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Abstract
In this paper, a class of boundary value problems with general singular differential
operator is investigated. The nonlinear term in the boundary value problem is
sign-changing and may be unbounded from below. By means of the topological
degree of a completely continuous field, the existence of nontrivial solutions is
obtained. Finally, an example is given to illustrate the application of our main result.
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1 Introduction
In [], Han and Wu considered the singular boundary value problem

u′′ + h(t)f (u) = , t ∈ (, ),

u() = u() = 
(.)

under the following assumptions:
(H) There exist three constants b > , c >  and α ∈ (, ) such that

f (u) ≥ –b – c|u|α , u ∈R.

(H) h ∈ C((, ), [, +∞)), h(t) �≡  in (, ) and
∫ 

 t( – t)h(t) dt < +∞.
(H) f : R →R is continuous.
Denote by λ̃ the first eigenvalue of the eigenvalue problem

u′′ + λh(t)u = , u() = u() = . (.)

By computing the Leray-Schauder degree, they established the following result.

Theorem A Assume that (H)-(H) hold. If

lim inf
u→+∞

f (u)
u

> λ̃ and lim sup
u→

∣
∣
∣
∣
f (u)

u

∣
∣
∣
∣ < λ̃,

then the singular boundary value problem (.) has at least one nontrivial solution.
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This paper is mainly focused on the existence of nontrivial solutions to singular bound-
ary value problem with general differential operator such as

u′′ + a(t)u′ + b(t)u + h(t)f (t, u) = , t ∈ (, ),

u() = u() = .
(.)

We will make the following assumptions:
(A) a ∈ C(, ) ∩ L(, ); b ∈ C((, ), (–∞, )) and

∫ 
 s( – s)|b(s)|ds < +∞.

(A) h : (, ) → [,∞) is continuous and does not vanish identically on any subinterval
of (, ); furthermore,

∫ 
 s( – s)h(s) ds < +∞.

(A) f : [, ] ×R →R is continuous and there exist two nonnegative functions
c, d ∈ C[, ], d �≡  and B ∈ C(R, [, +∞)) with

lim|u|→+∞
B(u)
|u| =  (.)

such that

f (t, u) ≥ –c(t) – d(t)B(u), t ∈ [, ], u ∈R. (.)

(A) lim infu→+∞ f (t,u)
u > λ uniformly on t ∈ [, ].

(A) lim supu→ | f (t,u)
u | < λ uniformly on t ∈ [, ].

Here λ is the first eigenvalue of the following linear eigenvalue problem corresponding
to the boundary value problem (.):

u′′ + a(t)u′ + b(t)u + λh(t)u = , t ∈ (, ),

u() = u() = .
(.)

We state our main theorem as follows.

Theorem . Let (A)-(A) hold, then the singular boundary value problem (.) has at
least one nontrivial solution.

Remark . (A) and (A) show that the functions a, b and h are all allowed to be singular
at t = , , which means that the differential operator in the equation of problem (.) is
more general than the classic Sturm-Liouville differential operator where a, b ∈ C[, ] are
required. It is worth mentioning that the solvability of singular boundary value problems
with general differential operators were also investigated in [], where the results on the
existence of solutions do not involve the eigenvalue of the corresponding linear eigenvalue
problem, therefore the conditions laid on the functions a, b in [] are more general than
the conditions in this paper.

Remark . The existence of the first eigenvalue λ and the properties of its correspond-
ing positive eigenfunction ϕ in (.) (see Lemma . in Section ) play a very important
role in the proof of our main theorem. The presence of a(t)u′ + b(t)u, however, brings
difficulties when it comes to proving that ϕ ∈ C[, ]. We find a way to overcome this
problem. For the special case of (.), i.e., the eigenvalue problem (.), the complete re-
sults on eigenvalues and eigenfunctions were obtained by Asakawa [].
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Remark . Choose B(u) = |u|α , α ∈ (, ) and the functions c, d to be constants on [, ].
Then (A) can be reduced to (H). Therefore, the main theorem in this paper generalizes
Theorem A in [].

We note that the results on positive solutions or nontrivial solutions for other kinds of
boundary value problems have been considered in many publications such as [–] and
the references therein. The existence of nontrivial solutions involving the relation between
the principal eigenvalue and the growth of the nonlinearity has been investigated in [].

The rest of the paper is arranged as follows. In Section , we state some notations and
prove some preliminary results. In Section , we prove our main result. In Section , an
example is given to illustrate the application of our main result.

2 Notations and preliminary results
In this section, we recall some notations, abstract theorems and auxiliary results, which
are important for proving our main result.

We denote by C[, ] the Banach space with the norm ‖u‖ = maxt∈[,] |u(t)|. Let

P =
{

u ∈ C[, ] | u(t) ≥ , t ∈ [, ]
}

be a positive cone in C[, ]. Denote by Br = {u ∈ C[, ] | ‖u‖ < r} (r > ) the open ball of
radius r. We denote by AC[, ] the space of all absolute continuous functions on [, ].
Let

ACloc[, ) =
{

u | u|[,d] ∈ AC[, d] for every compact interval [, d] ⊆ [, )
}

,

ACloc(, ] =
{

u | u|[d,] ∈ AC[d, ] for every compact interval [d, ] ⊆ (, ]
}

.

Lemma . [] Suppose that (A) holds. Then
(i) the initial value problem

u′′ + a(t)u′ + b(t)u = , t ∈ (, ),

u() = , u′() = 
(.)

has a unique solution α ∈ AC[, ] ∩ C[, ) and α′ ∈ ACloc[, );
(ii) the initial value problem

u′′ + a(t)u′ + b(t)u = , t ∈ (, ),

u() = , u′() = –
(.)

has a unique solution β ∈ AC[, ] ∩ C(, ] and β ′ ∈ ACloc(, ];
(iii) α is nondecreasing on [, ], β is nonincreasing on [, ].

We remark here that from the proof of Lemma . and Lemma . in [], the existence
and uniqueness of α and β for the initial value problem (.) and (.) have no relation
with the sign of the functions a and b. The sign condition laid on b in (A) is meant to
obtain the monotonicity of α and β .
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Let

G(t, s) =

ρ

{
α(s)β(t),  ≤ s ≤ t ≤ ,
α(t)β(s),  ≤ t ≤ s ≤ ,

(.)

where ρ = α′( 
 )β( 

 ) – α( 
 )β ′( 

 ) is a positive constant.
We give the following remark. Although its proof is trivial, the consequences of the result

are of major importance.

Remark . It follows from the above lemma that there exist positive constants c, c, ρ

and ρ such that

ct ≤ α(t) ≤ ct, ρ( – t) ≤ β(t) ≤ ρ( – t), t ∈ [, ].

Furthermore, for t, s ∈ [, ],

(∗) ρG(t, s) ≤ ρG(s, s) = α(s)β(s) ≤ cρs( – s).

From Lemma . in [], the singular boundary value problem (.) can be converted into
the equivalent integral equation

u(t) =
∫ 


G(t, s)q(s)h(s)f

(
s, u(s)

)
ds, t ∈ [, ],

where q(s) = exp(
∫ s




a(τ ) dτ ). Define h̃(t) = q(t)h(t) for ease of notation. Combining (A)
and the definition of q, we see that h̃ satisfies the following:

(Ã) h̃ : (, ) → [,∞) is continuous and does not vanish identically on any subinterval of
(, ); furthermore,  <

∫ 
 s( – s)h̃(s) ds < +∞.

For any u ∈ C[, ], let

(Au)(t) =
∫ 


G(t, s)h̃(s)f

(
s, u(s)

)
ds, (.)

(Tu)(t) =
∫ 


G(t, s)h̃(s)u(s) ds. (.)

From Lemma . in [], then A : C[, ] → C[, ] and T : C[, ] → C[, ] are completely
continuous operators, respectively.

Lemma . Suppose that (A) and (A) hold. Let σ ∈ (, ), r ∈ C(, ) be continuous and
∫ 

 s( – s)|r(s)| < +∞. If ω is a solution of

u′′ + a(t)u′ + b(t)u + r(t)u = , t ∈ (, ),

u(σ ) = u′(σ ) = 
(.)

such that ω ∈ C[, ] ∩ C(, ) and ω′ ∈ ACloc(, ), then ω ≡ .
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Proof Let ω be a solution of initial value problem (.). Multiplying both sides of the equa-
tion of (.) by q and integrating it from σ to t, we get

ω′(t) = –


q(t)

∫ t

σ

q(s)
(
b(s) + r(s)

)
ω(s) ds, t ∈ (, ).

Integrating the above equation from σ to t again, we have

ω(t) = –
∫ t

σ


q(τ )

∫ τ

σ

q(s)
(
b(s) + r(s)

)
ω(s) ds dτ , t ∈ (, ). (.)

Let

κ = min
t∈[,]

q(t), κ = max
t∈[,]

q(t).

If t ∈ [σ , ), then it follows from (.) that

∣
∣ω(t)

∣
∣ ≤ κ

κ

∫ t

σ

∫ τ

σ

∣
∣b(s) + r(s)

∣
∣
∣
∣ω(s)

∣
∣ds dτ

=
κ

κ

∫ t

σ

(t – s)
∣
∣b(s) + r(s)

∣
∣
∣
∣ω(s)

∣
∣ds

≤ κ

κ

∫ t

σ

( – s)
∣
∣b(s) + r(s)

∣
∣
∣
∣ω(s)

∣
∣ds.

Since
∫ 
σ

( – s)|b(s) + r(s)|ds < +∞, we get ω(t) ≡  for t ∈ [σ , ] by Gronwall’s inequality.
Using the same argument, we can easily get ω(t) ≡  for t ∈ [,σ ]. This completes the
proof. �

We now turn to the eigenvalue problem (.). Before stating the results on the eigenvalue
and eigenfunction, we give the following lemma, which is a direct result of the Krein-
Rutman theorem.

Lemma . [, ] Suppose that T : C[, ] → C[, ] is a completely continuous lin-
ear operator and T(P) ⊂ P. If there exist φ ∈ C[, ]\(–P) and a constant c >  such that
cTφ ≥ φ, then the spectral radius r(T) �=  and T has a positive eigenfunction correspond-
ing to its first eigenvalue λ = (r(T))–.

We are now in a position to give the results on eigenvalue problem (.).

Lemma . Suppose that (A) and (A) are satisfied. Then T has a principle eigenvalue
λ = (r(T))– and a positive eigenfunction ϕ ∈ P corresponding to λ. Furthermore,

(i) ϕ′
() > , ϕ′

() <  and there exist positive constants ν, ν such that
νt( – t) ≤ ϕ(t) ≤ νt( – t), t ∈ [, ];

(ii) there exist δ, δ >  such that δG(t, s) ≤ ϕ(s) ≤ δs( – s), t, s ∈ [, ].

Proof It is obvious that there is t ∈ (, ) such that G(t, t)h̃(t) > . Thus there exists
[a, b] ∈ (, ) such that t ∈ (a, b) and G(t, s)h̃(s) >  for all t, s ∈ [a, b]. Take ψ ∈ C[, ]
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such that ψ(t) ≥ , t ∈ [, ], ψ(t) >  and ψ(t) = , t /∈ [a, b]. Then, for t ∈ [a, b],

(Tψ)(t) =
∫ 


G(t, s)h̃(s)ψ(s) ds ≥

∫ b

a

G(t, s)h̃(s)ψ(s) ds > . (.)

So there exists a constant c >  such that c(Tψ)(t) ≥ ψ(t), t ∈ [, ]. From Lemma ., we
know that the spectral radius r(T) �=  and T has a positive eigenfunction ϕ corresponding
to its first eigenvalue λ = (r(T))–.

If (A) and (A) hold, then the conclusions of Lemma . are still valid for the initial
value problems

u′′ + a(t)u′ + b(t)u + λh(t)u = , u() = , u′() = 

and

u′′ + a(t)u′ + b(t)u + λh(t)u = , u() = , u′() = –.

We denote the unique solutions of the above two initial problems by ξ and ζ , respectively.
Then Lemma . shows that ξ ∈ AC[, ] ∩ C[, ), ξ ′ ∈ ACloc[, ) and ζ ∈ AC[, ] ∩
C(, ], ζ ′ ∈ ACloc(, ].

(i) From the definition of eigenvalue, we know that ϕ satisfies

ϕ′′
 + a(t)ϕ′

 + b(t)ϕ + λh(t)ϕ = , t ∈ (, ),

ϕ() = ϕ() = .
(.)

Since ϕ() = ϕ() = , there exists τ ∈ (, ) such that ϕ(τ ) = ‖ϕ‖ >  and ϕ′
(τ ) = . Let

χ (t) = q(t)ϕ′
(t)ξ (t) – q(t)ϕ(t)ξ ′(t), t ∈ (, ). (.)

Then χ ∈ C(, ) and for t ∈ (, ), it is easy to compute that

χ ′(t) =
(
q(t)ϕ′

(t)
)′
ξ (t) –

(
q(t)ξ ′(t)

)′
ϕ(t) = .

For  < t < τ , integrating χ ′ from t to τ and letting t → , we have

 = lim
t→

∫ τ

t
χ ′(s) ds = χ (τ ) – lim

t→
χ (t). (.)

By Lemma . in [] and the fact that ξ ∈ C[, ), ξ () = , we have

lim
t→

q(t)ϕ′
(t)ξ (t) = q() lim

t→
ϕ′

(t)ξ (t) = . (.)

Combining (.), (.), (.) and

lim
t→

q(t)ϕ(t)ξ ′(t) = q()ϕ()ξ ′() = , χ (τ ) = –q(τ )ϕ(τ )ξ ′(τ ),
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we get

q(τ )ϕ(τ )ξ ′(τ ) = .

Since q(τ ) �=  and ϕ(τ ) �= , we have ξ ′(τ ) = . Then ξ (τ ) �=  due to Lemma .. Let us
define the function φ by

φ(t) = ϕ(t) –
ϕ(τ )
ξ (τ )

ξ (t), t ∈ [, ],

it is easy to check that φ is the solution of the following problem:

φ′′ + a(t)φ′ + b(t)φ + λh(t)φ = , t ∈ (, ),

φ′(τ ) = , φ(τ ) = .

Then Lemma . yields φ ≡ , that is, ϕ = [ϕ(τ )/ξ (τ )]ξ . In particular, ϕ′
() = ϕ(τ )/ξ (τ ) �=

; furthermore, ϕ′
() >  by positivity of ϕ on (, ). In the same manner, we can see that

ϕ = [ϕ(τ )/ζ (τ )]ζ and ϕ′
() = –ϕ(τ )/ζ (τ ) < .

Define

�(t) =

⎧
⎪⎨

⎪⎩

ϕ′
(), t = ,

ϕ(t)
t(–t) ,  < t < ,
–ϕ′

(), t = .

Then �(·) is continuous and �(t) >  on [, ], so there exist positive constants ν and ν

such that ν ≤ �(t) ≤ ν for t ∈ [, ], i.e.,

(∗∗) νt( – t) ≤ ϕ(t) ≤ νt( – t), t ∈ [, ].

(ii) From Lemma .(iii), (∗) and (∗∗), for t, s ∈ [, ], we have

ρG(t, s) ≤ ρG(s, s) = α(s)β(s) ≤ cρs( – s) ≤ cρ

ν
νs( – s) ≤ cρ

ν
ϕ(s).

Define

δ :=
ρν

cρ
, δ := ν,

then

δG(t, s) ≤ ϕ(s) ≤ δs( – s), t, s ∈ [, ].

This completes the proof. �

Lemma . Suppose that (A) and (A) are satisfied. Let

P =
{

u ∈ P
∣
∣
∣

∫ 


ϕ(t)h̃(t)u(t) dt ≥ λ–

 δ‖u‖
}

,

where ϕ and δ are defined by Lemma .. Then P is a cone in C[, ] and T(P) ⊂ P.
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Proof It follows from (Ã) and (∗∗) that

∫ 


ϕ(t)h̃(t)

∣
∣u(t)

∣
∣dt ≤ δ

∫ 


t( – t)h̃(t)

∣
∣u(t)

∣
∣dt < +∞

for any u ∈ C[, ], then P is well defined. Furthermore, for any u ∈ P, from Lemma .,
we have

∫ 


ϕ(t)h̃(t)(Tu)(t) dt =

∫ 



[

ϕ(t)h̃(t)
∫ 


G(t, s)h̃(s)u(s) ds

]

dt

=
∫ 



∫ 


ϕ(t)h̃(t)G(t, s)h̃(s)u(s) ds dt

=
∫ 



∫ 


ϕ(t)h̃(t)G(t, s)h̃(s)u(s) dt ds

=
∫ 



[

h̃(s)u(s)
∫ 


G(t, s)h̃(t)ϕ(t) dt

]

ds

= λ–


∫ 


h̃(s)ϕ(s)u(s) ds

≥ λ–
 δ

∫ 


G(t, s)h̃(s)u(s) ds = λ–

 δ(Tu)(t),

then
∫ 

 ϕ(t)h̃(t)(Tu)(t) dt ≥ λ–
 δ‖Tu‖, i.e., T(P) ⊂ P.

This completes the proof. �

3 Proof of the main result
Proof of Theorem . From (A), for ε > , there exists L >  such that

f (t, u) ≥ λ( + ε)u, t ∈ [, ], u ≥ L. (.)

Combining (A) and (.), we can see that there exists a nonnegative function c ∈ C[, ]
such that

f (t, u) ≥ λ( + ε)u – c(t) – d(t)B(u), t ∈ [, ], u ∈ R. (.)

In the following we shall prove

u – Au �= μϕ, ∀u ∈ C[, ],‖u‖ = R,μ ≥ , (.)

provided that R is large enough.
In fact, if (.) is not true, then there exist u ∈ C[, ], ‖u‖ = R and μ ≥  such that

u – Au = μϕ. (.)

For t ∈ [, ] and for any u ∈ C[, ], we set

η(t) =
∫ 


G(t, s)h̃(s)u(s) ds, η(t) =

∫ 


G(t, s)h̃(s)c(s) ds, (.)
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η(t) =
∫ 


G(t, s)h̃(s)d(s)B

(
u(s)

)
ds, (.)

g(u) =
∫ 


ϕ(t)h̃(t)u(t) dt. (.)

Then from (Ã) and (∗∗), functional g is well defined. Thus we have

u(t) + η(t) + η(t)

= (Au)(t) + μϕ(t) + η(t) + η(t)

=
∫ 


G(t, s)h̃(s)

[
f
(
s, u(s)

)
+ c(s) + d(s)B

(
u(s)

)]
ds + μϕ(t).

Recall that

ϕ(t) = λ–


∫ 


G(t, s)h̃(s)ϕ(s) ds.

It follows from Lemma . and (.) that u + η + η ∈ P.
From Lemma . and (.)-(.), we have

g(η) =
∫ 


ϕ(t)h̃(t)η(t) dt =

∫ 



[

ϕ(t)h̃(t)
∫ 


G(t, s)h̃(s)u(s) ds

]

dt

=
∫ 



[

h̃(s)u(s)
∫ 


G(t, s)ϕ(t)h̃(t) dt

]

ds

= λ–


∫ 


ϕ(s)h̃(s)u(s) ds = λ–

 g(u). (.)

By the same manner, we get

g(η) = λ–


∫ 


ϕ(s)h̃(s)c(s) ds,

g(η) = λ–


∫ 


ϕ(s)h̃(s)d(s)B

(
u(s)

)
ds.

(.)

By (.), (.) and (.), we have

g(Au) =
∫ 



[

ϕ(t)h̃(t)
∫ 


G(t, s)h̃(s)f

(
s, u(s)

)
ds

]

dt

≥ λ( + ε)g(η) – g(η) – g(η)

= ( + ε)g(u) – g(η) – g(η).

Then, from the above inequality, (.), (.) and Lemma ., we have

g(Au) – g(u)

≥ εg(u) – g(η) – g(η)

= εg(u + η + η) – ( + ε)g(η) – ( + ε)g(η)
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= ε

∫ 


ϕ(s)h̃(s)

[
u(s) + η(s) + η(s)

]
ds – λ–

 ( + ε)
∫ 


ϕ(s)h̃(s)c(s) ds

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)d(s)B

(
u(s)

)
ds

≥ ελ–
 δ‖u + η + η‖ – λ–

 ( + ε)
∫ 


ϕ(s)h̃(s)c(s) ds

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)d(s)B

(
u(s)

)
ds

≥ ελ–
 δ

(‖u‖ – ‖η‖ – ‖η‖
)

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)c(s) ds

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)d(s)B

(
u(s)

)
ds. (.)

We divide the proof into two cases as follows.
Case . B(·) is bounded on R.
In this case, there exists M > , for any u ∈R, B(u) ≤ M. Thus,

‖η‖ = max
t∈[,]

∫ 


G(t, s)h̃(s)d(s)B

(
u(s)

)
ds

≤ M

∫ 


G(s, s)h̃(s)d(s) ds. (.)

Therefore, from (.), (.) and the expression of η, we get

g(Au) – g(u) ≥ ελ–
 δ

(‖u‖ – ‖η‖ – ‖η‖
)

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)c(s) ds

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)d(s)B

(
u(s)

)
ds

≥ ελ–
 δ

(

‖u‖ –
∫ 


G(s, s)h̃(s)c(s) ds – M

∫ 


G(s, s)h̃(s)d(s) ds

)

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)c(s) ds – λ–

 ( + ε)M

∫ 


ϕ(s)h̃(s)d(s) ds

> 

provided that we take

R > A + B + C + D := R,

where

A =
∫ 


G(s, s)h̃(s)c(s) ds, B = M

∫ 


G(s, s)h̃(s)d(s) ds,

C =
( + ε)
εδ

∫ 


ϕ(s)h̃(s)c(s) ds, D =

( + ε)
εδ

M

∫ 


ϕ(s)h̃(s)d(s) ds.

Case . B(·) is unbounded on R.
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From (.), for ρ > , there exists a positive constant M such that

B(u) < ρ|u|, |u| ≥ M. (.)

In this case, there exists a positive constant M > M such that

B(u) ≤ B(M), |u| ≤ M. (.)

Since ‖u‖ = R, then for s ∈ [, ], |u(s)| ≤ R < M. By (.) and (.), we have

‖η‖ = max
t∈[,]

∫ 


G(t, s)h̃(s)d(s)B

(
u(s)

)
ds ≤

∫ 


G(s, s)h̃(s)d(s)B(M) ds

≤
∫ 


G(s, s)h̃(s)d(s)ρM ds = ρM

∫ 


G(s, s)h̃(s)d(s) ds. (.)

Therefore, from (.), (.) and (.), we have

g(Au) – g(u) ≥ ελ–
 δ

(‖u‖ – ‖η‖ – ‖η‖
)

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)c(s) ds

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)d(s)B

(
u(s)

)
ds

≥ ελ–
 δ

(

‖u‖ –
∫ 


G(s, s)h̃(s)c(s) ds – ρM

∫ 


G(s, s)h̃(s)d(s) ds

)

– λ–
 ( + ε)

∫ 


ϕ(s)h̃(s)c(s) ds – λ–

 ( + ε)ρM

∫ 


ϕ(s)h̃(s)d(s) ds

> 

provided that we take

R > A + E + C + F := R,

where

E = ρM

∫ 


G(s, s)h̃(s)d(s) ds, F =

( + ε)
εδ

ρM

∫ 


ϕ(s)h̃(s)d(s) ds.

Thus, no matter which case happens, if we choose R > max{R, R}, we have

g(Au) – g(u) > . (.)

On the other hand, from (.), (Ã) and the fact that ϕ(t) >  for t ∈ (, ) and μ ≥ ,
we have

g(u) – g(Au) = g(μϕ) = μg(ϕ) ≥ ,

which contradicts with (.). Therefore, (.) is true and we have

deg(I – A, BR, θ ) = . (.)
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From (A), for  < ε < λ, there exists  < r < R such that

∣
∣f (t, u)

∣
∣ ≤ (λ – ε)|u|, t ∈ [, ], |u| < r. (.)

In the following we will prove that

u �= μAu, u ∈ ∂Br ,μ ∈ [, ]. (.)

If (.) is not true, then there exist u ∈ ∂Br and μ ∈ (, ] such that u = μAu, and
then by (.) we have

g
(∣∣u(t)

∣
∣) = g

(
μ

∣
∣(Au)(t)

∣
∣) = μ

∫ 



[

ϕ(t)h̃(t)
∣
∣
∣
∣

∫ 


G(t, s)h̃(s)f

(
s, u(s)

)
ds

∣
∣
∣
∣

]

dt

≤ μ(λ – ε)
∫ 



[

ϕ(t)h̃(t)
∫ 


G(t, s)h̃(s)

∣
∣u(s)

∣
∣ds

]

dt

= μ(λ – ε)
∫ 



[

h̃(s)
∣
∣u(s)

∣
∣
∫ 


G(t, s)ϕ(t)h̃(t) dt

]

ds

= μ
(
 – λ–

 ε
)
∫ 


ϕ(s)h̃(s)

∣
∣u(s)

∣
∣ds

= μ
(
 – λ–

 ε
)
g
(∣
∣u(t)

∣
∣
)
,

which implies g(|u(t)|) ≤ .
On the other hand, from ‖u‖ = r >  and ϕ(t) >  for t ∈ (, ), we have

g
(∣∣u(t)

∣
∣) =

∫ 


ϕ(t)h̃(t)

∣
∣u(t)

∣
∣dt > , t ∈ [, ],

which is a contradiction. Thus (.) holds. According to the invariance property of the
Leray-Schauder degree, we have

deg(I – A, Br , θ ) = . (.)

By (.), (.) and the additivity of the Leray-Schauder degree, we obtain

deg(I – A, BR\B̄r , θ ) = deg(I – A, BR, θ ) – deg(I – A, Br , θ ) = –.

Therefore, A has at least one fixed point on BR\B̄r , i.e., problem (.) has at least one non-
trivial solution. This completes the proof. �

4 Example
In this section, an example is given to illustrate the application of our main result (Theo-
rem .). Consider the following boundary value problem:

u′′ –
u

t( – t)
+


t( – t)

f (t, u) = , t ∈ (, ),

u() = u() = ,
(.)
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where

a ≡ , b(t) = –


t( – t)
, h(t) =


t( – t)

,

f (t, u) =

⎧
⎪⎨

⎪⎩

–
√|u|, –∞ < u ≤ –,

–u, – < u < ,
u,  ≤ u < ∞.

Obviously, conditions (A)-(A) of Theorem . are satisfied. For the linear eigenvalue
problem corresponding to (.), we compute that

λ = , ϕ(t) = t( – t).

Moreover,

lim inf
u→+∞

f (t, u)
u

= +∞ > λ =  >  = lim sup
u→

∣
∣
∣
∣
f (t, u)

u

∣
∣
∣
∣,

which implies that (A) and (A) are satisfied. So, all of conditions in Theorem . are
fulfilled. Therefore, the boundary value problem (.) has at least one nontrivial solution
according to Theorem ..
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