt)btt dx

≤ C
∥
∥ν ′(ρ)

∥
∥

L∞‖ρt‖L∞
∫

ν(ρ)b
xt dx –

d
dt

∫

ν ′(ρ)ρtbxbxt dx

+
∫

ν ′′(ρ)ρ
t bxbxt dx +

∫

ν ′(ρ)ρttbxbxt dx +
∫

ν ′(ρ)ρtb
xt dx

+



‖btt‖
L + C‖u‖

L∞

∫

ν(ρ)b
xt dx + C‖ut‖

L∞‖bx‖
L

+ C‖ux‖
L∞‖bt‖

L + C‖b‖
L∞

∫

μ(ρ)u
xt dx. ()

Combining () and (), we obtain




d
dt

∫
[
μ(ρ)u

xt + ν(ρ)b
xt
]

dx +



∫
(
ρu

tt + b
tt
)

dx

≤ –
d
dt

∫

μ′(ρ)ρtuxuxt dx –



d
dt

∫

ρtu
t dx –

d
dt

∫

ρtuuxut dx

–
d
dt

∫

ν ′(ρ)ρtbxbxt dx + C
∫

μ(ρ)u
xt dx + C

∫

ν(ρ)b
xt dx

+



d
dt

∫
(
ργ

)

tuxt dx +



d
dt

∫
(
b)

tuxt dx

+ C
(∫

μ(ρ)u
xt dx

)

+ C
(∫

ν(ρ)b
xt dx

)

+ C. ()

Integrating () over (, T) with respect to t, we deduce




∫
[
μ(ρ)u

xt + ν(ρ)b
xt
]

dx +



∫ T



∫
(
ρu

tt + b
tt
)

dx dt

≤ C
∫

μ(ρ)u
xt(, x) dx + C

∫

ν(ρ)b
xt(, x) dx –




∫

ρtu
t dx

–
∫

ρtuuxut dx –
∫

ν ′(ρ)ρtbxbxt dx +
∫

μ′(ρ)ρtuxuxt(, x) dx

+



∫

ρtu
t (, x) dx +

∫

ρtuuxut(, x) dx +
∫

ν ′(ρ)ρtbxbxt(, x) dx

+ C
∫ T



[(∫

μ(ρ)u
xt dx

)

+
(∫

ν(ρ)b
xt dx

)]

dt + C. ()
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From the first and third equations in (), we obtain

ρt(, x) = –(ρu)x ∈ H,

bt(, x) = bxx – (ub)x ∈ H,

which together with () yields

∫ T



∫
(
ρu

tt + b
tt
)

dx dt +
∫

[
μ(ρ)u

xt + ν(ρ)b
xt
]

dx

≤ C +



∫
[
μ(ρ)u

xt + ν(ρ)b
xt
]

dx

+ C
∫ T



[(∫

μ(ρ)u
xt dx

)

+
(∫

ν(ρ)b
xt dx

)]

dt,

which follows from Gronwall’s inequality, (), (), (), (), (), (), (), and (), show-
ing that () holds. This completes the proof of Lemma .. �

Remark . From the above estimates, we can also deduce that

sup
≤t≤T

∫
(
u

xxx + b
xxx

)
dx ≤ C,

∫ T



∫
(
u

xxt + b
xxt

)
dx dt ≤ C,

and

sup
≤t≤T

∫
[
ρ

tt +
∣
∣
(
ργ

)

tt

∣
∣ + b

tt
]

dx ≤ C.

By combining all the estimates obtained above, we get sufficient a priori estimates uni-
formly with δ. Then letting δ → +, we can extend the local classical solutions to the global
ones. Since the process is standard [] and [], we omit the details here. Therefore, the
proof of Theorem . is completed.
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