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Abstract
In this paper, numerical solutions for the Rosenau-KdV equation coupling with the
Rosenau-RLW equation are considered and a new C-N pseudo-compact conservative
numerical scheme, which preserves the original conservative properties is designed.
The proposed scheme is based on a finite difference method. The existence of the
difference solutions has been shown by the Brouwer fixed point theorem.
Unconditional stability, second-order convergence, and a prior error estimate of the
scheme are proved by the discrete energy method. Numerical examples have been
given to verify the theoretical results.
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1 Introduction
The Rosenau-KdV equation coupling with the Rosenau-RLW equation (the Rosenau-
KdV-RLW equation) is of the form []

ut – γ uxxt + uxxxxt + βuxxx + ux + α
(
u)

x = , (.)

where α > , β , γ are real constants. A special case of its solitary wave solution is given as
follows []:

u(x, t) =



(– + 

√
)

× sech
[

√


√
– +

√


(
x –

 + 
√




t
)]

. (.)

When γ = , system (.) is reduced to the Rosenau-KdV equation:

ut + uxxxxt + βuxxx + ux + α
(
u)

x = . (.)

On the mathematical front, Zuo obtained solitons and periodic solutions for the
Rosenau-KdV equation []. Esfahani [] derived the solitary wave solution for the gen-
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eralized Rosenau-KdV equation. However, to the best of our knowledge, few numerical
methods to the initial-boundary value problem of Rosenau-KdV equation have been stud-
ied till now [, ]. On the other hand, when β = , system (.) is reduced to the following
equation:

ut – γ uxxt + uxxxxt + ux + α
(
u)

x = . (.)

This equation is usually called the Rosenau-RLW equation. The Rosenau-RLW equation
(.) has been solved numerically by various methods. Zuo et al. [] have proposed a non-
linear implicit conservative scheme for the general Rosenau-RLW equation. In [, ], Pan
et al. have presented three-level linearized difference schemes for both (.) and the gen-
eral Rosenau-RLW equation. Atouani and Omrani have developed a Galerkin finite ele-
ment method for (.) []. Hu and Wang have also proposed a high-accuracy linear conser-
vative scheme to solve (.) []. When γ = β = , system (.) is reduced to the Rosenau
equation []:

ut + uxxxxt + ux +
(
u)

x = . (.)

As is well known, the KdV equation has been developed in very wide applications and
undergone research which can be used to describe wave propagation and spread interac-
tion. In the study of the dynamics of dense discrete systems, the case of wave-wave and
wave-wall interactions cannot be treated by the well-known KdV equation. In order to
overcome the shortcoming of the KdV equation, Rosenau proposed the Rosenau equa-
tion (.) []. The theoretical results on existence, uniqueness, and regularity of the so-
lution to (.) have been investigated by Park []. Many numerical schemes have been
proposed for the Rosenau equation, such as the discontinuous Galerkin method [], the
C-conforming finite element method [], the finite difference method [–], and the
orthogonal cubic spline collocation method [].

As far as computational studies are concerned, Wongsaijai and Poochinapan [] have
proposed a three-level weighted average implicit finite difference scheme to solve the
Rosenau-KdV-RLW equation. However, the three-level implicit difference scheme can-
not be started by itself, it is necessary to select another suitable two-level scheme to com-
pute u. In their proof of Theorem , the authors did not consider the positive and negative
of the parameter γ and so there exists the same difficulty in the following proof of their
paper. Here we give a modified proof of this theorem, namely Lemma . in this article. In
this paper, an attempt has been made to propose a new conservative C-N scheme for the
Rosenau-KdV-RLW equation. As already pointed out by Li and Vu-Quoc [], ‘in some ar-
eas, the ability to preserve some invariant properties of the original differential equation
is a criterion to judge the success of a numerical simulation’. Fei et al. [] also pointed out
that the non-conservative difference schemes may easily show nonlinear blow-up, and the
conservative difference schemes perform better than the non-conservative ones. Some
conservative finite difference schemes have been proposed in the literature; numerical re-
sults of all the schemes are encouraging. In this respect, we refer the reader to [–], and
references therein. These numerical methods may give us much help in designing a new
numerical scheme for the Rosenau-KdV-RLW equation. The present scheme is two-level
pseudo-compact, unconditionally stable, and of second-order accuracy, which numeri-
cally simulates the conservative laws at the same time.
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The rest of the paper is as follows: In Section , a pseudo-compact nonlinear implicit
conservative difference scheme is proposed for the Rosenau-KdV-RLW equation. The dis-
crete conservative laws are also discussed. In Section , the existence of difference solu-
tions has been shown by Brouwer fixed point theorem. The second-order convergence
and stability of the scheme are proved in Section . In Section , numerical experiments
are reported to verify the theoretical results.

2 A pseudo-compact C-N conservative scheme and its discrete conservative
invariant

In general, the solutions of system (.) decay rapidly to zero for |x| � . Therefore, nu-
merically we can solve system (.) in a compact domain � = (xl, xr) with –xl �  and
xr � . Consider the Rosenau-KdV-RLW equation

ut – γ uxxt + uxxxxt + βuxxx + ux + α
(
u)

x = , (x, t) ∈ � × (, T], (.)

with the initial condition

u(x, ) = u(x), x ∈ [xl, xr], (.)

and the boundary conditions

u(xl, t) = u(xr , t) = , uxx(xl, t) = uxx(xr , t) = , t ∈ [, T], (.)

where u(x) is a known smooth function, � = (xl, xr).
The IBV problems (.)-(.) are known to possess the following conservative properties

[]:

Q(t) =
∫ xr

xl

u(x, t) dx = Q(), (.)

E(t) = ‖u‖
L + γ ‖ux‖

L + ‖uxx‖
L = E(). (.)

The domain {(x, t)|(x, t) ∈ �̄× [, T]} is discretized into grids described by the set (xj, tn)
of nodes, in which xj = xl + jh ( ≤ j ≤ J), tn = nτ ( ≤ n ≤ N ), where J = [ xr–xl

h ], N =
[ T

τ
], h and τ are the uniform step size in the spatial and temporal direction, respectively.

Denote un
j ≈ u(xj, tn). Define the discrete grid �h = {xj = xl + jh| ≤ j ≤ J – }, �τ = {tn =

nτ | ≤ n ≤ N – }, and the extended discrete grid �̄h = {xj = xl + jh|j = –, , , . . . , J , J + },
�̄τ = {tn = nτ | ≤ n ≤ N}. Suppose un = {un

j ; j = , , . . . , J – , n = , , . . . , N – } is a discrete
function on �h × �τ . Let Z

h = {un = (un
j )|un

– = un
 = un

J = un
J+ = , j = –, , , . . . , J , J + }.

For convenience, we introduce the following notations for the difference operators:

(
un

j
)

x =
un

j+ – un
j

h
,

(
un

j
)

x̄ =
un

j – un
j–

h
,

(
un

j
)

x̂ =
un

j+ – un
j–

h
,

(
un

j
)

t =
un+

j – un
j

τ
,

(
un, vn) = h

J–∑

j=

un
j vn

j ,
∥
∥un∥∥ =

(
un, un),

∥
∥un∥∥∞ = max

≤j≤J–

∣
∣un

j
∣
∣.
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In the paper, C denotes a general positive constant which may have different values in
different occurrences.

Based on the notations above, we propose the following pseudo-compact C-N conser-
vative scheme for the IBV problems (.)-(.):

(
un

j
)

t +
h


(
un

j
)

xx̄t – γ
(
un

j
)

xx̄t +
(
un

j
)

xxx̄x̄t +


β
(
un+

j + un
j
)

xx̄x̂ +


(
un+

j + un
j
)

x̂

+



α
[(

un+
j + un

j
)(

un+
j + un

j
)

x̂ +
((

un+
j + un

j
))

x̂

]
= , (xj, tn) ∈ �h × �τ , (.)

u
j = u(xj), xj ∈ �h, (.)

un
 = un

J = ,
(
un


)

xx̄ =
(
un

J
)

xx̄ = , tn ∈ �̄τ . (.)

For simplicity, we denote un+ 


j =
un+

j +un
j

 ; then the last term of (.) can be rewritten as
follows:

κ
(
un+, un) =



α
[
un+ 


j

(
un+ 


j

)
x̂ +

((
un+ 


j

))
x̂

]
.

To analyze the discrete conservative laws of finite difference approximate solutions, the
following lemmas should be introduced.

Lemma . [] For arbitrary discrete functions: un, vn ∈ Z
h , we have

((
un)

x, vn) = –
(
un,

(
vn)

x̄

)
,

(
vn,

(
un)

xx̄

)
= –

((
vn)

x,
(
un)

x

)
,

and

(
un,

(
un)

xx̄

)
= –

((
un)

x,
(
un)

x

)
= –

∥
∥un

x
∥
∥.

Furthermore, if (un
)xx̄ = (un

J )xx̄ = , then

(
un,

(
un)

xxx̄x̄

)
=

∥∥un
xx

∥∥.

Lemma . For any two mesh functions: un, vn ∈ Z
h , we have

((
un)

x̂, un) = ,
((

un)
xx̄x̂, un) = . (.)

Proof For any two mesh functions: un, vn ∈ Z
h , according to the discrete boundary condi-

tions (.) and the definition of Z
h , we get

((
un)

x̂, un) = h
J–∑

j=

(
un

j
)

x̂un
j =




J–∑

j=

(
un

j+ – un
j–

)
un

j

=



J–∑

j=

(
un

j+un
j – un

j un
j–

)
=  (.)
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and

((
un)

xx̄x̂, un) = h
J–∑

j=

(
un

j
)

xx̄x̂un
j =




J–∑

j=

((
un

j+
)

xx̄ –
(
un

j–
)

xx̄

)
un

j

=


h

J–∑

j=

(
un

j+ – un
j+ + un

j– – un
j–

)
un

j

=


h

J–∑

j=

(
un

j+un
j – un

j un
j–

)
–


h

J–∑

j=

(
un

j+un
j – un

j un
j–

)
= . (.)

�

Theorem . Suppose u ∈ H
[xl, xr], then scheme (.)-(.) admits the following invari-

ant:

Qn = h
J–∑

j=

un
j = Qn– = · · · = Q, (.)

En =
∥
∥un∥∥ +

(
γ –

h



)∥
∥un

x
∥
∥ +

∥
∥un

xx
∥
∥ = En– = · · · = E. (.)

Proof Multiplying (.) with h, according to the boundary conditions (.), then summing
up for j from  to J – , we obtain

h
J–∑

j=

(
un+

j – un
j
)

= . (.)

Let

Qn = h
J–∑

j=

un
j . (.)

Then we obtain (.) from (.).
Taking the inner product of (.) with un+ 

 , according to boundary condition (.), Lem-
mas . and ., we have


τ

(∥∥un+∥∥ –
∥∥un∥∥) +

(
γ –

h



)


τ

(∥∥un+
x

∥∥ –
∥∥un

x
∥∥) +


τ

(∥∥un+
xx

∥∥ –
∥∥un

xx
∥∥)

+
(
κ
(
un+, un), un+ 


)

= . (.)

Note that

(
κ
(
un+, un), un+ 


)

=


αh

J–∑

j=

{(
un+ 


j

)(
un+ 


j

)
x̂ +

[(
un+ 


j

)]
x̂

}
un+ 


j

=


α

J–∑

j=

{(
un+ 


j

)(un+ 


j+ – un+ 


j–
)

+
[(

un+ 


j+
) –

(
un+ 


j–

)]un+ 


j
}

=


α

J–∑

j=

[(
un+ 


j+

)
un+ 


j +

(
un+ 


j

)]un+ 


j+
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–


α

J–∑

j=

[(
un+ 


j

)
un+ 


j– +

(
un+ 


j–

)]un+ 


j

= . (.)

It follows from (.)-(.) that


τ

(∥∥un+∥∥ –
∥
∥un∥∥) +

(
γ –

h



)

τ

(∥∥un+
x

∥
∥ –

∥
∥un

x
∥
∥)

+

τ

(∥∥un+
xx

∥∥ –
∥∥un

xx
∥∥) = . (.)

By the definition of En, (.) holds. �

3 Estimates and existence of difference solution
Next, we analyze error estimates of solution for scheme (.)-(.).

Lemma . Suppose u ∈ H
[xl, xr], then the estimate of the solution of the initial-boundary

value problem (.)-(.) satisfies

‖u‖L ≤ C, ‖u‖L∞ ≤ C.

Proof If γ > , from (.), we have

‖u‖L ≤ C, ‖ux‖L ≤ C. (.)

By the Sobolev inequality, we obtain

‖u‖L∞ ≤ C. (.)

An application of the Hölder inequality and the Schwartz inequality yields

‖ux‖
L ≤ ‖u‖L · ‖uxx‖L ≤ 


(‖u‖

L + ‖uxx‖
L

)
. (.)

If γ ≤ , it follows from (.) and (.) that

(
 +

γ



)
‖u‖L +

(
 +

γ



)
‖uxx‖L ≤ C. (.)

We choose a suitable value of γ , such that ( + γ

 ) > . It follows from (.), (.), and the
Sobolev inequality that

‖u‖L∞ ≤ C. (.)
�

Lemma . (Discrete Sobolev inequality []) There exist two constants C and C such
that

∥
∥un∥∥∞ ≤ C

∥
∥un∥∥ + C

∥
∥un

x
∥
∥.
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Lemma . Under the conditions of Lemma ., there is the estimation for the solution un

of scheme (.): ‖un‖ ≤ C, ‖un
x‖ ≤ C, which yields ‖un‖∞ ≤ C.

Proof If γ > , let h be small enough, such that (γ – h

 ) > . It follows from (.) that

∥
∥un∥∥ ≤ C,

∥
∥un

xx
∥
∥ ≤ C. (.)

By using Lemma . and the Schwartz inequality, we get

∥∥un
x
∥∥ ≤ ∥∥un∥∥∥∥un

xx
∥∥ ≤ 


(∥∥un∥∥ +

∥∥un
xx

∥∥). (.)

This together with (.) and Lemma . gives

∥∥un∥∥∞ ≤ C. (.)

If γ ≤ , it from (.) and (.) follows that

[
 +




(
γ –

h



)]∥∥un∥∥ +
[

 +



(
γ –

h



)]∥∥un
xx

∥∥ ≤ C. (.)

Thus, we obtain (.) from (.), (.), and (.) with [ + 
 (γ – h

 )] > . �

Remark . Lemma . implies that scheme (.)-(.) is unconditionally stable.

To prove the existence of solutions for scheme (.)-(.), the following Browder fixed
point theorem should be introduced. For the proof, see [].

Lemma . (Browder fixed point theorem) Let H be a finite dimensional inner product
space. Suppose that g : H → H is continuous and there exists an α >  such that (g(x), x) > 
for all x ∈ H with ‖x‖ = α. Then there exists x∗ ∈ H such that g(x∗) =  and ‖x∗‖ ≤ α.

Theorem . There exists un ∈ Z
h satisfying the difference scheme (.)-(.).

Proof It follows from the original problem (.)-(.) that u satisfies scheme (.)-(.).
For n ≤ N – , assume that u, u, . . . , un satisfy (.)-(.). Next we prove that there exists
un+ satisfying scheme (.)-(.).

Define an operator g on Z
h as follows:

g(v) = v – un +
h


(
vxx̄ – un

xx̄
)

– γ
(
vxx̄ – un

xx̄
)

+ vxxx̄x̄ – un
xxx̄x̄ + τβvxx̄x̂ + τvx̂

+


τα

[
vvx̂ +

(
(v))

x̂

]
. (.)

Doing the inner product of (.) with v and using (.), and Lemmas . and ., we have

(
g(v), v

)
= ‖v‖ – 

(
un, v

)
+

(
γ –

h



)[‖vx‖ –
(
un

x , vx
)]

+ ‖vxx‖ – 
(
un

xx, vxx
)

≥ ‖v‖ – 
∥
∥un∥∥ · ‖v‖ +

(
γ –

h



)(‖vx‖ –
∥
∥un

x
∥
∥ · ‖vx‖

)
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+ ‖vxx‖ – 
∥∥un

xx
∥∥ · ‖vxx‖

≥ ‖v‖ –
(‖u‖ + ‖v‖) +

(
γ –

h



)(‖vx‖ –
∥
∥un

x
∥
∥)

+ ‖vxx‖ –
(∥∥un

xx
∥∥ + ‖vxx‖)

≥ ‖v‖ + ‖vxx‖ +
(

γ –
h



)
‖vx‖ –

(∥∥un∥∥ +
∥
∥un

xx
∥
∥)

–
(

γ –
h



)∥
∥un

x
∥
∥. (.)

If γ > , let h be small enough, such that (γ – h

 ) > , then for ∀v ∈ Z
h , we have (g(v), v) ≥ 

with ‖v‖ = ‖un‖ + ‖un
xx‖ + (γ – h

 )‖un
x‖ + .

If γ ≤ , it follows from (.) and (.) that

(
g(v), v

) ≥ ‖v‖ + ‖vxx‖ +



(
γ –

h



)
(‖v‖ + ‖vxx‖) –

(∥∥un∥∥ +
∥∥un

xx
∥∥)

–
(

γ –
h



)∥∥un
x
∥∥

≥
[

 +



(
γ –

h



)]
‖v‖ +

[
 +




(
γ –

h



)]
‖vxx‖

–
(∥∥un∥∥ +

∥
∥un

xx
∥
∥). (.)

Hence, for h sufficiently small, satisfying [ + 
 (γ – h

 )] > , it is obvious that (g(v), v) ≥ 
for ∀v ∈ Z

h with [ + 
 (γ – h

 )]‖v‖ = ‖un‖ + ‖un
xx‖ + .

To conclude, following from Lemma ., there exists v∗ ∈ Z
h which satisfies g(v∗) = .

Let un+ = v∗ – un, then it can be proved that un+ is the solution of scheme (.)-(.).
This completes the proof of Theorem .. �

4 Convergence and stability of the scheme
In this section, we shall discuss the convergence and stability of scheme (.)-(.). Let
v(x, t) be the solution of the problem (.)-(.), vn

j = v(xj, tn), then we define the truncation
error of scheme (.)-(.) as follows:

Ern
j =

(
vn

j
)

t +
h


(
vn

j
)

xx̄t – γ
(
vn

j
)

xx̄t +
(
vn

j
)

xxx̄x̄t +


β
(
vn+

j + vn
j
)

xx̄x̂ +


(
vn+

j + vn
j
)

x̂

+



α
[(

vn+
j + vn

j
)(

vn+
j + vn

j
)

x̂ +
((

vn+
j + vn

j
))

x̂

]
, (xj, tn) ∈ �h × �τ , (.)

v
j = u(xj), (xj, tn) ∈ �h, (.)

vn
 = vn

J = ,
(
vn


)

xx̄ =
(
vn

J
)

xx̄ = , (xj, tn) ∈ �̄τ . (.)

Using a Taylor expansion, we see that Ern
j = O(τ  + h) holds if τ , h → .
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Lemma . (Discrete Gronwall inequality []) Suppose w(k), ρ(k) are nonnegative mesh
functions and ρ(k) is nondecreasing. If C >  and

w(k) ≤ ρ(k) + Cτ

k–∑

l=

w(l), ∀k,

then

w(k) ≤ ρ(k)eCτk , ∀k.

Theorem . Assume that u ∈ H
[xl, xr] and u(x, t) ∈ C,, then the solution un of the

scheme (.)-(.) converges to the solution of the IBV problem (.)-(.) and the rate of
convergence is O(τ  + h) in the ‖ · ‖∞ norm.

Proof Let en
j = vn

j – un
j . From (.)-(.) and (.)-(.), we obtain the following error equa-

tions:

Ern
j =

(
en

j
)

t +
h


(
en

j
)

xx̄t – γ
(
en

j
)

xx̄t +
(
en

j
)

xxx̄x̄t +


β
(
en+

j + en
j
)

xx̄x̂ +


(
en+

j + en
j
)

x̂

+



α
[(

vn+
j + vn

j
)(

vn+
j + vn

j
)

x̂ +
((

vn+
j + vn

j
))

x̂

]

–



α
[(

un+
j + un

j
)(

un+
j + un

j
)

x̂ +
((

un+
j + un

j
))

x̂

]
, (xj, tn) ∈ �h × �τ , (.)

e
j = , (xj, tn) ∈ �h, (.)

en
 = en

J = ,
(
en


)

xx̄ =
(
en

J
)

xx̄ = , (xj, tn) ∈ �̄τ . (.)

Taking in (.) the inner product with en+ 
 (i.e. en+ + en), and using Lemmas . and .,

we obtain

(
Ern, en+ 


)

=

τ

(∥∥en+∥∥ –
∥
∥en∥∥) +


τ

(
γ –

h



)(∥∥en+
x

∥
∥ –

∥
∥en

x
∥
∥)

+

τ

(∥∥en+
xx

∥∥ –
∥∥en

xx
∥∥) +

(
I + II, en+ 


)
, (.)

where

I =


α
(
vn+ 

 vn+ 


x̂ – un+ 
 un+ 


x̂

)
, II =



α
{[(

vn+ 

)]

x̂ –
[(

un+ 

)]

x̂

}
.

According to Lemmas ., ., and the Schwartz inequality, the fourth term of right-hand
side of (.) is estimated as follows:

(
I, en+ 


)

=


αh

J–∑

j=

[
vn+ 


j

(
vn+ 


j

)
x̂ – un+ 


j

(
un+ 


j

)
x̂

]
en+ 


j

=


αh

J–∑

j=

[
vn+ 


j

(
en+ 


j

)
x̂ +

(
vn+ 


j – un+ 


j

)(
un+ 


j

)
x̂

]
en+ 


j
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≤ Ch
J–∑

j=

[∣∣(en+ 


j
)

x̂

∣
∣ +

∣
∣(un+ 


j

)
x̂

∣
∣]

∣
∣en+ 


j

∣
∣

≤ C
[∥∥en+

x
∥∥ +

∥∥en
x
∥∥ +

∥∥en+∥∥ +
∥∥en∥∥], (.)

(
II, en+ 


)

=


αh

J–∑

j=

{[(
vn+ 


j

)]
x̂ –

[(
un+ 


j

)]
x̂

}
en+ 


j

= –


αh

J–∑

j=

[(
vn+ 


j

) –
(
un+ 


j

)](en+ 


j
)

x̂

= –


αh

J–∑

j=

en+ 


j
(
vn+ 


j + un+ 


j

)(
en+ 


j

)
x̂

≤ C
[∥∥en+

x
∥
∥ +

∥
∥en

x
∥
∥ +

∥
∥en+∥∥ +

∥
∥en∥∥]. (.)

In addition, it is obvious that

(
Ern, en+ 


)

=
(
Ern, en+ + en) ≤ ∥

∥Ern∥∥ +


(∥∥en+∥∥ +

∥
∥en∥∥). (.)

Substituting (.)-(.) into (.), we get

∥∥en+∥∥ –
∥∥en∥∥ +

(
γ –

h



)
(∥∥en+

x
∥∥ –

∥∥en
x
∥∥) +

∥∥en+
xx

∥∥ –
∥∥en

xx
∥∥

≤ Cτ
(∥∥en+∥∥ +

∥
∥en∥∥ +

∥
∥en+

x
∥
∥ +

∥
∥en

x
∥
∥) + τ

∥
∥Ern∥∥. (.)

Let Bn = ‖en‖ + (γ – h

 )‖en
x‖ + ‖en

xx‖. Summing up (.) from  to n –  yields

Bn – B ≤ Cτ

n–∑

l=

∥∥Erl∥∥ + Cτ

n–∑

l=

(∥∥el∥∥ +
∥∥el

x
∥∥). (.)

Notice that

τ

n–∑

l=

∥∥Erl∥∥ ≤ nτ max
≤l≤n–

∥∥Erl∥∥ ≤ T · [O
(
τ  + h)]. (.)

From the discrete initial condition, we know that e is of second-order accuracy; then

B =
[
O

(
τ  + h)]. (.)

This together with (.) and (.) gives

∥∥en∥∥ +
(

γ –
h



)∥∥en
x
∥∥ +

∥∥en
xx

∥∥ ≤ [
O

(
τ  + h)] + Cτ

n–∑

l=

(∥∥el∥∥ +
∥∥el

x
∥∥). (.)

If γ > , let h be small enough, such that (γ – h

 ) > . It follows from (.) and Lemma .
that

∥∥en∥∥ ≤ O
(
τ  + h),

∥∥en
x
∥∥ ≤ O

(
τ  + h),

∥∥en
xx

∥∥ ≤ O
(
τ  + h). (.)
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According to Lemma ., we obtain

∥∥en∥∥∞ ≤ O
(
τ  + h). (.)

Using Lemma . and the Schwartz inequality, we have

∥∥en
x
∥∥ ≤ ∥∥en∥∥ · ∥∥en

xx
∥∥ ≤ 


(∥∥en∥∥ +

∥∥en
xx

∥∥). (.)

If γ ≤ , it follows from (.) and (.) that

[
 +




(
γ –

h



)]
(∥∥en∥∥ +

∥∥en
xx

∥∥) ≤ [
O

(
τ  + h)] + Cτ

n–∑

l=

(∥∥el∥∥ +
∥∥el

xx
∥∥). (.)

For h is sufficiently small which satisfies [ + 
 (γ – h

 )] > , according to Lemma ., we
get ‖en‖ + ‖en

xx‖ ≤ [O(τ  + h)], that is,

∥
∥en∥∥ ≤ O

(
τ  + h),

∥
∥en

xx
∥
∥ ≤ O

(
τ  + h). (.)

This together with (.) and Lemma . gives

∥∥en∥∥∞ ≤ O
(
τ  + h). (.)

This completes the proof of Theorem .. �

Similarly, the following can be proved.

Theorem . Under the conditions of Theorem ., the solution of the scheme (.)-(.)
is unconditionally stable in the sense of the ‖ · ‖∞ norm.

Theorem . Scheme (.)-(.) is uniquely solvable.

5 Numerical experiments
In this section, we will conduct some numerical experiments to verify the theoretical re-
sults obtained in the previous sections. We will measure the accuracy of the proposed
scheme using the maximum norm errors defined by

en
ε =

∥∥vn – un∥∥∞.

Consider the IBV problem of the Rosenau-KdV-RLW equation (.)-(.). The exact
solution of system (.)-(.) has the following form []:

u(x, t) = λ sech[μ(x – ct)
]
, (.)

where λ, μ, and c are dependent on the following formulas:

⎧
⎪⎨

⎪⎩

λ
(
αλ – cμ) = ,

λ
(
(β + cγ )μ + ,cμ) = ,

λ
(
 – c – (β + cγ )μ – cμ) = .

(.)



Pan et al. Boundary Value Problems  (2015) 2015:65 Page 12 of 17

Table 1 Maximal errors of numerical solutions at different time t with various h = τ for
Scheme III when β = γ = 1, α = 1

2

t (0.4, 0.4) (0.2, 0.2) (0.1, 0.1) (0.05, 0.05)

2 3.00693e–2 7.68100e–3 1.93219e–3 4.83727e–4
4 5.58019e–2 1.42808e–2 3.59269e–3 8.99586e–4
6 7.67786e–2 1.96524e–2 4.94689e–3 1.23873e–3
8 9.51322e–2 2.44229e–2 6.71218e–3 1.53888e–3
10 1.11946e–1 2.88404e–2 7.26695e–3 1.81991e–3

Table 2 The comparison of maximal errors of numerical solutions at t = 10 with various h = τ
for Scheme I, II, and III when β = γ = 1, α = 1

2

(h, τ ) (0.4, 0.4) (0.2, 0.2) (0.1, 0.1) (0.05, 0.05)

Scheme I 6.39957e–2 1.52505e–2 3.79081e–3 9.48668e–4
Scheme II 1.20316e–1 3.03968e–2 7.61986e–3 1.90703e–3
Scheme III 1.11946e–1 2.88404e–2 7.26695e–3 1.81991e–3

Figure 1 The convergence order for un of Scheme III under various h and τ at t = 10 when β = γ = 1,
α = 1

2 .

In the computations, without loss of generality, we take the parameters β = γ = , α = 


[] and β = , γ = – 
 , α = 

 , respectively. When we choose the parameters β = γ = ,
α = 

 , the exact solution of the problem (.)-(.) is (.). When we choose the parameters
β = , γ = – 

 , α = 
 , similar to getting (.), we can also derive the exact solution of the

problem (.)-(.), which reads

u(x, t) =


,,
(–, + ,

√
,)

× sech
[

√
,

√
– +

√
,

(
x –

, + ,
√

,
,

t
)]

. (.)

It follows from (.) and (.) that the IBV problem (.)-(.) is consistent with the initial
value problem (.)-(.) for –xl � , xr � . In the following numerical experiments, we
always take xl = –, xr = , and T = . The proposed scheme [] is a weighted average
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Figure 2 Discrete conservative mass and energy computed by Scheme III with h = τ = 0.1 when
β = γ = 1 and α = 1

2 .

Figure 3 Exact solutions of u(x, t) at t = 0 and numerical solutions computed by Scheme III with
h = τ = 0.1 at t = 5 and 10.

and linearized one: when θ = – 
 , the scheme is a non-conservative one and we denote it

as Scheme I; when θ = 
 , the scheme is a conservative one and we denote it as Scheme II.

We denote the present conservative scheme (.) of this paper as Scheme III.

Example  We also choose the parameters β = γ = , α = 
 [].

The errors in the sense of L∞-norm of the numerical solutions at different time t under
various mesh steps h = τ are listed on Table . Table  verifies the good stability of the
numerical solutions. We make a comparison between Schemes I, II, and III. The maximal
errors of the numerical solutions under various mesh steps h = τ at t =  are listed on
Table . From Table , as to conservative schemes, it is obvious that Scheme III performs
better than Scheme II in the numerical precision, but it is inferior to non-conservative
Scheme I, which also shows the influence of the parameter θ on the numerical precision.
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Table 3 Maximal errors of numerical solutions at different time t with various h = τ for
Scheme III when β = 1, γ = – 1

10 , α = 1
2

t (0.4, 0.4) (0.2, 0.2) (0.1, 0.1)

2 4.74902e–4 1.34120e–4 1.35736e–4
4 9.61048e–4 2.41036e–4 1.06852e–4
6 1.44791e–3 3.63170e–4 9.17900e–5
8 1.91090e–3 4.80782e–4 1.20314e–4
10 2.36020e–3 5.92631e–4 1.48330e–4

Table 4 Maximal errors of numerical solutions at t = 10 with various h = τ for Scheme I, II
when β = 1, γ = – 1

10 , α = 1
2

(h, τ ) (0.4, 0.4) (0.2, 0.2) (0.1, 0.1)

Scheme I 1.78856e–3 4.54458e–4 1.14580e–4
Scheme II 1.15913e–3 2.97803e–4 8.55536e–5

Figure 4 The convergence order for un of Scheme III under various h and τ at t = 10 when β = 1,
γ = – 1

10 , α = 1
2 .

In order to verify the second-order accuracy O(τ  + h), the convergence order figure of
log(en

ε )- log(h) is given in Figure  under various mesh steps h and τ at t = . From Fig-
ure , it is obvious that scheme (.)-(.) is convergent in the maximum norm, and the
convergence order is O(τ  + h). Figure  is presented to show the conservative laws of the
discrete mass Qn and the discrete energy En computed by scheme (.) when h = τ = .. It
is easy to see from Figure  that scheme (.) preserves the discrete mass and the discrete
energy very well, thus it can be used for computing for a long time.

The curves of the solitary waves with time computed by Scheme III of this paper with
h = τ = . are given in Figure , the waves at t = ,  agree with the ones at t =  quite
well, which also demonstrates the accuracy of the scheme.

Example  We take the parameters β = , γ = – 
 , α = 

 .
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Figure 5 Discrete conservative mass and energy computed by Scheme III with h = τ = 0.1 when β = 1,
γ = – 1

10 , α = 1
2 .

Figure 6 Discrete conservative mass and energy computed by Scheme II with h = τ = 0.1 when β = 1,
γ = – 1

10 , α = 1
2 .

In Example , the maximal errors of the numerical solutions at different time t for
Scheme III are listed on Table . We also give numerical results for Schemes I and II when
parameters β = , γ = – 

 , and α = 
 : the errors en

ε of the numerical solutions with various
h = τ at t =  are listed on Table . Tables  and  show the good stability of the numer-
ical solutions. The convergence order figure of log(en

ε )- log(h) is given in Figure  under
various mesh steps h and τ at t = . Figure  shows that scheme (.)-(.) is convergent
in the maximum norm and the convergence order is O(τ  + h). Figure  is given to ver-
ify the conservative laws of the discrete mass Qn and the discrete energy En computed by
Scheme III of the present paper when h = τ = .. The discrete mass Qn and the discrete
energy En computed by the conservative Scheme II are shown in Figure  when h = τ = ..
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Figure 7 Exact solutions of u(x, t) at t = 0 and numerical solutions computed by Scheme III with
h = τ = 0.1 at t = 5 and 10.

Figure 8 Exact solutions of u(x, t) at t = 0 and numerical solutions computed by Scheme II with
h = τ = 0.2 at t = 5 and 10.

It is easy to see from Figures  and  that Schemes II and III both preserve conservative
invariant very well.

The curves of the solitary waves with time computed by Schemes II and III of this paper
with h = τ = ., h = τ = . are given in Figures  and , respectively, the waves at t =
,  agree with the ones at t =  quite well, which also demonstrates the accuracy of both
schemes. From the numerical results, the present conservative scheme of this paper is
efficient and accurate, which also demonstrates that a further discussion of the positive
and negative of the parameter γ is necessary.
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