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Abstract
In this paper, a new conservative high-order compact finite difference scheme is
studied for the initial-boundary value problem of the generalized
Rosenau-regularized long wave equation. We design new conservative nonlinear
fourth-order compact finite difference schemes. It is proved by the discrete energy
method that the compact scheme is uniquely solvable; we have the energy
conservation and the mass conservation for this approach in discrete Sobolev spaces.
The convergence and stability of the difference schemes are obtained, and its
numerical convergence order is O(τ 2 + h4) in the L∞-norm. Furthermore, numerical
results are given to support the theoretical analysis. Numerical experiment results
show that the theory is accurate and the method is efficient and reliable.

Keywords: generalized Rosenau-RLW equation; compact finite difference scheme;
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1 Introduction
In this paper, we consider the following initial-boundary value problem of the Generalized
Rosenau-RLW Regularized Long Wave (RLW) equation (GRRLW):

ut + uxxxxt – uxxt + ux +
(
up)

x = , (x, t) ∈ � × (, T], (.)

u(xl, t) = u(xr , t) = , uxx(xl, t) = uxx(xr , t) = , t ∈ (, T], (.)

u(x, ) = u(x), x ∈ �, (.)

where p ≥  is a positive integer, � = (xl, xr) and u(x) are known smooth functions.
Let H

(�) = {v(x) ∈ H(�) | v(xl, t) = v(xr, t) = , vxx(xl, t) = vxx(xr , t) = }. The initial-
boundary value problem (.)-(.) possesses the following conservative quantities:

E(t) = ‖u‖
L + ‖ux‖

L + ‖uxx‖
L = E(), (.)

Q(t) =
∫ xr

xl

u(x, t) dx =
∫ xr

xl

u(x, ) dx = Q(). (.)

For the Schrödinger equation, the Cahn-Hilliard equation, and the Klein-Gordon equa-
tion, the existence and uniqueness of numerical solutions were discussed in [–], respec-
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tively. The convergence and stability of the finite difference schemes were proved in the
theory, and their numerical convergence orders are O(τ  + h). In [–], some new finite
difference schemes for the initial-boundary value problem of the RLW equation were con-
sidered. Two types of conservative finite difference schemes were proposed in [], which
depended on the choice of a parameter. On the basis of the prior estimates as regards the
norms, the convergence of the difference solution was proved with order O(τ  + h) in
the energy norm in [, ]. For the Cahn-Hilliard equation, a three-level linearized high-
order compact difference scheme was derived. The unique solvability and unconditional
convergence of the difference solution were proved. The convergence order is O(τ  +h) in
the maximum norm in []. In [], a new conservative difference scheme for the general
Rosenau-RLW equation was proposed. In [], Pan and Zhang proposed a conservative
linearized difference scheme for the general Rosenau-RLW equation which was uncondi-
tionally stable and second-order convergent and simulates conservative laws at the same
time. In [], the initial-boundary value problem for the Rosenau-RLW equation was stud-
ied. One proposed a three-level linear finite difference scheme, which has the theoretical
accuracy of O(τ  + h).

This paper is organized as follows. In Section , a nonlinear and conservative difference
scheme for the GRRLW equation is constructed, and the discrete conservative laws of
the difference scheme are discussed. The unique solvability of the numerical solutions
is also given. In Section , the prior error estimates for a fourth-order finite difference
approximation of the GRRLW equation are obtained, and the convergence and stability of
the difference scheme are proved. Numerical experiments are reported in Section .

2 Finite difference scheme and conservation law
Let h = (xr – xl)/J be the uniform step size in the spatial direction for positive integer J . Let
τ denote the uniform step size in the temporal direction. Denote xj = xl + jh ( ≤ j ≤ J),
tn = nτ ( ≤ n ≤ N ). Let Un

j denote the approximation of u(xj, tn), and let

RJ
 =

{
Vj = (Vj)j∈Z | V = VJ = 

}
.

As usual, the following notations will be used:

δxV n
i =

V n
i+ – V n

i
h

, δx̂V n
i =

V n
i+ – V n

i–
h

, δx̄V n
i =

V n
i+ – V n

i–
h

,

δ
x V n

i =
V n

i+ – V n
i + V n

i–
h , δ

x V n
i = δ

x
(
δ

x V n
i
)
, ∂tV n

i =
V n+

i – V n
i

τ
,

V n+ 


i =
V n+

i + V n
i


, AVi =

(
 +

h


δ

x

)
Vi, AVi =

(
 +

h


δ

x

)
Vi.

We now introduce the discrete L-inner product and the associated norm

(U , V )h = h
J–∑

i=

UiVi, U , V ∈ RJ
, ‖V‖h = (V , V )



h .

The discrete Hm-seminorm | · |m,h, the Hm-norm ‖ · ‖m,h and the L∞-norm ‖ · ‖∞,h are
defined, respectively, as

|V |m,h =

(

h
J–m∑

i=

∣∣δ̂m
x Vi

∣∣
) 



, ‖V‖m,h =

( m∑

s=

|V |s,h

) 


, ‖V‖∞,h = max
≤i≤J

|Vi|,
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where the δ̂m
x (m ≥ ) denote the mth-order forward difference quotient operators in the

x direction. It is convenient to let L
h(�h) and Hm

h (�h) (m ≥ ) denote the normed vector
space, respectively, as

L
h(�h) :=

{
RJ

,‖ · ‖h
}

, Hm
h (�h) :=

{
RJ

,‖ · ‖m,h
}

,

where �h = {xj = xl + jh |  < j < J}.
For the discretization of the first-order derivatives ux, the second-order derivatives uxx

and the fourth-order derivatives uxxxx of the function u(x), we have the following formulas:

Auxx(xi) = δ
x u(xi) + O

(
h) ⇒ uxx(xi) = A–

 δ
x u(xi) + O

(
h),

Aux(xi) = δx̂u(xi) + O
(
h) ⇒ ux(xi) = A–

 δx̂u(xi) + O
(
h),

Auxxxx(xi) = δ
x u(xi) + O

(
h) ⇒ uxxxx(xi) = A–

 δ
x u(xi) + O

(
h),

omitting the small terms O(h), we obtain the approximation of uxx, ux, and uxxxx as

Auxx(xi) ≈ δ
x Ui ⇒ uxx(xi) ≈A–

 δ
x Ui,

Aux(xi) ≈ δx̂Ui ⇒ ux(xi) ≈A–
 δx̂Ui,

Auxxxx(xi) ≈ δ
x Ui ⇒ uxxxx(xi) ≈A–

 δ
x Ui,

where Ui is the approximation of u(xi). The corresponding matrix form is

M(�huxx) ≈ δ
x U ⇒ �huxx ≈ M–

 δ
x U ,

M(�hux) ≈ δx̂U ⇒ �hux ≈ M–
 δx̂U ,

M(�huxxxx) ≈ δ
x U ⇒ �huxxxx ≈ M–

 δ
x U ,

where

U = (U, U, . . . , UJ–),

�hux =
(
ux(x), ux(x), . . . , ux(xJ–)

)
,

�huxx =
(
uxx(x), uxx(x), . . . , uxx(xJ–)

)
,

�huxxxx =
(
uxxxx(x), uxxxx(x), . . . , uxxxx(xJ–)

)
,

and

M =




⎛

⎜
⎜⎜
⎜
⎝

   . . .  
   . . .  
...

...
... . . .

...
...

   . . .  

⎞

⎟
⎟⎟
⎟
⎠

(J–)×(J–)

,

M =



⎛

⎜⎜
⎜⎜
⎝

   . . .  
   . . .  
...

...
... . . .

...
...

   . . .  

⎞

⎟⎟
⎟⎟
⎠

(J–)×(J–)

.
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Imposing the compact difference scheme of the GRRLW equations (.)-(.) gives

∂tUn
i + A–

 δ
x ∂tUn

i + A–
 δx̂Un+ 


i – A–

 δ
x∂tUn

i

+
p

(p + )
[(

Un+ 


i
)p–

δx̂Un+ 


i + δx̂
(
Un+ 


i

)p]

–
p

(p + )
[(

Un+ 


i
)p–

δx̄Un+ 


i + δx̄
(
Un+ 


i

)p] = ,

 ≤ i ≤ J – ,  ≤ n ≤ N – , (.)

Un
 = Un

J = , δ
x Un

 = δ
x Un

J = ,  ≤ n ≤ N , (.)

U
i = u(xi),  ≤ i ≤ J . (.)

Lemma . [] The eigenvalues of the matrices M, M are, respectively, in the following
forms:

λM,k =



(
 + cos

kπ

J

)
, λM,k =




(
 + cos

kπ

J

)
, k = , , . . . , J – .

For the real symmetric positive definite matrices M, M, we let H = M–
 and H = M–

 .
Then H, H are also real symmetric positive definite matrices. Now, we introduce the
following discrete norm:

∥
∥|V |∥∥,h =

[
(HδxV , δxV )

] 
 ,

∥
∥|V |∥∥,h =

[(
Hδ


x V , δ

x V
)] 

 , V ∈ RJ
. (.)

Lemma . The discrete norms ‖| · |‖l,h and | · |l,h (l = , ) are equivalent. In fact, for any
grid function V ∈ RJ

, we have

c|V |,h ≤ ∥∥|V |∥∥,h ≤ c|V |,h, c|V |,h ≤ ∥∥|V |∥∥,h ≤ c|V |,h, (.)

where c = , c =
√


 , c =

√
.

Proof It follows from Lemma . that the eigenvalues of H and H satisfy

 ≤ λH,k ≤ 


,  ≤ λH,k ≤ , k = , , . . . , J – .

these give the spectral radius ρ(H) ≤ 
 , ρ(H) ≤ , and consequently

 ≤ ‖H‖ =
∥∥ρ(H)

∥∥ ≤ 


,  ≤ ‖H‖ =
∥∥ρ(H)

∥∥ ≤ . (.)

Thus we have

|V |,h ≤ (HδxV , δxV )h ≤ ‖H‖(δxV , δxV )h ≤ 

|V |,h,

|V |,h ≤ (
Hδ


x V , δ

x V
)

h ≤ ‖H‖
(
δ

x V , δ
x V

)
h ≤ |V |,h.

(.)

�
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Lemma . [] For U , V ∈ RJ
, we have

(δx̂U , V )h = –(U , δx̂V )h, (δx̄U , V )h = –(U , δx̄V )h.

Lemma . [] For any discrete function V ∈ RJ
, we have interpolation formulas as fol-

lows:

‖V‖k,h ≤ K‖V‖ k
n
n,h‖V‖– k

n
h , (.)

for  ≤ k ≤ n, and

‖V‖∞,h ≤ K‖V‖ 
n
n,h‖V‖– 

n
h , (.)

for n ≥ , where K and K are constants independent of h and V .

Lemma . [] For V ∈ H
h(�h), we have

‖V‖
h ≤ K|V |,h,

where K is a constant independent of h and V .

Lemma . [] For V ∈ H
h (�h), we have

|V |,h ≤ K|V |,h,

where K is a constant independent of h and V .

Lemma . [] Let (H , (·, ·)h) be a finite-dimensional inner product space, ‖ · ‖h be the
associated norm, and g : H −→ H be continuous. Assume, moreover, that ∃α > , ∀z ∈ H ,
‖z‖h = α, (g(z), z) ≥ . Then there exists a z∗ ∈ H such that g(z∗) =  and ‖z∗‖h ≤ α.

Lemma . [] Suppose that the discrete function {ωn | n = , , , . . . , N ; Nτ = T} satisfies
the inequality

ωn – ωn– ≤ Aτωn + Bτωn– + Cnτ ,

where A, B, and Cn are nonnegative constants. Then

max
≤n≤N

∣
∣ωn∣∣ ≤

(

ω + τ

N∑

l=

Cl

)

e(A+B)T ,

where τ is sufficiently small, such that (A + B)τ ≤ N–
N (N > ).
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The matrix form of the difference scheme (.)-(.) can be written as

∂tUn + Hδ

x ∂tUn + Hδx̂Un+ 

 – Hδ

x∂tUn

+
p

(p + )
[(

Un+ 

)p

δx̂Un+ 
 + δx̂

(
Un+ 


i

)p]

–
p

(p + )
[(

Un+ 

)p–

δx̄Un+ 
 + δx̄

(
Un+ 


)p] = ,  ≤ n ≤ N – , (.)

Un|∂�h = , δ
x Un|∂�h = ,  ≤ n ≤ N , (.)

U
i = u(xi),  ≤ i ≤ J . (.)

Let Z
h = {Vj = (Vj)j∈Z | V = VJ = , δ

x V = δ
x VJ = }, obviously, the solution Un ∈ Z

h of
the difference scheme (.)-(.), then there are the following lemmas:

Theorem . Assume u ∈ H
(�), then the finite difference scheme (.)-(.) is conser-

vative for the discrete energy and the discrete mass, i.e.

En =
∥∥Un∥∥

h +
∥∥∣∣Un∣∣∥∥

,h +
∥∥∣∣Un∣∣∥∥

,h = · · · = E (.)

and

Qn = h
J–∑

j=

Un
j = Qn– = · · · = Q.

Proof Taking the inner product of (.) with Un+ 
 , we obtain

(
∂tUn, Un+ 


)

h +
(
Hδ


x ∂tUn, Un+ 


)

h +
(
Hδx̂Un+ 

 , Un+ 

)

h

–
(
Hδ


x∂tUn, Un+ 


)

h +
p

(p + )
(((

Un+ 

)p–

δx̂Un+ 
 + δx̂

(
Un+ 


)p), Un+ 


)

h

–
p

(p + )
(((

Un+ 

)p–

δx̄Un+ 
 + δx̄

(
Un+ 


)p), Un+ 


)

h = , (.)

letting

φ(U , U) =
p

(p + )
(
Up–δx̂U + δx̂

(
Up)),

ψ(U , U) =
p

(p + )
(
Up–δx̄U + δx̄

(
Up)),

from Lemma ., we have

(
φ(U , U), U

)
h =

p
(p + )

(
Up–δx̂U + δx̂

(
Up), U

)
h

=
p

(p + )
[(

Up–δx̂U , U
)

h +
(
δx̂

(
Up), U

)
h

]

=
p

(p + )
[(

δx̂U , Up)
h –

(
δx̂U , Up)

h

]
=  (.)
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and

(
ψ(U , U), U

)
h =

p
(p + )

(
Up–δx̄U + δx̄

(
Up), U

)
h

=
p

(p + )
[(

Up–δx̄U , U
)

h +
(
δx̄

(
Up), U

)
h

]

=
p

(p + )
[(

δx̄U , Up)
h –

(
δx̄U , Up)

h

]
= . (.)

Thus from (.)-(.), we can obtain

(∥∥Un+∥∥
h –

∥∥Un∥∥
h

)
+

(∥∥∣∣Un+∣∣∥∥
,h –

∥∥∣∣Un∣∣∥∥
,h

)
+

(∥∥∣∣Un+∣∣∥∥
,h –

∥∥∣∣Un∣∣∥∥
,h

)
= . (.)

Let En denote the following discrete energy:

En =
∥∥Un∥∥

h +
∥∥∣∣Un∣∣∥∥

,h +
∥∥∣∣Un∣∣∥∥

,h, (.)

then from (.), we get

En = En– = · · · = E.

Multiplying (.) with h, according to the boundary condition (.), summing for j from
 to J – , we obtain

h
J–∑

j=

(
Un+

j – Un
j
)

= ,

letting

Qn = h
J–∑

j=

Un
j ,

then we have

Qn = Qn– = · · · = Q.

This completes the proof. �

Lemma . Assume u ∈ H
(�), then there is the estimation for the solution of the dif-

ference scheme (.)-(.)

∥∥Un∥∥
,h ≤

√
(K + )E

K + 
,

∥∥Un∥∥∞,h ≤ K

√
(K + )E

K + 
.

Proof From Lemma ., Lemma ., and Theorem ., we have

(
K + 

K

)∣
∣Un∣∣

,h +
∥
∥Un∥∥

h ≤ ∥
∥Un∥∥

h +
∣
∣Un∣∣

,h +
∣
∣Un∣∣

,h ≤ E, n ≥ .
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Hence, we can get

∥
∥Un∥∥

,h =
√∥

∥Un
∥
∥

h +
∣
∣Un

∣
∣
,h ≤

√

E +
KE

K + 
=

√
(K + )E

K + 
.

It follows from Lemma . that

∥
∥Un∥∥∞,h ≤ K

∥
∥Un∥∥

,h ≤ K

√
(K + )E

K + 
.

This completes the proof. �

Lemma . For V ∈ Z
h , we have

‖δx̄V‖
h ≤ ‖δx̂V‖

h ≤ ‖δxV‖
h.

Proof From the definition of ‖ · ‖h, we have

‖δx̄V‖
h = h

J–∑

j=

(δx̄Vj) =
h


J–∑

j=

(δx̂Vj+ + δx̂Vj–)

=
h


J–∑

j=

(
(δx̂Vj+) + (δx̂Vj–) + (δx̂Vj+)(δx̂Vj–)

) ≤ ‖δx̂V‖
h

and

‖δx̂V‖
h = h

J–∑

j=

(δx̂Vj) =
h


J–∑

j=

(δxVj + δxVj–)

=
h


J–∑

j=

(
(δxVj) + (δxVj–) + (δxVj)(δxVj–)

) ≤ ‖δxV‖
h.

The proof is completed. �

Theorem . The difference scheme (.)-(.) is uniquely solvable.

Proof For a fixed n, (.) can be written as

Un+ 
 – Un + Hδ


x
(
Un+ 

 – Un) +
τ


Hδx̂Un+ 

 – Hδ

x
(
Un+ 

 – Un)

+
τ


φ
(
Un+ 

 , Un+ 

)

–
τ


ψ

(
Un+ 

 , Un+ 

)

= , (.)

we define F on Z
h as follows:

F(ξ ) = ξ – Un + Hδ

x ξ – Hδ


x Un +

τ


Hδx̂ξ

– Hδ

xξ + Hδ


x Un +

τ


φ(ξ , ξ ) –

τ


ψ(ξ , ξ ), (.)
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obviously, F is continuous. Computing the inner product of (.) with ξ and considering
(φ(ξ , ξ ), ξ )h = , (ψ(ξ , ξ ), ξ )h =  and (Hδx̂ξ , ξ )h = , we obtain

(
F(ξ ), ξ

)
h = ‖ξ‖

h –
(
Un, ξ

)
h +

∥∥|ξ |∥∥
,h –

(
Hδ


x Un, δ

xξ
)

h +
∥∥|ξ |∥∥

,h +
(
Hδ


x Un, ξ

)
h

≥ ‖ξ‖
h –



(‖ξ‖

h +
∥∥Un∥∥

h

)
+

∥∥|ξ |∥∥
,h +

∥∥|ξ |∥∥
,h

–
(
Hδ


x Un, δ

xξ
)

h +
(
Hδ


x Un, ξ

)
h

≥ 

(‖ξ‖

h –
∥∥Un∥∥

h

)
+

∥∥|ξ |∥∥
,h +

∥∥|ξ |∥∥
,h –



(∥∥|ξ |∥∥

,h +
∥∥∣∣Un∣∣∥∥

,h

)

–


(∥∥|ξ |∥∥

,h +
∥∥∣∣Un∣∣∥∥

,h

)

=


(‖ξ‖

h –
∥∥Un∥∥

h

)
+



∥∥|ξ |∥∥

,h +


∥∥|ξ |∥∥

,h –


∥∥∣∣Un∣∣∥∥

,h –


∥∥∣∣Un∣∣∥∥

,h

≥ 

‖ξ‖

h –


(∥∥Un∥∥

h +
∥
∥
∣
∣Un∣∣

∥
∥

,h +
∥
∥
∣
∣Un∣∣

∥
∥

,h

)
.

Hence, for all ξ ∈ Z
h , let ‖ξ‖

h = ‖Un‖
h + ‖|Un|‖

,h + ‖|Un|‖
,h + , then there exists

(F(ξ ), ξ )h > . It follows from Lemma . that there exists a ξ ∗ ∈ Z
h which satisfies

F(ξ ∗) = . Let Un+ = ξ ∗ – Un, then it can be proved that Un+ ∈ Z
h is the solution of

scheme (.)-(.).
Next, we will give the uniqueness of the difference solution. Assume that Un and V n

satisfy scheme (.)-(.), letting wn = V n – Un, we have

∂twn + Hδ

x δtwn + Hδx̂wn+ 

 – Hδ

x∂twn

+
[
φ
(
V n+ 

 , V n+ 

)

– φ
(
Un+ 

 , Un+ 

)]

–
[
ψ

(
V n+ 

 , V n+ 

)

– ψ
(
Un+ 

 , Un+ 

)]

= . (.)

Computing the inner product of (.) with wn+ 
 , we have

 =
(∥∥wn+∥∥

h –
∥
∥wn∥∥

h

)
+

(∥∥
∣
∣wn+∣∣

∥
∥

,h –
∥
∥
∣
∣wn∣∣

∥
∥

,h

)
+

(∥∥
∣
∣wn+∣∣

∥
∥

,h –
∥
∥
∣
∣wn∣∣

∥
∥

,h

)

+ τ
(
φ
(
V n+ 

 , V n+ 

)

– φ
(
Un+ 

 , Un+ 

)
, wn+ 


)

h

– τ
(
ψ

(
V n+ 

 , V n+ 

)

– ψ
(
Un+ 

 , Un+ 

)
, wn+ 


)

h, (.)

by Lemma ., we can estimate (.) as follows:

(
φ
(
V n+ 

 , V n+ 

)

– φ
(
Un+ 

 , Un+ 

)
, wn+ 


)

h

=
ph

(p + )

J–∑

i=

[(
V n+ 


i

)p–
δx̂V n+ 


i –

(
Un+ 


i

)p–
δx̂Un+ 


i

]
wn+ 


i

+
ph

(p + )

J–∑

i=

[
δx̂

(
V n+ 


i

)p – δx̂
(
Un+ 


i

)p]wn+ 


i

≤ p
(p + )

max
{

Kp–
 , (p – )Kp–


}(∥∥wn+∥∥

,h +
∥
∥wn∥∥

,h

)
, (.)
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(
ψ

(
V n+ 

 , V n+ 

)

– ψ
(
Un+ 

 , Un+ 

)
, wn+ 


)

h

=
ph

(p + )

J–∑

i=

[(
V n+ 


i

)p–
δx̄V n+ 


i –

(
Un+ 


i

)p–
δx̄Un+ 


i

]
wn+ 


i

+
ph

(p + )

J–∑

i=

[
δx̄

(
V n+ 


i

)p – δx̄
(
Un+ 


i

)p]wn+ 


i

≤ p
(p + )

max
{

Kp–
 , (p – )Kp–


}(∥∥wn+∥∥

,h +
∥∥wn∥∥

,h

)
, (.)

where K = K
√

(K+)E

K+ . Substituting (.) and (.) into (.), from Lemma ., we
obtain

(∥∥wn+∥∥
h +

∥∥∣∣wn+∣∣∥∥
,h +

∥∥∣∣wn+∣∣∥∥
,h

)
–

(∥∥wn∥∥
h +

∥∥∣∣wn∣∣∥∥
,h +

∥∥∣∣wn∣∣∥∥
,h

)

≤ pτ

(p + )
max

{
Kp–

 , (p – )Kp–


}(∥∥wn+∥∥
,h +

∥
∥wn∥∥

,h

)

≤ Kτ
(∥∥

∣
∣wn+∣∣

∥
∥

,h +
∥
∥
∣
∣wn∣∣

∥
∥

,h

)

≤ Kτ
(∥∥wn+∥∥

h +
∥
∥
∣
∣wn+∣∣

∥
∥

,h +
∥
∥
∣
∣wn+∣∣

∥
∥

,h

)

+ Kτ
(∥∥wn∥∥

h +
∥
∥
∣
∣wn∣∣

∥
∥

,h +
∥
∥
∣
∣wn∣∣

∥
∥

,h

)
, (.)

where K = p
(p+) max{Kp–

 , (p – )Kp–
 }.

Choosing small enough τ , we obtain by Lemma .

∥
∥wn∥∥

h +
∥
∥
∣
∣wn∣∣

∥
∥

,h +
∥
∥
∣
∣wn∣∣

∥
∥

,h = . (.)

This completes the proof. �

3 Convergence and stability of the difference solution
In this section, we will consider the convergence and stability of the finite difference
scheme (.)-(.). Assume that the solution u(x, t) of (.)-(.) is sufficiently smooth. We
define the net function un

i = u(xi, tn) and the truncation errors as follows:

∂tun
i + A–

 δ
x ∂tun

i + A–
 δx̂un+ 


i – A–

 δ
x∂tun

i

+
p

(p + )
[(

un+ 


i
)p–

δx̂un+ 


i + δx̂
(
un+ 


i

)p]

–
p

(p + )
[(

un+ 


i
)p–

δx̄un+ 


i + δx̄
(
un+ 


i

)p] = rn
i ,

 ≤ i ≤ J – ,  ≤ n ≤ N – , (.)

un
 = un

J = , δ
x un

 = δ
x un

J = ,  ≤ n ≤ N , (.)

u
i = u(xi),  ≤ i ≤ J . (.)
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Suppose that u ∈ H
(�) and u(x, t) ∈ C,, then from Taylor’s expansion, the truncation

errors of scheme (.) satisfy

∣∣rn
i
∣∣ = O

(
τ  + h), as τ → , h → . (.)

Theorem . Suppose that u ∈ H
(�) and u(x, t) ∈ C,, then the solution of the difference

scheme (.)-(.) converges to the solution of the problem (.)-(.) with order O(τ  + h)
by the L∞ norm.

Proof Subtracting (.)-(.) from (.)-(.) letting en
i = un

i – Un
i , we obtain

∂ten + Hδ

x δten + Hδx̂en+ 

 – Hδ

x∂ten +

[
φ
(
un+ 

 , un+ 

)

– φ
(
Un+ 

 , Un+ 

)]

–
[
ψ

(
un+ 

 , un+ 

)

– ψ
(
Un+ 

 , Un+ 

)]

= rn,  ≤ n ≤ N – , (.)

en|∂�h = , δ
x en|∂�h = ,  ≤ n ≤ N , (.)

e
i = ,  ≤ i ≤ J . (.)

Computing the inner product of (.) with en+ 
 , we have

τ
(
rn, en+ 


)

h

=
(∥∥en+∥∥

h –
∥
∥en∥∥

h

)
+

(∥∥
∣
∣en+∣∣

∥
∥

,h –
∥
∥
∣
∣en∣∣

∥
∥

,h

)
+

(∥∥
∣
∣en+∣∣

∥
∥

,h –
∥
∥
∣
∣en∣∣

∥
∥

,h

)

+ τ
(
φ
(
un+ 

 , un+ 

)

– φ
(
Un+ 

 , Un+ 

)
, en+ 


)

h

– τ
(
ψ

(
un+ 

 , un+ 

)

– ψ
(
Un+ 

 , Un+ 

)
, en+ 


)

h. (.)

Similarly to the proof of Theorem ., we have

(∥∥en+∥∥
h +

∥∥∣∣en+∣∣∥∥
,h +

∥∥∣∣en+∣∣∥∥
,h

)
–

(∥∥en∥∥
h +

∥∥∣∣en∣∣∥∥
,h +

∥∥∣∣en∣∣∥∥
,h

)

≤ τ
∥∥rn∥∥

h + Kτ
(∥∥en+∥∥

h +
∥∥∣∣en+∣∣∥∥

,h +
∥∥∣∣en+∣∣∥∥

,h

)

+ Kτ
(∥∥en∥∥

h +
∥∥∣∣en∣∣∥∥

,h +
∥∥∣∣en∣∣∥∥

,h

)
, (.)

where K = K + 
 . Let Bn = ‖en‖

h + ‖|en|‖
,h + ‖|en|‖

,h, then (.) can be rewritten as

Bn+ – Bn ≤ τ
∥∥rn∥∥

h + τK
(
Bn+ + Bn). (.)

Choosing small enough τ , from Lemma ., we obtain

Bn ≤ C
(
B +

(
τ  + h)). (.)

From the discrete initial conditions, we know that

B ≤ O
(
τ  + h). (.)

Then we have

∥∥en∥∥
h ≤ O

(
τ  + h),

∥∥∣∣en∣∣∥∥
,h ≤ O

(
τ  + h),

∥∥∣∣en∣∣∥∥
,h ≤ O

(
τ  + h). (.)
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Table 1 The errors of numerical solutions at t = 60 with τ = h for p = 2

h ‖un – Un‖∞,h ‖un – Un‖∞,h [17]

0.4 3.5235× 10–3 1.9587× 10–2

0.2 8.0413× 10–4 4.9838× 10–3

0.1 1.9123× 10–4 1.2520× 10–3

0.05 4.6595× 10–5 3.1346× 10–4

Table 2 The errors of numerical solutions at t = 60 with τ = h for p = 3

h ‖un – Un‖∞,h ‖un – Un‖∞,h [17]

0.4 5.2629× 10–3 4.2510× 10–2

0.2 1.4684× 10–3 1.0804× 10–2

0.1 3.8492× 10–4 2.7090× 10–3

0.05 9.8927× 10–5 6.7722× 10–4

Table 3 The errors of numerical solutions at t = 60 with τ = h for p = 6

h ‖un – Un‖∞,h ‖un – Un‖∞,h [17]

0.4 3.1535× 10–2 6.3539× 10–2

0.2 7.4328× 10–3 1.6496× 10–2

0.1 1.8246× 10–3 4.1593× 10–3

0.05 4.5437× 10–4 1.0409× 10–3

Table 4 The maximum norm errors and spatial convergence order with fixed time step
τ = 1

1,000

J p = 2 p = 3 p = 6

‖un – Un‖∞,h order1 ‖un – Un‖∞,h order1 ‖un – Un‖∞,h order1

125 9.7465× 10–4 – 2.9741× 10–3 – 4.2113× 10–3 –
250 7.0687× 10–5 3.7854 2.3162× 10–4 3.6826 3.5045× 10–4 3.5870
500 4.5932× 10–6 3.9439 1.5359× 10–5 3.9164 2.6008× 10–5 3.7522

1,000 2.9062× 10–7 3.9823 9.9102× 10–7 3.9540 1.6700× 10–6 3.9610

Table 5 The maximum norm errors and temporal convergence order with the fixed space
step h = 0.1

N p = 2 p = 3 p = 6

‖un – Un‖∞,h order2 ‖un – Un‖∞,h order2 ‖un – Un‖∞,h order2

10 3.0491× 10–5 – 6.7612× 10–5 – 8.8887× 10–5 –
20 7.3366× 10–6 2.0552 1.6812× 10–5 2.0078 2.2979× 10–5 1.9517
40 1.8011× 10–6 2.0262 4.2029× 10–6 2.0000 5.8571× 10–6 1.9721
80 4.4617× 10–7 2.0132 1.0439× 10–6 2.0094 1.4822× 10–6 1.9824

By Lemma ., we obtain

∣∣en∣∣
,h ≤ O

(
τ  + h),

∣∣en∣∣
,h ≤ O

(
τ  + h). (.)

It follows from Lemma . that

∥
∥en∥∥∞,h ≤ O

(
τ  + h). (.)

This completes the proof. �

We can similarly prove the stability of the difference solution.
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Figure 1 Discrete energy En with τ = 0.5, h = 0.2 at various t for p = 2.

Figure 2 Discrete energy En with τ = 0.5, h = 0.2 at various t for p = 3.

Theorem . Under the conditions of Theorem ., the solution of conservative finite dif-
ference scheme (.)-(.) is stable by the L∞ norm.

4 Numerical experiments
In this section, numerical results are provided to demonstrate the accuracy and efficiency
of the compact scheme (.)-(.). The exact solution of the system (.)-(.) is

u(x, t) = exp

( ln (p+)(p+)(p+)
(p+)(p+p+)

p – 

)
sech


p–

((
p – 

√
p + p + 

)
(x – ct)

)
, (.)

where c = p+p+p+p+
p+p+p+p+ is the wave velocity. In order to compare with the literature

[], we choose xl = –, xr = , and consider three cases: p = , p =  and p =  in
Tables , , and , respectively. Tables , , and  give the errors in the sense of the L∞-
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Figure 3 Discrete energy En with τ = 0.5, h = 0.2 at various t for p = 6.

Figure 4 Numerical solution Un with p = 2 and τ = 0.1, h = 0.2.

norm of the numerical solutions under various steps of τ = h = ., ., ., . at t = 
for p = ,  and .

Denote

order = log
E(τ ,h)
E(τ ,h)

 , order = log
E(τ ,h)
E(τ ,h)

 ,

where E(τ , h) = ‖un – Un‖∞,h. First, we test the spatial errors and convergence orders by
letting h vary and fixing the time step size τ sufficiently small to avoid contamination of the
temporal. Table  shows the numerical results when τ = 

, , h = 
 , h = 

 , h = 
 , and

h = 
, . It can be seen from Table  that the convergence order of the compact difference

scheme (.)-(.) is about  with respect to the spatial step size.
We further test the temporal errors and convergence orders. Fix h = ., a value small

enough so that the spatial error is negligible as compared with the temporal error. Take
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Figure 5 Numerical solution Un with p = 3 and τ = 0.1, h = 0.2.

Figure 6 Numerical solution Un with p = 6 and τ = 0.1, h = 0.2.

τ = 
 , 

 , 
 , 

 , respectively. Table  shows that the convergence order of the compact
difference scheme (.)-(.) with respect to the temporal variable is about .

Figures , , and  plot the conservative law of discrete energy En, computed by scheme
(.)-(.) with τ = ., h = . for p = ,  and . Figures , , and  plot the exact solutions
at t =  and the numerical solutions computed by scheme (.)-(.) with τ = ., h = .
at t = , , which also show the accuracy of scheme (.)-(.).
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