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1 Introduction
Our main goal is to prove the existence and uniqueness of solutions to the following non-
linear parabolic problem:

(P)

⎧
⎪⎨

⎪⎩

∂u
∂t – div a(x, t, u,∇u) – divφ(u) + g(x, t, u) = f – div F in Q,
u =  on ∂� × (, T),
u(x, ) = u in �,

where � is an open bounded subset of RN (N ≥ ) with Lipschitz boundary ∂�, T is a
positive constant, u ∈ L∞(�), Q = � × (, T) with the lateral boundary ∂� × (, T).

Here, we make the following assumptions on a, φ, g , f , and F :

(H) The function a : Q ×R×R
N is a Carathéodory function and there exist a continuous

function p : Q̄ → (, +∞) and a positive constant α such that

a(x, t, s, ξ )ξ ≥ α|ξ |p(x,t), a.e. (x, t) ∈ Q,∀s ∈R and ∀ξ ∈R
N .

(H) There exist a continuous function b from R
+ into R

+ and a nonnegative function
c ∈ Lp′(x,t)(Q) such that

∣
∣a(x, t, s, ξ )

∣
∣ ≤ b

(|s|)[|ξ |p(x,t)– + c(x, t)
]
, a.e. (x, t) ∈ Q,∀s ∈R and ∀ξ ∈R

N .

(H) (a(x, t, s, ξ ) – a(x, t, s, ζ )) · (ξ – ζ ) >  holds for almost every (x, t) ∈ Q and for every
ξ , ζ ∈R

N with ξ 
= ζ .
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(H) g : Q ×R is a Carathéodory function, satisfying sup|s|≤n |g(·, s)| = hn(·) ∈ L(Q) and

g(x, t, s)s ≥ , for a.e. (x, t) ∈ Q and ∀s ∈R.

(H) The function φ is continuous on R with values in R
N .

(H) f ∈ Lq(x,t)(Q) and F ∈ (Lq(x,t)(p–)′ (Q))N , where q– > max{ + N
p– , }.

As we have seen, problem (P) includes parabolic equation which is nonlinear with re-
spect to the gradient of the solution, and with variable exponents of nonlinearity. Thus it
is natural to solve problem (P) under the framework of Sobolev spaces with variable ex-
ponents. The problem we study here is closely related to the model of electro-rheological
fluids (see [–]). For more applications, we refer the reader to [–].

In the case of p and q are two constants, the existence and regularity of the solutions
to problem (P) have been intensively studied by many authors. We refer the reader to the
bibliography [] and references therein. Especially, it is well known that problem (P) have
a weak solution belongs to L∞(Q), provided that q > max{ + N

p , }.
In the stationary case and p = p(x), there have been several results concerning the exis-

tence, uniqueness and regularity of entropy or renormalized solutions to such problems
with q =  and F ≡ ; see [] and [] for example. More precisely, in [], it is assumed that
p(x) belongs to W ,∞(�); in [], it is assumed that p(x) ∈ C(�̄) satisfies the log-continuity
condition. We also remark that the existence of bounded weak solutions to this type of
problems have been studied in [–], assuming that p(x) ∈ C(�̄).

Recently some papers appeared in the case of parabolic problems with non-standard
growth. When p = p(x) ∈ C(�̄) satisfies the log-continuity condition, the existence and
uniqueness of an entropy solution to problem (P) without lower order terms were proved
in [], under the assumption f ∈ L(Q) and F ≡ . When p = p(x) only belongs to C(�̄)
with p– > , M. Bendahmane et al. have also proved the existence and uniqueness of renor-
malized solutions, by the semigroup approach; see []. If p ∈ C(�̄) and p– > , the exis-
tence of weak solutions to problem (P) is proved in [], for φ =  and F ≡ .

When p is Lipschitz continuous with respect to the space variables and β

 -Hölder con-
tinuous with respect to time, Acerbi et al. [] studied the regularity results for parabolic
systems without lower order terms and f , F ≡ . As p = p(x, t) ∈ C(Q̄) satisfies the log-
continuity condition and F ≡ , Antontsev and Shmarev [] studied the existence of so-
lutions of similar problems with anisotropic parabolic equation. Moreover, it is worth to
mention that Alkhutov and Zhikov [] obtained the existence results without any as-
sumption on the regularity of the exponent, if the terms g,φ, F ≡ .

The main idea of this paper relies on [, , , , ]. Using Galerkin’s approximation
technique, we shall prove the existence and uniqueness of bounded solutions to problem
(P) (Theorem . and Theorem .), which generalizes the corresponding results in the
constant exponents. In order to prove Theorem ., a key result (Lemma .) about an L∞

estimate for solution to problem (P) is proved.
This paper is organized as follows: in Section  we recall some basic notations and prop-

erties of Sobolev spaces with variable exponents; in Section , we prove the existence of
solutions to problem (P); in Section , we give the proof of uniqueness of solutions to
problem (P).
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2 Some preliminaries and notations
In what follows, we recall some definitions and basic properties of the generalized
Lebesgue space Lp(x)(�) and the generalized Sobolev spaces W ,p(x)(�) (see [] and [],
etc.).

Set C+(�̄) = {h ∈ C(�̄) : infx∈�̄ h(x) > }. For any h ∈ C+(�̄), we define

h+ = sup
x∈�̄

h(x) and h– = inf
x∈�̄

h(x).

For any p ∈ C+(�̄), we define the variable exponent Lebesgue spaces Lp(x)(�) to consist of
all measurable functions such that the modular

ρp(f ) :=
∫

�

∣
∣f (x)

∣
∣p(x) dx

is finite, endowed with the Luxemburg norm

‖u‖Lp(x)(�) = inf

{

λ >  :
∫

�

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 
}

.

Lemma . () The space Lp(x)(�) is a separable and reflexive Banach space, and its dual
space is isomorphic to Lp′(·)(�), where 

p(x) + 
p′(x) = . For any u ∈ Lp(x)(�) and v ∈ Lp′(·)(�),

∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣ ≤

(


p– +


(p′)–

)

‖u‖Lp(x)(�)‖v‖Lp′(·)(�).

() If p, p ∈ C+(�̄) with p(x) ≤ p(x), for any x ∈ �, then there exists the continuous
embedding Lp(·)(�) ↪→ Lp(·)(�), whose norm does not exceed |�| + .

() C∞
 (�) is dense in Lp(x)(�).

() For any u ∈ Lp(x)(�), we have

min
{‖u‖p–

Lp(x)(�),‖u‖p+

Lp(x)(�)

} ≤
∫

�

∣
∣u(x)

∣
∣p(x) dx ≤ max

{‖u‖p–

Lp(x)(�),‖u‖p+

Lp(x)(�)

}
. (.)

() Let {vn} ⊆ Lp(x)(�) and v ∈ Lp(x)(�), the following statements are equivalent:
(i) limn→∞ ‖vn – v‖Lp(x)(�) = ;

(ii) limn→∞ ρp(vn – v) = ;
(iii) vn converges to v in measure and limn→∞ ρp(vn) = ρp(v).

Remark . Obviously, if p is a constant function, then the variable exponent Lebesgue
space coincides with the usual Lebesgue space.

Set

W ,p(x)(�) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

,

where the norm is defined by

‖u‖W ,p(x)(�) = ‖u‖Lp(x)(�) + ‖∇u‖Lp(x)(�). (.)
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The space W ,p(x)(�) is called a generalized Sobolev space. By W ,p(x)
 (�) we denote the

subspace of W ,p(x)(�) which is the closure of C∞
 (�) with respect to the norm (.). We

denote the dual space of W ,p(x)
 (�) by (W ,p(x)

 (�))�.

Lemma . (see [] or []) The space W ,p(x)(�) and W ,p(x)
 (�) are reflexive Banach

spaces. For any u ∈ W ,p(x)
 (�), the Poincaré inequality

‖u‖Lp(x)(�) ≤ c‖∇u‖Lp(x)(�), (.)

holds true, where c is a constant depending on �, N , and p.

Lemma . (see []) Let p, d ∈ C+(�̄) with p+ < N and d(x) < p∗(x) := Np(x)
N–p(x) almost every-

where in �, then there is a continuous and compact imbedding W ,p(x)
 (�) ↪→↪→ Ld(·)(�),

and

‖u‖Ld(·)(�) ≤ C̃‖∇u‖Lp(x)(�), (.)

where C̃ depends only on �, N , p+, and d+.

Remark . In general, the smooth functions are not dense in W ,p(x)(�) (see []). How-
ever, if the exponent p(x) is assumed to be log-Hölder continuous, i.e. there exists a positive
constant C such that

∣
∣p(x) – p(y)

∣
∣ ≤ C

–log|x – y| , for any x, y ∈ � with |x – y| ≤ 


, (.)

then the smooth functions are dense in W ,p(x)(�) and W ,p(x)
 (�) = W ,p(x)(�) ∩ W ,

 (�)
(see [, ]). Moreover, if p ∈ C+(�̄) satisfies (.) and p+ < N then the Sobolev embed-
ding holds also for d(x) = p∗(x), i.e. W ,p(x)(�) ↪→ Lp∗(x)(�). As in [, ], we do not need
these condition to prove our result and will most exclusively work with p ∈ C+(�̄). We
also observe that W ,p(x)

 (�) is stable by composition with Lipschitz functions, even if for a
function v ∈ W ,p(x)(�) having trace zero does not guarantee that v ∈ W ,p(x)

 (�). In other
words, if L : R → R is Lipschitz continuous such that L() =  and v ∈ W ,p(x)

 (�), then
L(v) ∈ W ,p(x)

 (�). For more details, one can refer to [, ] for example.

Now, for any p ∈ C+(Q̄), we define

p+ = sup
(x,t)∈Q̄

p(x, t) and p– = inf
(x,t)∈Q̄

p(x, t).

We may also consider the generalized Lebesgue space

Lp(x,t)(Q) =
{

u : Q →R; u is measurable with
∫ T



∫

�

∣
∣u(x, t)

∣
∣p(x,t) dx dt < ∞

}

,

endowed with the norm

‖u‖Lp(x,t)(Q) = inf

{

λ >  :
∫ T



∫

�

∣
∣
∣
∣
u(x, t)

λ

∣
∣
∣
∣

p(x,t)

dx dt ≤ 
}

,

which obviously shares the same type of properties as Lp(x)(�).
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We will also use the standard notations for Bochner spaces, i.e., if q ≥  and X is a Banach
space, then Lq(, T ; X) denotes the space of strongly measurable functions u : (, T) → X
for which t �→ ‖u(t)‖X ∈ Lq(, T). Moreover, C([, T]; X) denotes the space of continuous
functions u : [, T] → X endowed with the norm ‖u‖C([,T];X) := maxt∈[,T] ‖u(t)‖X .

For any given k > , the truncation function Tk is defined as follows:

Tk(s) =

⎧
⎪⎪⎨

⎪⎪⎩

k, s > k,

s, |s| ≤ k,

–k, s < –k.

(.)

We use C(θ, θ, . . . , θm) to denote positive constants depending only on specified quan-
tities θ, θ, . . . , θm. Throughout this paper, the notation X� denotes the dual space of a
Banach space X.

3 Existence of weak solution to problem (P)
First of all, we shall give the definition of weak solution to problem (P). To do this, we need
to introduce the following Banach space:

W (Q) =
{

u is measurable : u ∈ Lp–(
, T ; W ,p(x,t)

 (�)
)

and |∇u| ∈ Lp(x,t)(Q)
}

(.)

endowed with the norm

‖u‖W (Q) := ‖u‖Lp– (,T ;W ,p(x,t)
 (�)) + ‖∇u‖Lp(x,t)(Q).

Remark . The space W (Q) is reflexive and separable. Moreover, there exists an equiv-
alent norm of W (Q):

‖u‖W (Q) := ‖∇u‖Lp(x,t)(Q).

As in [], we have the following result.

Lemma . (i) We have the following continuous dense embeddings:

Lp+(
, T ; W ,p+

 (�)
) d
↪→ Lp+(

, T ;
(
W ,p(x,t)

 (�)
)) d

↪→ W (Q)

d
↪→ Lp–(

, T ; W ,p(x,t)
 (�)

) d
↪→ Lp–(

, T ; W ,p–

 (�)
)
. (.)

In particular, D(Q) is dense in W (Q) and

L(p–)′(, T ;
(
W ,p–

 (�)
)�)

↪→L(p–)′(, T ;
(
W ,p(x,t)

 (�)
)�)

↪→W �(Q)

↪→L(p+)′(, T ;
(
W ,p(x,t)

 (�)
)�)

↪→L(p+)′(, T ;
(
W ,p+

 (�)
)�). (.)

(ii) If T ∈ W �(Q), there exists f ∈ Lp(x,t)(Q), F = (f, . . . , fN ) ∈ (Lp(x,t)(Q))N such that T =
f – div F , and

〈T , v〉W�(Q),W (Q) =
∫ T



∫

�

fv + F · ∇v dx dt, ∀v ∈ W (Q).
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Furthermore, we have

‖T‖W�(Q) = max
{‖fi‖Lp(x,t)(Q), i = , . . . , n

}
.

(iii) If v ∈ W (Q) with vt ∈ L(Q) + W �(Q), then we have v ∈ C([, T]; L(�)). Furthermore,
if v ∈ W (Q) ∩ L∞(Q) with vt ∈ L(Q) + W �(Q), then v ∈ C([, T]; L(�)).

(iv) If v ∈ W (Q) ∩ L(, T ; L(�)) with vt ∈ W �(Q), then v ∈ C([, T]; L(�)).

Proof of Lemma . The proofs of results (i) and (ii) are similar to [], the proofs of (iii)
and (iv) are similar to []. We omit the details here. �

Now we give the definition of weak solutions to problem (P).

Definition . A function u(x, t) ∈ W (Q) is called a weak solution of problem (P), if
a(x, t, u,∇u) ∈ (Lp′(x,t)(Q))N , φ(u) ∈ (Lp′(x,t)(Q))N , and g(x, t, u) ∈ L(Q) such that such that

∂u
∂t

– div a(x, t, u,∇u) – divφ(u) + g(x, t, u) = f – div F in D ′(Q) (.)

with u|t= = u.

Remark . Note that if u is a weak solution of problem (P), then u ∈ W (Q) and ut ∈
L(Q) + W �(Q), so u ∈ C([, T]; L(�)). Therefore the initial condition u|t= = u makes
sense.

Remark . If u is a solution of problem (P), by Remark ., the equality (.) reads

∫ T



〈
∂u
∂t

,η
〉

dt +
∫ T



∫

�

[
a(x, t, u,∇u) + φ(u)

]∇η dx dt +
∫ T



∫

�

g(x, t, u)η dx dt

=
∫ T



∫

�

f η dx dt +
∫ T



∫

�

F∇η dx dt, ∀η ∈ W (Q) ∩ L∞(Q), (.)

where 〈·, ·〉 denotes the duality pairing between W �(Q) + L(Q) and W (Q) ∩ L∞(Q).

In order to find some estimates for weak solutions and also to get the uniqueness result,
the following integration-by-parts-formula is needed (of which the proof will be given in
the Appendix):

Lemma . Let ϕ : R �→ R be a continuous piecewise C function such that ϕ() =  and
ϕ is zero outside a compact set of R. Let us denote ϕ̃(s) =

∫ s
 ϕ(r) dr. If u ∈ W (Q) with ∂u

∂t ∈
W �(Q) + L(Q) and if ψ ∈ C∞(Q̄), then we have, for any τ ∈ (, T],

∫ T



〈
∂u
∂t

,ϕ(u)χ(,τ )(t)ψ

〉

dt =
∫

�

(
ϕ̃(u)ψ

)∣∣
∣
t=τ

dx –
∫

�

(
ϕ̃(u)ψ

)∣∣
∣
t=

dx

–
∫ τ



∫

�

∂ψ

∂t
ϕ̃(u) dx dτ . (.)

From the proof of Lemma ., it is easy to obtain the following conclusion.
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Corollary . Let u ∈ W (Q) with ∂u
∂t ∈ W �(Q) + L(Q). If ϕ : R �→ R is a continuous func-

tion such that ϕ(u) ∈ W (Q) and ϕ̃(u) ∈ C([, T]; L(�)), then (.) holds true.

Theorem . Let p ∈ C+(Q̄), assume that (H)-(H) hold, then problem (P) admits at least
a weak solution u ∈ L∞(Q) ∩ C(, T ; L(�)).

Before giving the proof Theorem ., we need an L∞ estimate which is stated as follows.

Lemma . Let u ∈ L∞(Q) ∩ C([, T]; L(�)) be a weak solution to problem (P) and sup-
pose that the assumptions of Theorem . hold true, then there exists a positive constant M
such that

‖u‖L∞(Q) ≤ M, (.)

where M is a positive constant only depending on p–, p+, α, N , �, ‖f ‖Lq– (Q), ‖u‖L∞(�) and
‖|F| p–

p–– ‖Lq– (Q).

Remark . It is well known that if p >  is a constant function, then one may obtain an
L∞ estimates for u provided that q > max{ + N

p , }. The above result is a generalization of
the corresponding result in the constant exponent case.

To prove Lemma ., we need the following result, which can be viewed as a generaliza-
tion of Lemma . in [].

Lemma . Let Yn, n = , , , . . . , be a sequence of positive numbers, satisfying the inequal-
ities

Yn+ ≤ cbn[Y β
n + Y β

n + · · · + Y βj
n

]
, (.)

where j is a positive integer, c, b >  and βi are given positive numbers with

β = min
≤i≤j

{βi} > .

Assuming that

Y ≤ (cj)
–
β– b

–
(β–) , (.)

then limn→∞ Yn = .

Proof of Lemma . The proof is by induction as in []. However, the details of the proof
are omitted. In order to be complete and self-contained, let us briefly explain the argument.

In view of (.), we get  < Y < . Thus, by (.) and (.), we get

Y ≤ (cj)
–
μ b– +μ

μ ,

where μ = β – .
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Obviously  < Y < , thus, using (.) again, we have

Y ≤ (cj)
–
μ b– +μ

μ .

By induction, we easily find that

Yn ≤ (cj)
–
μ b– +nμ

μ .

Letting n tend to infinity in the above inequality, we obtain the desired result immedi-
ately. �

Proof of Lemma . Set M̄ = ‖u‖L∞(Q). Without loss of generality, we may assume M̄ >
‖u‖L∞(�). For every k with max{‖u‖L∞(�), M̄ – } ≤ k ≤ M̄ and any given τ ∈ (, T),
taking η(x, t) = sign u(|u| – k)+χ(,τ )(t) as a test function in problem (P), we obtain

〈
∂u
∂t

, sign u
(|u| – k

)

+χ(,τ )(t)
〉

+
∫ τ



∫

�

a(x, t, u,∇u)∇(
sign u

(|u| – k
)

+

)
dx dt

+
∫ τ



∫

�

φ(u)∇(
sign u

(|u| – k
)

+

)
dx dt +

∫ τ



∫

�

g(x, t, u) sign u
(|u| – k

)

+ dx dt

=
∫ τ



∫

�

f sign u
(|u| – k

)

+ dx dt +
∫ τ



∫

�

F∇(
sign u

(|u| – k
)

+

)
dx dt. (.)

For the first term of (.), by Lemma . (or Corollary .) we have
〈
∂u
∂t

, sign u
(|u| – k

)

+

〉

=



∫

�

[(∣
∣u(x, τ )

∣
∣ – k

)

+

] dx. (.)

Set

Ak(t) =
{

x ∈ � :
∣
∣u(x, t)

∣
∣ > k

}
, ψ(k) =

∫ T


meas Ak(t) dt.

Concerning the second term of (.), we estimate as follows:
∫ τ



∫

�

a(x, t, u,∇u)∇(
sign u

(|u| – k
)

+

)
dx dt

≥ α

∫ τ



∫

Ak (t)

∣
∣∇(|u| – k

)

+

∣
∣p(x,t) dx dt. (.)

Since  < p– ≤ p(x, t), applying Hölder’s inequality we have
∫ τ



∫

Ak (t)
|∇u|p–

dx dt

≤
∫ τ



∫

Ak (t)
|∇u|p(x,t) dx dt +

∫

Ak (t)
|∇u|dx dt

≤
∫ τ



∫

Ak (t)
|∇u|p(x,t) dx dt +

(∫ τ



∫

Ak (t)
|∇u|p–

dx dt
) 

p–

ψ(k)
p––

p–

≤
∫ τ



∫

Ak (t)
|∇u|p(x,t) dx dt +

(∫ τ



∫

Ak (t)
|∇u|p–

dx dt
) 

p–

ψ(k)
p––

p– .



Zou and Li Boundary Value Problems  (2015) 2015:69 Page 9 of 24

The above inequality and Young’s inequality show that

p– – 
p–

∫ τ



∫

Ak (t)
|∇u|p–

dx dt ≤
∫ τ



∫

Ak (t)
|∇u|p(x,t) dx dt +

p– – 
p– ψ(k). (.)

By (H), we may assume that φ = (φ,φ, . . . ,φN ), where φi ∈ C(R) for  ≤ i ≤ N . Let φ̃i(θ ) =
∫ θ

 χ{|η|≥k}φi(η) dη and set φ̃ = (φ̃, φ̃, . . . , φ̃N ), then it is easy to see that, after using the
divergence theorem,

∫ τ



∫

�

φ(u)∇(
sign u

(|u| – k
)

+

)
dx dt =

∫ τ



∫

�

χ{|u|≥k}φ(u) · ∇u dx dt

=
∫ τ



∫

�

div φ̃(u) dx dt

=
∫ τ



∫

∂�

φ̃(u) · �n dS dt = , (.)

where �n is the outward pointing unit normal field of the boundary ∂�.
Recalling that M̄ –  ≤ k ≤ M̄, it is straightforward that

∣
∣
∣
∣

∫ τ



∫

�

f sign u
(|u| – k

)

+ dx dt
∣
∣
∣
∣ ≤

∫ τ



∫

Ak (t)
|f |dx dt ≤ ‖f ‖Lq– (Q)ψ(k)– 

q– . (.)

For the second term of the right hand side of (.), we have

∣
∣
∣
∣

∫ τ



∫

�

F∇(
sign u

(|u| – k
)

+

)
dx dt

∣
∣
∣
∣

≤ C
(
α, p–)

∫ τ



∫

A(k)
|F| p–

p–– dx dt +
α(p– – )

p–

∫ τ



∫

A(k)
|∇u|p–

dx dt. (.)

It follows from (.)-(.) that




∫

�

[(|u| – k
)

+

](τ ) dx +
α(p– – )

p–

∫ τ



∫

Ak (t)

∣
∣∇(|u| – k

)

+

∣
∣p–

dx dt

≤ C
(
α, p–)

[(∫ τ



∫

A(k)
|F| q–p–

p–– dx dt
) 

q–

+ ‖f ‖Lq– (Q)

]

ψ(k)– 
q– +

p– – 
p– ψ(k).

Taking the supremum for τ ∈ [, T], we obtain

sup
≤τ≤T

∫

�

[(|u| – k
)

+

](τ ) dx +
α(p– – )

p–

∫ T



∫

Ak (t)

∣
∣∇(|u| – k

)

+

∣
∣p–

dx dt

≤ C
(
α, p–, N ,‖f ‖Lq– (Q),

∥
∥|F| p–

p––
∥
∥

Lq– (Q)

)
ψ(k)– 

q– + 
p– – 

p– ψ(k). (.)

Now considering the sequence

kn = M̄ – ε –
ε

n , for n = , ,  . . . ,
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replacing k by kn in (.) and using Lemma . of [], we find that

(
ε

n+

) p–(N+)
N

ψ(kn+)

≤
∫

Q

∣
∣
(|u| – kn

)

+

∣
∣

p–(N+)
N dx dt

≤ C
(
p–, N

)
(

sup
≤τ≤T

∫

�

[(|u| – kn
)

+

](τ ) dx
) p–

N
∫ T



∫

Ak (t)

∣
∣∇(|u| – kn

)

+

∣
∣p–

dx dt

≤ C
(
α, p–, N ,‖f ‖Lq– (Q),

∥
∥|F| p–

p––
∥
∥

Lq– (Q)

)

× [
ψ(kn)– 

q– + ψ(kn)
][

ψ(kn)(– 
q– ) p–

N + ψ(kn)
p–
N

]

≤ C
[
ψ(kn)β + ψ(kn)β + ψ(kn)β + ψ(kn)β

]
, (.)

where C := C(α, p–, N ,‖f ‖Lq– (Q),‖|F| p–
p–– ‖Lq– (Q)) and

β =
(

 –


q–

)(

 +
p–

N

)

, β =  –


q– +
p–

N
,

β =  +
(

 –


q–

)
p–

N
, β =  +

p–

N
.

The equality (.) is equivalent to

ψ(kn+) ≤ Cpbnε
–p–(N+)

N
[
ψ(kn)β + ψ(kn)β + ψ(kn)β + ψ(kn)β

]
, (.)

where b = 
p–(N+)

N .
It follows from Lemma . that

lim
n→∞ψ(kn) = , (.)

provided

ψ(k) ≤ c∗ ≡
(

ε
p–(N+)

N

C(p+)

) 
β–

b
–

(β–) ,

here β = min≤i≤{βi}.
In view of (.), we arrive that

|u| ≤ M̄ – ε, (.)

which contradicts the definition of M̄.
Since

(
M̄


)p–

ψ(k) ≤
(

M̄


)p–

ψ

(
M̄


)

≤
∫ T



∫

�

|u|p–
dx dt,
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i.e.

ψ

(
M̄


)

≤
(


M̄

)p– ∫ T



∫

�

|u|p– dx dt,

we have a contradiction of (.) if ( 
M̄ )p– ∫ T


∫

�
|u|p– dx dt ≤ c∗. Hence, we conclude that

M̄ ≤ 
(
c∗)– 

p–
(∫ T



∫

�

|u|p–
dx dt

) 
p–

. (.)

Now taking η(x, t) = u as a test function in problem (P) and arguing as in (.), we find
that

∫

�

u(τ ) dx +
α(p– – )

p–

∫ τ



∫

�

|∇u|p–
dx dt

≤ C
(
α, p–)

∫ τ



∫

�

|F| p–
p–– dx dt +

α(p– – )
p–

∫ τ



∫

�

|∇u|p–
dx dt

+ M̄
∫ τ



∫

�

|f |dx dt + ‖u‖
L∞(�), (.)

where we have used similar results to (.) and (.).
Taking the supremum for τ ∈ [, T], we have

sup
≤τ≤T

∫

�

u(τ ) dx +
α(p– – )

p–

∫ T



∫

�

|∇u|p–
dx dt

≤ C
(
α, p–)

∫ T



∫

�

|F| p–
p–– dx dt + M̄

∫ T



∫

�

|f |dx dt + ‖u‖
L∞(�)

≤ C
(
α, p–)

∫ T



∫

�

|F| p–
p–– dx dt

+ C(�, N)
(
c∗)– 

p– ‖∇u‖Lp– (Q)

∫ T



∫

�

|f |dx dt + ‖u‖
L∞(�), (.)

where we have used the Poincaré inequality, (.), and (.).
Applying Young’s inequality and the Poincaré inequality in (.), we obtain

(∫ T



∫

�

|u|p–
dx dt

) 
p–

≤ C
(
α, p–,�, N ,‖f ‖Lq– (Q),

∥
∥|F| p–

p––
∥
∥

Lq– (Q),‖u‖L∞(�)
)
. (.)

From (.) and (.), we obtain the desired result of Lemma .. �

To prove Theorem ., we have to consider approximating problems. We define a trun-
cation ā of a by

ā(x, t, s, ξ ) = a
(
x, t, TM(s), ξ

)
, a.e. (x, t) ∈ Q,∀s ∈R and ξ ∈R

N ,

where M is defined as in Lemma ..
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Similarly, the truncation φ̄ of φ is defined as

φ̄(s) = φ
(
TM(s)

)
, ∀s ∈R.

For each ε > , we define

gε(x, t, s) =
g(x, t, s)

 + ε|g(x, t, s)| , a.e. (x, t) ∈ Q,∀s ∈R,

and the sequences {fε} ⊆ C∞
c (�) and {Fε} ⊆ C∞

c (�) such that

fε → f strongly in Lq(x,t)(�), Fε → F strongly in F ∈ (
Lq(x,t)(p–)′ (Q)

)N .

Obviously, the function ā satisfies (H), (H) with a replaced by ā. Moreover, due to (H),
there exist c̄ ∈ Lp′(·)(�) and a constant bM >  such that

∣
∣ā(x, t, s, ξ )

∣
∣ ≤ bM|ξ |p(x,t)– + c̄(x, t), a.e. (x, t) ∈ Q,∀s ∈R and ∀ξ ∈R

N . (.)

Now, we introduce a family of approximate problems:

(Pε)

⎧
⎪⎨

⎪⎩

∂uε

∂t – div ā(x, t, uε ,∇uε) – div φ̄(uε) + gε(x, t, uε) = fε – div Fε in Q,
uε =  on ∂� × (, T),
uε(x, ) = u in �.

In the following, we prove the existence of weak solutions of problem (Pε). We will solve
problem (Pε) by Galerkin’s method.

For every fixed t ∈ [, T], we introduce the Banach space

Vt(�) =
{

u is measurable : u ∈ L(�) ∩ W ,p(x,t)
 (�)

}
(.)

endowed with the norm

‖u‖Vt (�) := ‖u‖L(�) + ‖∇u‖Lp(x,t)(�).

It is easy to see that Vt(�) is reflexive and separable as a closed subspace of W ,p–

 (�) ∩
L(�). Hence there exists a countable set of linearly independent functions {ϕi}∞i= ⊆
C∞

 (�) consists a basis of Vt(�). Without loss of generality, we may assume that {ϕi}∞i=

also forms an orthonormal basis of L(�). Fix now a positive integer m and let

Vm = span{ϕ, . . . ,ϕm}.

One can check that, for any given v ∈ W (Q) ∩ L(Q), there is a sequence vi
m(t) ∈ C[, T]

such that

vm =
m∑

i=

vi
m(t)ϕi → v strongly in W (Q) ∩ L(Q).
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Now we consider the following approximate problem: find

um(t) =
m∑

i=

ui
m(t)ϕi, (.)

where the coefficients ui
m(t) satisfies

∫

�

∂um

∂t
ϕi dx +

∫

�

[
ā(x, t, um,∇um) + φ̄(um)

] · ∇ϕi dx +
∫

�

gε(x, t, um)ϕi dx

=
∫

�

[fε – div Fε]ϕi dx, (.)

for i = , , . . . , m and  ≤ t ≤ T , where

ui
m() =

∫

�

u(x)ϕi dx, i = , , . . . , m.

The existence result of problem (.) and (.) is stated as follows.

Lemma . Fixed ε > , for each positive integer m = , , . . . , there exists a function um of
the form (.) satisfying (.).

Proof of Lemma . In order to prove our results, we introduce the following notations.
For any element of v ∈ V , we denote by

�vm =
{

v, v, . . . , vm} ∈R
m

associated with the projection vm of v on Vm, i.e. vi ∈R such that

vm =
m∑

i=

viϕi → v strongly in V , as m → +∞.

Let Gm be the mapping from R
m into itself whose ith component is

[
Gm(�vm)

]

i =
∫

�

[
ā(x, t, vm,∇vm) + φ̄(vm)

] · ∇ϕi dx +
∫

�

gε(x, t, vm)ϕi dx,

respectively.
Also we define Fm(t) to be the vector of Rm whose ith component is

[
Fm(t)

]

i =
∫

�

(
fε(x, t) – div Fε(x, t)

)
ϕi dx.

With the above notations, the problem (.) and (.) can be written as follows:

d
dt

�um(t) + Gm(�um(t)
)

= Fm(t), �um() =
{

u
m(), u

m(), . . . , um
m()

}
. (.)

It is easy to check that Gm and Fm(t) are continuous. Hence, the ordinary system (.)
has a local C solution �um(t) on some interval [, tm], where tm is a positive number.
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Now we prove that tm = T . We still need some a priori estimates for the sequence of
{um}.

Multiplication of the first equality of (.) by �um(t) and integration over (, t), we obtain



∥
∥um(t)

∥
∥

L(�) +
∫ t



∫

�

ā(x, t, um,∇um)∇um dx dt +
∫ t



∫

�

φ̄(um)∇um dx dt

+
∫ t



∫

�

gε(x, t, um)um dx dt

=
∫ t



∫

�

(
fε(x, t) + div Fε(x, t)

)
um dx dt +



∥
∥um()

∥
∥

L(�). (.)

Note that
∫ t


∫

�
φ̄(um)∇um dx dt = , by Young’s inequality, assumption (H) and (H) we

get



∥
∥um(t)

∥
∥

L(�) + α

∫ t



∫

�

|∇um|p(x,t) dx dt ≤ C, (.)

which implies that �um(t) remains bounded as t tends to Tm, where C is a positive constant
independent of m.

Since �um(t) does not blow up whenever t tends to tm, the system (.) admits a global
solution on [, T]. Thus, we have finished the proof. �

Proof of Theorem . The proof is divided into three steps.
Step : we prove the existence of solutions to problem (Pε).
In view of (.) and Lemma ., we infer that the solution um obtained in Lemma . is

bounded in W (Q) ∩ L∞(, T ; L(�)) with respect to m. Hence, there exists a subsequence
of {um} (still denoted by {um}) such that as m → ∞,

∇um ⇀ ∇uε weakly in
(
Lp(x,t)(Q)

)N and weakly∗ in L∞(
, T ; L(�)

)
, (.)

um ⇀ uε weakly in Lp–(
, T ; W ,p(x,t)

 (�)
)
, (.)

and

ā(x, t, um,∇um) ⇀ ζε weakly in
(
Lp′(x,t)(Q)

)N . (.)

Moreover, we have

∂um

∂t
is bounded in W �(Q) with respect to m,

W ,p–

 (�) ↪→↪→ Ls(�) ⊆ (
W ,λ

 (�)
)�, for  ≤ s <

Np–

N – p– and λ >
{

Ns
N(s – ) + s

, p+
}

.

By the above results, Lemma ., it is easy to see that

∂um

∂t
is bounded in L(p+)′(, T ;

(
W ,λ

 (�)
)�) and

um is bounded in Lp–(
, T ; W ,p–

 (�)
)
.
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Then using an Aubin’s type lemma (see Corollary  of []), we conclude that {um} con-
tains a subsequence strongly convergent in Ls̃(Q), where s̃ = min{p–, s}. Thus, we can also
draw a subsequence of {um} (still denoted by {um}) such that

um → uε a.e. in Q. (.)

Since um satisfies (.) and (.), it is easy to see that for all ϕ ∈ C([, T]; Vm) and τ ∈
(, T],

∫ τ



∫

�

∂um

∂t
ϕ dx dt +

∫ τ



∫

�

[
ā(x, t, um,∇um) + φ̄(um)

] · ∇ϕ dx dt

+
∫ τ



∫

�

gε(x, t, um)ϕ dx dt =
∫ τ



∫

�

[fε – div Fε]ϕ dx dt. (.)

Since, for any given ϕ ∈ C(, T ; C∞
 (�)), there exists a sequence ϕm ∈ C([, T]; Vm) such

that ϕm → ϕ in C(, T ; C∞
 (�)), we have

lim
m→∞

∫ τ



∫

�

∂um

∂t
ϕ dx dt = lim

m→∞

∫ τ



∫

�

∂um

∂t
ϕm dx dt, ∀ϕ ∈ C(, T ; C∞

 (�)
)
.

As a consequence, it follows from (.)-(.) that

lim
m→∞

∫ τ



∫

�

∂um

∂t
ϕ dx dt +

∫ τ



∫

�

(
ζε + φ̄(uε)

) · ∇ϕ dx dt +
∫ τ



∫

�

gε(x, t, uε)ϕ dx dt

=
∫ τ



∫

�

[fε – div Fε]ϕ dx dt, ∀ϕ ∈ C(, T ; C∞
 (�)

)
, τ ∈ (, T]. (.)

To identity the term ζε , we shall prove the following result:

lim
m→∞

∫ T



∫ τ



∫

�

ā(x, t, um,∇um)∇um dx dt dτ ≤
∫ T



∫ τ



∫

�

ζε∇uε dx dt dτ . (.)

For this purpose, we need to choose an appropriate test function ϕ in (.). We will use
the regularization method of Landes []. We define the regularization in time of the func-
tion uε by

(uε)ν(x, t) = ν

∫ t

–∞
eν(θ–t)ūε(x, θ ) dθ for ν ∈N,

where ūε(x, θ ) = uε(x, θ ) if θ > ; ūε(x, θ ) =  if θ ≤ .
As in [], the function (uε)ν ∈ W ,p– (, T ; W ,p(x,t)

 (�)) ∩ W (Q) ∩ L(Q) satisfies

∂

∂t
(uε)ν + ν

(
(uε)ν – uε

)
= 

and

(uε)ν → uε a.e. in Q and strongly in W (Q).
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In order to deal with a nonzero initial datum u, we now define

(uε)ν,j = (uε)ν(x, t) + e–νtuj,

where {uj} ⊆ C∞
 (�) such that uj → u strongly in Lσ (�) (for any σ ≥ ) and weakly∗ in

L∞(�).
Obviously, this function satisfies the following problems:

{
∂
∂t (uε)ν,j + ν((uε)ν,j – uε) = ,
(uε)ν,j|t= = uj.

Moreover, the (uε)ν,j ∈ W ,p– (, T ; W ,p(x,t)
 (�)) ∩ W (Q) ∩ L(Q) enjoys the property

(uε)ν,j → uε a.e. in Q and strongly in W (Q). (.)

Choosing ϕ = (uε)ν,j as a test function in (.) and taking ϕ = um in (.), we get

lim
j→∞ lim

ν→∞ lim
m→∞ I(m,ν, j)

≤ lim
j→∞ lim

ν→∞ lim
m→∞ I(m,ν, j) + lim

j→∞ lim
ν→∞ lim

m→∞ I(m,ν, j)

+ lim
j→∞ lim

ν→∞ lim
m→∞ I(m,ν, j) + lim

j→∞ lim
ν→∞ lim

m→∞ I(m,ν, j), (.)

where

I(m,ν, j) =
∫ T



∫ τ



∫

�

[
ā(x, t, um,∇um)∇um – ζε∇(uε)ν,j

]
dx dt dτ ,

I(m,ν, j) = –
∫ T



∫ τ



∫

�

∂um

∂t
[
um – (uε)ν,j

]
dx dt dτ ,

I(m,ν, j) = –
∫ T



∫ τ



∫

�

φ̄(um)∇(
um – (uε)ν,j

)
dx dt dτ ,

I(m,ν, j) =
∫ T



∫ τ



∫

�

[
um – (uε)ν,j

]
[fε – div Fε] dx dt dτ ,

I(m,ν, j) =
∫ T



∫ τ



∫

�

gε(x, t, um)
[
um – (uε)ν,j

]
dx dt dτ .

In the following, we pass to the limit in (.) as m → ∞, ν → ∞, and then j → ∞.
The limit of I(m,ν, j): we rewrite I(m,ν, j) as follows:

I(m,ν, j) = –
∫ T



∫ τ



∫

�

[
∂um

∂t
–

∂(uε)ν,j

∂t

]
[
um – (uε)ν,j

]
dx dt dτ

–
∫ T



∫ τ



∫

�

∂(uε)ν,j

∂t
[
um – (uε)ν,j

]
dx dt dτ

= I + I. (.)
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For I, we have

I = –
∫ T



∫ τ



∫

�

[
∂um

∂t
–

∂(uε)ν,j

∂t

]
[
um – (uε)ν,j

]
dx dt dτ

= –



∫ T



∫

�

[
um – (uε)ν,j

] dx dt +
T


∫

�

[
um(x, ) – uj

] dx

≤ T


∫

�

[
um(x, ) – uj

] dx,

which yields

lim
j→∞ lim

ν→∞ lim
m→∞ I ≤ . (.)

Using the properties of (uε)ν,j and (.), we get the following estimate for I:

lim
m→∞ I = lim

m→∞

∫ T



∫ τ



∫

�

ν
[
(uε)ν,j – uε

][
um – (uε)ν,j

]
dx dt dτ

= ν

∫ T



∫ τ



∫

�

[
(uε)ν,j – uε

][
uε – (uε)ν,j

]
dx dt dτ ≤ . (.)

Substituting (.) and (.) into (.),

lim
j→∞ lim

ν→∞ lim
m→∞ I(m,ν, j) ≤ . (.)

The limit of I(m,ν, j), I(m,ν, j), and I(m,ν, j): by (.), (.), and (.), it is easy to
see that

lim
ν→∞ lim

m→∞ I(m,ν, j) = , (.)

lim
ν→∞ lim

m→∞ I(m,ν, j) = , (.)

lim
ν→∞ lim

m→∞ I(m,ν, j) = . (.)

As a consequence of (.)-(.), we find that

lim
m→∞

∫ T



∫ τ



∫

�

ā(x, t, um,∇um)∇um ≤ lim
j→∞ lim

ν→∞

∫ T



∫ τ



∫

�

ζε∇(uε)ν,j dx dt dτ

=
∫ T



∫ τ



∫

�

ζε∇uε dx dt dτ ,

i.e. (.) holds true.
Step : In this step, we identify the quantities ζε , and prove that uε is a weak solution of

problem (Pε).
Equation (.) implies that, as m tends to infinity,

lim
m→∞

∫ T



∫ τ



∫

�

[
ā(x, t, um,∇um) – ā(x, t, um,∇uε)

]
[∇um – ∇uε] dx dt dτ ≤ . (.)



Zou and Li Boundary Value Problems  (2015) 2015:69 Page 18 of 24

As a consequence of (.) and (H), we have, for any  < τ < T ,

[
ā(x, t, um,∇um) – ā(x, t, um,∇uε)

]
[∇um – ∇uε] → 

strongly in L(� × [, τ ]
)
. (.)

At the possible expense of extending the functions of um, a(x, t, s, ξ ), g(x, t, s), f , and F
on a time interval (, T̄) with T̄ > T , in such a way such that all the assumptions (H)-(H)
hold true and um is still a solution of problem (.) and (.) with T in place of T̄ , we
conclude that the previous convergence result (.) holds true in L(Q), i.e.

[
ā(x, t, um,∇um) – ā(x, t, um,∇uε)

]
[∇um – ∇uε] →  strongly in L(Q). (.)

Using (.), (.), (.), (.), and arguing as in [], we see that as m → ∞,

∇um → ∇uε strongly in
(
Lp(x,t)(Q)

)N and a.e. in Q. (.)

By (.), using the Vitali convergence theorem, we get, as m → ∞,

ā(x, t, um,∇um) → ζε = ā(x, t, uε ,∇uε) strongly in
(
Lp′(x,t)(Q)

)N . (.)

Moreover, it is easy to see that

div φ̄(um) → div φ̄(uε) strongly in W �(Q) (.)

and

gε(x, t, um) → gε(x, t, uε) strongly in Lr(Q),∀r > . (.)

It follows from (.)-(.) and (.) that

∂um

∂t
→ ∂uε

∂t
strongly in W �(Q). (.)

Applying now the Aubin type lemma, by the fact that the sequence {um} is bounded in
L∞(, T ; L(�)), we get for s > max{ N

N+ , p+}

um → uε strongly in C
(
[, T];

(
W ,s

 (�)
)�), (.)

which implies that uε|t= = u.
Recalling that uε ∈ W (Q) and using the result (iv) of Lemma ., we deduce that uε ∈

C([, T]; L(�)). Combining this fact with the above convergence results and (.), we
see that uε is a weak solution of problem (Pε).

In the following, we prove that uε belongs to L∞(Q). Let k be chosen so that k ≥
‖u‖L∞(�), and take ηε(x, t) = sign uε(|uε| – k)+χ(,τ )(t) as a test function in problem (Pε),
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we obtain
〈
∂uε

∂t
, sign uε

(|uε| – k
)

+χ(,τ )(t)
〉

+
∫ τ



∫

�

ā(x, t, uε ,∇uε)∇(
sign uε

(|uε| – k
)

+

)
dx dt

+
∫ τ



∫

�

φ̄(uε)∇(
sign uε

(|uε| – k
)

+

)
dx dt

+
∫ τ



∫

�

gε(x, t, uε) sign uε

(|uε| – k
)

+ dx dt

=
∫ τ



∫

�

(fε + div Fε) sign uε

(|uε| – k
)

+ dx dt. (.)

Firstly, by Young’s inequality and the Poincaré inequality, we get for any δ > 

∣
∣
∣
∣

∫ τ



∫

�

(fε + div Fε) sign uε

(|uε| – k
)

+ dx dt
∣
∣
∣
∣

≤ C(δ)‖fε + div Fε‖L∞(Q)ψε(k) + δ

∫ T



∫

Akε (t)

∣
∣∇(|uε| – k

)

+

∣
∣p–

dx dt, (.)

where Akε(t) = {x ∈ � : |u(x, t)| > k} and ψε(k) =
∫ T

 meas Akε(t) dt.
Secondly, it is easy to see that estimates (.)-(.) still hold with uε instead of u, Akε(t)

instead of Ak(t), and ψε(k) instead of ψ(k). Hence, taking δ small enough in (.) and then
applying all these results in (.), we get

sup
≤τ≤T

∫

�

[(|uε| – k
)

+

](τ ) dx +
∫ T



∫

Ak (t)

∣
∣∇(|uε| – k

)

+

∣
∣p–

dx dt ≤ Cεψε(k),

where Cε = C(α, p–,�, N ,‖fε + div Fε‖L∞(Q)). Therefore, for l ≥ k, by Proposition . of []
we have

(l – k)
(
ψε(l)

) N
p–(N+) ≤

(∫

Q

∣
∣
(|uε| – k

)

+

∣
∣

p–(N+)
N dx dt

) N
p–(N+)

≤ Cε
(
ψε(k)

) N+p–
p–(N+) , (.)

where Cε is a positive constant. Taking k = ‖u‖L∞(�), we obtain

(
ψε(l)

) N
p–(N+) ≤ 

l – ‖u‖L∞(�)
Cε|Q|.

Then it follows that there exists a constant σε >  such that

ψε(l) ≤ 
(N+)(N+p–)

p– for any l ≥ σε + ‖u‖L∞(�). (.)

Let us consider the sequence kn = Mε( – –n), where Mε = max{σε + ‖u‖L∞(�), Cε}.
Replacing l, k by kn+, kn in (.), respectively, it then follows that

(kn+ – kn)
(
ψε(kn+)

) N
p–(N+) ≤ Cε

(
ψε(kn)

) N+p–
p–(N+) ,
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which implies that

ψε(kn+) ≤
(

Cε

Mε

) p–(N+)
N


np–(N+)

N
(
ψε(kn)

)+ p–
N

≤ 
p–(N+)

N 
np–(N+)

N
(
ψε(kn)

)+ p–
N . (.)

Obviously, (.) holds for l = k. Hence, by Lemma . and (.), we have uε ∈ L∞(Q)
such that ‖uε‖L∞(Q) ≤ Mε .

Since uε ∈ L∞(Q) ∩ C([, T]; L(�)) is a weak solution of (Pε), using the same argument
of Lemma . we get

‖uε‖L∞(Q) ≤ M, (.)

where M is defined as before.
Step : In view of (.), we have

ā(x, t, uε ,∇uε) = a(x, t, uε ,∇uε) and φ̄(uε) = φ(uε). (.)

Choosing uε as a test function in (Pε), it follows from (H)-(H) that



∥
∥uε(t)

∥
∥

L(�) + α

∫ τ



∫

�

|∇uε|p(x,t) dx dt ≤ C, ∀τ ∈ (, T],

where C is a positive constant independent of ε.
Hence, arguing as before, up to subsequences (still denoted by {uε}), we infer that

∇uε ⇀ ∇u weakly in
(
Lp(x,t)(Q)

)N and weakly∗ in L∞(Q) (.)

and

uε ⇀ u weakly in Lp–(
, T ; W ,p(x,t)

 (�)
)
. (.)

Moreover, we have

∂uε

∂t
is bounded in W �(Q) + L(Q) with respect to ε,

which implies that

∂uε

∂t
is bounded in L(, T ;

(
W ,λ

 (�)
)�) with respect to ε, for λ > N .

Then the same argument of (.) shows that for subsequences of {uε} (still denoted by
{uε}),

uε → u a.e. in Q. (.)
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Proceeding as in the proof of (.), we get

a(x, t, uε ,∇uε) → a(x, t, u,∇u) strongly in
(
Lp′(x,t)(Q)

)N . (.)

Obviously, we also obtain u ∈ W (Q) ∩ L∞(Q) and ∂u
∂t ∈ W �(Q) + L(Q), thus u ∈

C([, T]; L(�)). Furthermore, we get u|t= = u. Thus, let ε →  in (Pε), with the help of
(.)- (.) and assumptions (H)-(H), we deduce that u is a solution to problem (P).

�

4 Uniqueness of weak solutions to problem (P)
In order to get the uniqueness result, we need the following assumptions:

(H) The function φ is locally Lipschitz continuous.
(H) For every k > , there exist c̄k ∈ Lp′(x,t)(Q) and a constant βk >  such that

∣
∣a(x, t, s, ξ ) – a(x, t, s, ξ )

∣
∣

≤ |s – s|
[
βk|ξ |p(x,t)– + c̄k(x, t)

]
, a.e. (x, t) ∈ Q, (.)

for every ∀ξ ∈R
N and every |s| ≤ k and |s| ≤ k.

(H) g : � × [, T] ×R is monotone with respect to the third variable.

Theorem . Assume p ∈ C+(�̄) and the conditions (H)-(H) hold, then problem (P) ad-
mits a unique weak solution u(x, t) ∈ W ∩ C([, T]; L(�)) ∩ L∞(Q).

Proof of Theorem . The existence result is proved by Theorem .. In the following, we
prove the uniqueness result. Assume that u, v ∈ W ∩C([, T]; L(�))∩L∞(Q) are two weak
solutions of (P), then taking η = 

ε
Tε(u – v)χ(,τ )(t), the following equality holds:

∫ T



〈
∂u
∂t

,η
〉

dτ +
∫ T



∫ τ



∫

�

[
a(x, t, u,∇u) + φ(u)

]∇η dx dt dτ

+
∫ T



∫ τ



∫

�

g(x, t, u)η dx dt dτ

=
∫ T



∫ τ



∫

�

f η dx dt dτ +
∫ T



∫ τ



∫

�

F∇η dx dt dτ , (.)

∫ T



〈
∂v
∂t

,η
〉

dτ +
∫ T



∫ τ



∫

�

[
a(x, t, v,∇v) + φ(v)

]∇η dx dt dτ

+
∫ T



∫ τ



∫

�

g(x, t, v)η dx dt dτ

=
∫ T



∫ τ



∫

�

f η dx dt dτ +
∫ T



∫ τ



∫

�

F∇η dx dt dτ . (.)

Subtracting equality (.) from (.) and using Lemma ., we obtain


ε

∫ T



∫

�

T̃ε

(
u(x, τ ) – v(x, τ )

)
dx dτ

+

ε

∫ T



∫ τ



∫

�

[
a(x, t, u,∇u) – a(x, t, v,∇v)

]∇Tε(u – v) dx dt dτ
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+

ε

∫ T



∫ τ



∫

�

[
φ(u) – φ(v)

]∇Tε(u – v) dx dt dτ

+

ε

∫ T



∫ τ



∫

�

[
g(x, t, u) – g(x, t, v)

]
Tε(u – v) dx dt dτ = , (.)

where T̃ε(r) =
∫ r

 Tε(s) ds.
Denote the four terms on the left hand side by L(ε), L(ε), L(ε), and L(ε), respectively.
Concerning the first term L(ε), we have

lim
ε→

L(ε) =
∫ T



∫

�

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx dτ . (.)

For the second term L(ε), in view of (H) we get

L(ε) =

ε

∫ T



∫ τ



∫

�

[
a(x, t, u,∇u) – a(x, t, v,∇u)

]∇Tε(u – v) dx dt dτ

+

ε

∫ T



∫ τ



∫

�

[
a(x, t, v,∇u) – a(x, t, v,∇v)

]∇Tε(u – v) dx dt dτ

≥ 
ε

∫ T



∫ τ



∫

�

[
a(x, t, u,∇u) – a(x, t, v,∇u)

]∇Tε(u – v) dx dt dτ . (.)

By (H), we obtain

∣
∣
∣
∣


ε

∫ T



∫ τ



∫

�

[
a(x, t, u,∇u) – a(x, t, v,∇u)

]∇Tε(u – v) dx dt dτ

∣
∣
∣
∣

≤ T
∫

{|u–v|≤ε}∩{u
=v}

[
βM|∇u|p(x,t)– + c̄M(x, t)

][|∇u| + |∇v|]dx dt, (.)

where M is defined as Lemma ..
Note that

χ{|u–v|≤ε}∩{u
=v} →  a.e. in Q,

using Lebesgue’s dominated convergence theorem, we find that

lim
ε→

∣
∣
∣
∣


ε

∫ T



∫ τ



∫

�

[
a(x, t, u,∇u) – a(x, t, v,∇u)

]∇Tε(u – v) dx dt dτ

∣
∣
∣
∣ = . (.)

Combining (.) with (.), we obtain

lim
ε→

L(ε) ≥ . (.)

Similarly to the proof of (.), using (H) we have

lim
ε→

L(ε) = . (.)

Condition (H) implies that

L(ε) ≥ . (.)
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Let ε →  in (.), it follows from (.) and (.)-(.) that

∫ T



∫

�

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx dτ = .

Hence, we have u = v a.e. in Q. �

Appendix
Proof of Lemma . The proof is similar to the proof of Lemma . in [], but we use
another approximation here. For the sake of clarity and readability, we give the details
below.

First of all, by Remark ., we note u ∈ C([, T]; L(�)). We take the Steklov average of
the function u by

uh =

h

∫ t+h

t
u(x, τ ) dτ .

Appropriately extending the functions u outside (, T), we still get uh ∈ W (Q) with ∂u
∂t ∈

W (Q) and convergence, as h →  strongly to u in W (Q) and a.e. in Q. By the properties of
ϕ and Remark ., we also get ϕ(uh) ∈ W (Q) ∩ C([, T]; L(�)) and ϕ(uh) → ϕ(u) strongly
in W (Q). Hence we have

∫ T



〈
∂uh

∂t
,ϕ(uh)χ(,τ )(t)ψ

〉

dt

=
∫ τ



∫

�

∂uh

∂t
ϕ(uh)ψ dx dt =

∫ τ



∫

�

∂ϕ̃(uh)
∂t

ψ dx dt

=
∫

�

(
ϕ̃(uh)ψ

)∣∣
∣
t=τ

dx –
∫

�

(
ϕ̃(uh)ψ

)∣∣
∣
t=

dx –
∫ τ



∫

�

∂ψ

∂t
ϕ̃(uh) dx dτ ,

which yields

∫ T



〈
∂u
∂t

,ϕ
(
u(t)

)
χ(,τ )(t)ψ

〉

dt

= lim
h→

∫ T



〈
∂uh

∂t
,ϕ(uh)χ(,τ )(t)ψ

〉

dt

=
∫

�

(
ϕ̃(u)ψ

)∣∣
∣
t=τ

dx –
∫

�

(
ϕ̃(u)ψ

)∣∣
∣
t=

dx –
∫ τ



∫

�

∂ψ

∂t
ϕ̃(u) dx dτ .

Thus the assertion of the lemma follows. �
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