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1 Introduction
The theory of impulsive differential equations has been emerging as an important area of
investigation in recent years (see [–]). Many problems have been investigated for im-
pulsive differential equations, impulsive functional differential equations and impulsive
differential inclusions. These problems include existence of solutions, stability theory, ge-
ometric properties, applications, etc. There is a vast literature on existence of solutions: by
using upper and lower solutions together with the monotone iterative technique to obtain
the extremal solutions [–]; by using fixed point theorems to obtain the existence of so-
lution and multiple solutions [–]; by using the Leray-Schauder degree theory or fixed
point index theory to obtain multiple solutions [–]; by using the variational method
to obtain the existence of solution and existence of infinite many solutions [–]. In re-
cent article [], the author discussed the existence of two positive solutions for an infinite
boundary value problem of first order impulsive singular integro-differential equations on
the half line by means of the fixed point theorem of cone expansion and compression with
norm type, which was established by the author in [] (see also [–]). Now, in this
article, we shall discuss such problem for a class of second order equations. The discus-
sion for second order equations is more complicated than the first order case. We must
introduce a new Banach space and a new cone in it to control both the unknown function
and its derivative so that we can still use the fixed point theorem of cone expansion and
compression with norm type.
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Consider the infinite boundary value problem (IBVP) for second order impulsive singu-
lar integro-differential equation of mixed type on the half line:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′(t) = f (t, u(t), u′(t), (Tu)(t), (Su)(t)), ∀t ∈ R′
++,

�u|t=tk = Ik(u′(t–
k )) (k = , , , . . .),

�u′|t=tk = Īk(u′(t–
k )) (k = , , , . . .),

u() = , u′(∞) = βu′(),

()

where R denotes the set of all real numbers, R+ = {x ∈ R : x ≥ }, R++ = {x ∈ R : x > },  <
t < · · · < tk < · · · , tk → ∞, R′

++ = R++\{t, . . . , tk , . . .}, f ∈ C[R++ × R++ × R++ × R+ × R+, R+],
Ik , Īk ∈ C[R++, R+] (k = , , , . . .), β > , u′(∞) = limt→∞ u′(t) and

(Tu)(t) =
∫ t


K(t, s)u(s) ds, (Su)(t) =

∫ ∞


H(t, s)u(s) ds, ()

K ∈ C[D, R+], D = {(t, s) ∈ R+ × R+ : t ≥ s}, H ∈ C[R+ × R+, R+]. �u|t=tk and �u′|t=tk denote
the jumps of u(t) and u′(t) at t = tk , respectively, i.e.

�u|t=tk = u
(
t+
k
)

– u
(
t–
k
)
, �u′|t=tk = u′(t+

k
)

– u′(t–
k
)
,

where u(t+
k ) and u(t–

k ) represent the right and left limits of u(t) at t = tk , respectively, and
u′(t+

k ) and u′(t–
k ) represent the right and left limits of u′(t) at t = tk , respectively. In what

follows, we always assume that

lim
t→+

f (t, u, v, w, z) = ∞, ∀u, v ∈ R++, w, z ∈ R+, ()

lim
u→+

f (t, u, v, w, z) = ∞, ∀t, v ∈ R++, w, z ∈ R+ ()

and

lim
v→+

f (t, u, v, w, z) = ∞, ∀t, u ∈ R++, w, z ∈ R+, ()

i.e. f (t, u, v, w, z) is singular at t = , u =  and v = . We also assume that

lim
v→+

Ik(v) = ∞ (k = , , , . . .) ()

and

lim
v→+

Īk(v) = ∞ (k = , , , . . .), ()

i.e. Ik(v) and Īk(v) (k = , , , . . .) are singular at v = . Let PC[R+, R] = {u : u is a real function
on R+ such that u(t) is continuous at t �= tk , left continuous at t = tk , and u(t+

k ) exists, k =
, , , . . .} and PC[R+, R] = {u ∈ PC[R+, R] : u′(t) is continuous at t �= tk , and u′(t+

k ) and
u′(t–

k ) exist for k = , , , . . .}. Let u ∈ PC[R+, R]. For  < h < tk – tk–, by the mean value
theorem, there exists tk – h < ξk < tk such that

u(tk) – u(tk – h) = u′(ξk)h,
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hence the left derivative of u(t) at t = tk , which is denoted by u′
–(tk), exists, and

u′
–(tk) = lim

h→+

u(tk) – u(tk – h)
h

= u′(t–
k
)
.

In what follows, it is understood that u′(tk) = u′
–(tk). So, for u ∈ PC[R+, R], we have u′ ∈

PC[R+, R].
A function u ∈ PC[R+, R] ∩ C[R′

++, R] is called a positive solution of IBVP () if u(t) > 
for t ∈ R++ and u(t) satisfies (). Now, we need to introduce a new space DPC[R+, R] and
a new cone Q in it. Let

DPC[R+, R] =
{

u ∈ PC[R+, R] : sup
t∈R++

|u(t)|
t

< ∞, sup
t∈R+

∣
∣u′(t)

∣
∣ < ∞

}

.

It is easy to see that DPC[R+, R] is a Banach space with the norm

‖u‖D = max
{‖u‖S,

∥
∥u′∥∥

B

}
,

where

‖u‖S = sup
t∈R++

|u(t)|
t

,
∥
∥u′∥∥

B = sup
t∈R+

∣
∣u′(t)

∣
∣.

Let W = {u ∈ DPC[R+, R] : u(t) ≥ , u′(t) ≥ ,∀t ∈ R+} and

Q =
{

u ∈ DPC[R+, R] : inf
t∈R++

u(t)
t

≥ β–‖u‖S, inf
t∈R+

u′(t) ≥ β–∥∥u′∥∥
B

}

.

Obviously, W and Q are two cones in the space DPC[R+, R] and Q ⊂ W (for details on
cone theory, see []). Let Q+ = {u ∈ Q : ‖u‖D > } and Qpq = {u ∈ Q : p ≤ ‖u‖D ≤ q} for
q > p > .

2 Several lemmas
Remark  (a) For u ∈ DPC[R+, R], we have u() = . This is clear since u() �=  implies

sup
t∈R++

|u(t)|
t

= ∞.

(b) For u ∈ Q+, we have u(t) >  for t ∈ R++ and u′(t) >  for t ∈ R+.

Lemma  For u ∈ Q, we have

‖u‖S ≥ β–∥∥u′∥∥
B,

∥
∥u′∥∥

B ≥ β–‖u‖S, ()

β–‖u‖D ≤ ‖u‖S ≤ ‖u‖D, β–‖u‖D ≤ ∥
∥u′∥∥

B ≤ ‖u‖D ()

and

β–‖u‖D ≤ u(t)
t

≤ ‖u‖D, ∀t ∈ R++; β–‖u‖D ≤ u′(t) ≤ ‖u‖D, ∀t ∈ R+. ()



Guo Boundary Value Problems  (2015) 2015:76 Page 4 of 23

Proof Since () implies () and () and () imply (), we need only to show ().
For fixed  < t < t, observing u() =  and by the mean value theorem, there exists

 < ξ < t such that

u(t)
t

=
u(t) – u()

t
= u′(ξ ).

So,

‖u‖S = sup
s∈R++

u(s)
s

≥ u(t)
t

= u′(ξ ) ≥ inf
s∈R+

u′(s) ≥ β–∥∥u′∥∥
B.

On the other hand, for any  < t < t, we have

u(t)
t

≥ β–‖u‖S,

so,

u′() = lim
t→+

u(t) – u()
t

= lim
t→+

u(t)
t

≥ β–‖u‖S,

hence,

∥
∥u′∥∥

B = sup
s∈R+

u′(s) ≥ u′() ≥ β–‖u‖S. �

Let us list some conditions.
(H) supt∈J

∫ t
 K(t, s)s ds < ∞, supt∈J

∫ ∞
 H(t, s)s ds < ∞ and

lim
t′→t

∫ ∞



∣
∣H

(
t′, s

)
– H(t, s)

∣
∣s ds = , ∀t ∈ R+.

In this case, let

k∗ = sup
t∈R+

∫ t


K(t, s)s ds, h∗ = sup

t∈R+

∫ ∞


H(t, s)s ds.

(H) There exist a, b ∈ C[R++, R+], g ∈ C[R++, R+] and G ∈ C[R++ ×R+ ×R+, R+] such that

f (t, u, v, w, z) ≤ a(t)g(u) + b(t)G(v, w, z), ∀t, u, v ∈ R++, w, z ∈ R+

and

a∗
r =

∫ ∞


a(t)gr(t) dt < ∞

for any r > , where

gr(t) = max
{

g(u) : β–rt ≤ u ≤ rt
}
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and

b∗ =
∫ ∞


b(t) dt < ∞.

(H) Ik(v) ≤ tk Īk(v), ∀v ∈ R++ (k = , , , . . .), and there exist γk ∈ R+ (k = , , , . . .) and
F ∈ C[R++, R+] such that

Īk(v) ≤ γkF(v), ∀v ∈ R++ (k = , , , . . .)

and

γ̄ =
∞∑

k=

tkγk < ∞,

and, consequently,

γ ∗ =
∞∑

k=

γk ≤ t–
 γ̄ < ∞.

It is clear: if condition (H) is satisfied, then () implies ().
(H) There exists c ∈ C[R++, R++] such that

f (t, u, v, w, z)
c(t)v

→ ∞ as v → ∞

uniformly for t, u ∈ R++, w, z ∈ R+, and

c∗ =
∫ ∞


c(t) dt < ∞.

(H) There exists d ∈ C[R++, R++] such that

[
d(t)

]–f (t, u, v, w, z) → ∞ as v → +

uniformly for t, u ∈ R++, w, z ∈ R+, and

d∗ =
∫ ∞


d(t) dt < ∞.

Remark  It is clear: if condition (H) is satisfied, then the operators T and S defined
by () are bounded linear operators from DPC[R+, R] into BC[R+, R] (the Banach space
of all bounded continuous functions u(t) on R+ with the norm ‖u‖B = supt∈R+ |u(t)|) and
‖T‖ ≤ k∗, ‖S‖ ≤ h∗; moreover, we have T(DPC[R+, R+]) ⊂ BC[R+, R+] (BC[R+, R+] = {u ∈
BC[R+, R] : u(t) ≥ ,∀t ∈ R+}) and S(DPC[R+, R+]) ⊂ BC[R+, R+].

Remark  Condition (H) means that the function f (t, u, v, w, z) is superlinear with re-
spect to v.
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Remark  Condition (H) means that the function f (t, u, v, w, z) is singular at v =  and it
is stronger than ().

Remark  In what follows, we need the following two formulas (see [], Lemma ):
(a) If u ∈ PC[R+, R] ∩ C[R′

++, R], then

u(t) = u() +
∫ t


u′(s) ds +

∑

<tk <t

[
u
(
t+
k
)

– u
(
t–
k
)]

, ∀t ∈ R+. ()

(b) If u ∈ PC[R+, R] ∩ C[R′
++, R], then

u(t) = u() + tu′() +
∫ t


(t – s)u′′(s) ds

+
∑

<tk <t

{[
u
(
t+
k
)

– u
(
t–
k
)]

+ (t – tk)
[
u′(t+

k
)

– u′(t–
k
)]}

, ∀t ∈ R+. ()

We shall reduce IBVP () to an impulsive integral equation. To this end, we first consider
operator A defined by

(Au)(t) =
t

β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

+
∫ t


(t – s)f

(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∑

<tk <t

{
Ik

(
u′(t–

k
))

+ (t – tk)Īk
(
u′(t–

k
))}

, ∀t ∈ R+. ()

In what follows, we write J = [, t], Jk = (tk–, tk] (k = , , , . . .).

Lemma  If conditions (H)-(H) are satisfied, then operator A defined by () is a contin-
uous operator from Q+ into Q; moreover, for any q > p > , A(Qpq) is relatively compact.

Proof Let u ∈ Q+ and ‖u‖B = r. Then r >  and, by () and Remark (a),

β–rt ≤ u(t) ≤ rt, β–r ≤ u′(t) ≤ r, ∀t ∈ R+. ()

By conditions (H), (H) and (), we have (for k∗, h∗, a(t), g(u), b(t), G(v, w, z), gr(t) and
a∗

r , b∗, see conditions (H) and (H))

f
(
t, u(t), u′(t), (Tu)(t), (Su)(t)

) ≤ a(t)gr(t) + Grb(t), ∀t ∈ R++, ()

where

Gr = max
{

g(v, w, z) : β–r ≤ v ≤ r,  ≤ w ≤ k∗r,  ≤ z ≤ h∗r
}

,

which implies the convergence of the infinite integral

∫ ∞


f
(
t, u(t), u′(t), (Tu)(t), (Su)(t)

)
dt ()
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and
∫ ∞


f
(
t, u(t), u′(t), (Tu)(t), (Su)(t)

)
dt ≤ a∗

r + Grb∗. ()

On the other hand, by condition (H) and (), we have

Īk
(
u′(t–

k
)) ≤ Nrγk (k = , , , . . .), ()

where

Nr = max
{

F(v) : β–r ≤ v ≤ r
}

,

which implies the convergence of the infinite series

∞∑

k=

Īk
(
u′(t–

k
))

()

and

∞∑

k=

Īk
(
u′(t–

k
)) ≤ Nrγ

∗. ()

In addition, from () we get

(Au)(t)
t

≥ 
β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑

k=

Īk
(
u′(t–

k
))

}

, ∀t ∈ R++. ()

Moreover, by condition (H), we have

Ik(v) ≤ tk Īk(v), ∀v ∈ R++ (k = , , , . . .),

so, () gives

(Au)(t)
t

≤ 
β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

+
∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

=
β

β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑

k=

Īk
(
u′(t–

k
))

}

, ∀t ∈ R++. ()
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On the other hand, by (), we have

(Au)′(t) =


β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

+
∫ t


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∑

<tk <t

Īk
(
u′(t–

k
))

, ∀t ∈ R+, ()

so,

(Au)′(t) ≥ 
β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑

k=

Īk
(
u′(t–

k
))

}

, ∀t ∈ R+ ()

and

(Au)′(t) ≤ β

β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑

k=

Īk
(
u′(t–

k
))

}

, ∀t ∈ R+. ()

It follows from (), ()-() that Au ∈ Q, i.e. Au ∈ DPC[R+, R] and

inf
t∈R++

(Au)(t)
t

≥ β–‖Au‖S,

inf
t∈R+

(Au)′(t) ≥ β–∥∥(Au)′
∥
∥

B,

and, by (), (), () and (),

‖Au‖S ≤ β

β – 
(
a∗

r + Grb∗ + Nrγ
∗), ()

∥
∥(Au)′

∥
∥

B ≤ β

β – 
(
a∗

r + Grb∗ + Nrγ
∗). ()

Thus, we have proved that A maps Q+ into Q.
Now, we are going to show that A is continuous. Let un, ū ∈ Q+, ‖un – ū‖D →  (n → ∞).

Write ‖ū‖D = r̄ (r̄ > ) and we may assume that

r̄ ≤ ‖un‖D ≤ r̄ (n = , , , . . .).

So, () and () imply

β–r̄ ≤ un(t)
t

≤ r̄, β–r̄ ≤ ū(t)
t

≤ r̄, ∀t ∈ R++ (n = , , , . . .) ()

and

β–r̄ ≤ u′
n(t) ≤ r̄, β–r̄ ≤ ū′(t) ≤ r̄, ∀t ∈ R+ (n = , , , . . .). ()
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By (), we have

|(Aun)(t) – (Aū)(t)|
t

≤ 
β – 

{∫ ∞



∣
∣f

(
s, un(s), u′(s), (Tun)(s), (Sun)(s)

)

– f
(
s, ū(s), ū′(s), (Tū)(s), (Sū)(s)

)∣
∣ds +

∞∑

k=

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū′(t–

k
))∣

∣

}

+
∫ t



∣
∣f

(
s, un(s), u′

n(s), (Tun)(s), (Sun)(s)
)

– f
(
s, ū(s), ū′(s), (Tū)(s), (Tū)(s)

)∣
∣ds

+

t

∑

<tk <t

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣ +
∑

<tk <t

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū
(
t–
k
))∣

∣,

∀t ∈ R++ (n = , , , . . .). ()

When  < t ≤ t, we have
∑

<tk <t

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣ = ,

so,

sup
t∈R++


t

∑

<tk <t

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣

= sup
t<t<∞


t

∑

<tk <t

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣

≤ 
t

∞∑

k=

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣. ()

It follows from () and () that

‖Aun – Aū‖S = sup
t∈R++

|(Aun)(t) – (Aū)(t)|
t

≤ 
t

∞∑

k=

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣

+
β

β – 

{∫ ∞



∣
∣f

(
s, un(s), u′

n(s), (Tun)(s), (Sun)(s)
)

– f
(
s, ū(s), ū′(s), (Tū)(s), (Sū)(s)

)∣
∣ds

+
∞∑

k=

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū′(t–

k
))∣

∣

}

(n = , , , . . .). ()

It is clear that

f
(
t, un(t), u′

n(t), (Tun)(t), (Sun)(t)
)

→ f
(
t, ū(t), ū′(t), (Tū)(t), (Sū)(t)

)
as n → ∞,∀t ∈ R++ ()
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and, similar to () and observing (), we have

∣
∣f

(
t, un(t), u′

n(t), (Tun)(t), (Sun)(t)
)

– f
(
t, ū(t), ū′(t), (Tū)(t), (Sū)(t)

)∣
∣

≤ 
[
a(t)ḡ(t) + Ḡb(t)

]
= σ (t), ∀t ∈ R++ (n = , , , . . .), ()

where

ḡ(t) = max
{

g(u) : β–r̄t ≤ u ≤ r̄t
}

,

Ḡ(t) = max
{

g(v, w, z) : β–r̄ ≤ v ≤ r̄,  ≤ w ≤ k∗r̄,  ≤ z ≤ h∗r̄
}

.

It is easy to see that condition (H) implies

a∗
pq =

∫ ∞


a(t)gpq(t) dt < ∞ ()

for any q > p > , where

gpq(t) = max
{

g(u) : β–pt ≤ u ≤ qt
}

. ()

So,

∫ ∞


a(t)ḡ(t) dt < ∞,

and therefore,

∫ ∞


σ (t) dt < ∞. ()

It follows from (), (), () and the dominated convergence theorem that

lim
n→∞

∫ ∞



∣
∣f

(
t, un(t), u′

n(t), (Tun)(t), (Sun)(t)
)

– f
(
t, ū(t), ū′(t), (Tū)(t), (Sū)(t)

)∣
∣dt

= . ()

On the other hand, similar to () and observing (), we have

Īk
(
u′

n
(
t–
k
)) ≤ N̄rγk , Īk

(
ū′(t–

k
)) ≤ N̄rγk (k, n = , , , . . .), ()

where

N̄r = max
{

F(v) : β–r̄ ≤ v ≤ r̄
}

.

For any given ε > , by () and condition (H), we can choose a positive integer k such
that

∞∑

k=k+

tk Īk
(
u′

n
(
t–
k
))

< ε (n = , , , . . .)
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and

∞∑

k=k+

tk Īk
(
ū′(t–

k
))

< ε,

so,

∞∑

k=k+

Ik
(
u′

n
(
t–
k
))

< ε (n = , , , . . .), ()

∞∑

k=k+

Ik
(
ū′(t–

k
))

< ε, ()

∞∑

k=k+

Īk
(
u′

n
(
t–
k
)) ≤ 

t

∞∑

k=k+

tk Īk
(
u′

n
(
t–
k
))

< t–
 ε ()

and

∞∑

k=k+

Īk
(
ū′(t–

k
)) ≤ 

t

∞∑

k=k+

tk Īk
(
ū′(t–

k
))

< t–
 ε. ()

It is clear that

Ik
(
u′

n
(
t–
k
)) → Ik

(
ū′(t–

k
))

as n → ∞ (k = , , , . . .)

and

Īk
(
u′

n
(
t–
k
)) → Īk

(
ū′(t–

k
))

as n → ∞ (k = , , , . . .),

so, we can choose a positive integer n such that

k∑

k=

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣ < ε, ∀n > n ()

and

k∑

k=

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū′(t–

k
))∣

∣ < ε, ∀n > n. ()

From ()-(), we get

∞∑

k=

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣ < ε, ∀n > n

and

∞∑

k=

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū′(t–

k
))∣

∣ <
(
 + t–


)
ε, ∀n > n,
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hence

lim
n→∞

∞∑

k=

∣
∣Ik

(
u′

n
(
t–
k
))

– Ik
(
ū′(t–

k
))∣

∣ =  ()

and

lim
n→∞

∞∑

k=

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū′(t–

k
))∣

∣ = . ()

It follows from (), (), () and () that

lim
n→∞‖Aun – Aū‖S = . ()

On the other hand, from () it is easy to get

∥
∥(Aun)′ – (Aū)′

∥
∥

B ≤ β

β – 

{∫ ∞



∣
∣f

(
s, un(s), u′

n(s), (Tun)(s), (Sun)(s)
)

– f
(
s, ū(s), ū′(s), (Tū)(s), (Sū)(s)

)∣
∣ds

+
∞∑

k=

∣
∣Īk

(
u′

n
(
t–
k
))

– Īk
(
ū′(t–

k
))∣

∣

}

. ()

So, (), () and () imply

lim
n→∞

∥
∥(Aun)′ – (Aū)′

∥
∥

B = . ()

It follows from () and () that ‖Aun – Aū‖D →  as n → ∞, and the continuity of A is
proved.

Finally, we prove that A(Qpq) is relatively compact, where q > p >  are arbitrarily given.
Let ūn ∈ Qpq (n = , , , . . .). Then, by (),

β–pt ≤ ūn(t) ≤ qt, β–p ≤ ū′
n(t) ≤ q, ∀t ∈ R+ (n = , , , . . .). ()

Similar to (), (), () and observing (), we have

f
(
t, ūn(t), ū′

n(t), (Tūn)(t), (Sūn)(t)
)

≤ a(t)gpq(t) + Gpqb(t), ∀t ∈ R++ (n = , , , . . .), ()

Īk
(
ū′

n
(
t–
k
)) ≤ Npqγk (k, n = , , , . . .) ()

and

‖Aūn‖S ≤ β

β – 
(
a∗

pq + Gpqb∗ + Npqγ
∗) (n = , , , . . .), ()

where gpq(t) and a∗
pq are defined by () and (), respectively, and

Gpq = max
{

g(v, w, z) : β–p ≤ v ≤ q,  ≤ w ≤ k∗q,  ≤ z ≤ h∗q
}

,

Npq = max
{

F(v) : β–p ≤ v ≤ q
}

.
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From () we see that functions {(Aūn)(t)} (n = , , , . . .) are uniformly bounded on [, r]
for any r > . On the other hand, by () and ()-(), we have

 ≤ (Aūn)
(
t′) – (Aūn)(t)

=
t′ – t
β – 

{∫ ∞


f
(
s, ūn(s), ū′

n(s), (Tūn)(s), (Sūn)(s)
)

ds +
∞∑

k=

Īk
(
ū′

n
(
t–
k
))

}

+
(
t′ – t

)
∫ t


f
(
s, ūn(s), ū′

n(s), (Tūn)(s), (Sūn)(s)
)

ds

+
∫ t′

t

(
t′ – s

)
f
(
s, ūn(s), ū′

n(s), (Tūn)(s), (Sūn)(s)
)

ds

+
(
t′ – t

) ∑

<tk <t

Īk
(
ū′

n
(
t–
k
))

≤ t′ – t
β – 

(
a∗

pq + Gpqb∗ + Npqγ
∗) +

(
t′ – t

)(
a∗

pq + Gpqb∗)

+ (tk – tk–)
∫ t′

t

[
a(s)gpq(s) + Gpqb(s)

]
ds +

(
t′ – t

)
Npqγ

∗,

∀t, t′ ∈ Jk , t′ > t (k, n = , , , . . .),

which implies that functions {wn(t)} (n = , , , . . .) defined by (for any fixed k)

wn(t) =

{
(Aūn)(t), ∀t ∈ Jk = (tk–, tk],
(Aūn)(t+

k–), ∀t = tk–
(n = , , , . . .)

((Aūn)(t+
k–) denotes the right limit of (Aūn)(t) at t = tk–) are equicontinuous on J̄k =

[tk–, tk]. Consequently, by the Ascoli-Arzela theorem, {wn(t)} has a subsequence which
is convergent uniformly on J̄k . So, functions {Aūn(t)} (n = , , , . . .) have a subsequence
which is convergent uniformly on Jk . Now, by the diagonal method, we can choose a
subsequence {(Aūni )(t)} (i = , , , . . .) of {(Aūn)(t)} (n = , , , . . .) such that {(Aūni )(t)}
(i = , , , . . .) is convergent uniformly on each Jk (k = , , , . . .). Let

lim
i→∞(Aūni )(t) = w̄(t), ∀t ∈ R+. ()

Similarly, we can discuss {(Aūn)′(t)} (n = , , , . . .). Similar to () and by (), we have

∥
∥(Aūn)′

∥
∥

B ≤ β

β – 
(
a∗

pq + Gpqb∗ + Npqγ
∗) (n = , , , . . .) ()

and

 ≤ (Aūn)′
(
t′) – (Aūn)′(t) =

∫ t′

t
f
(
s, ūn(s), ū′

n(s), (Tūn)(s), (Sūn)(s)
)

ds

≤
∫ t′

t

[
a(s)gpq(s) + Gpqb(s)

]
ds, ∀t, t′ ∈ Jk , t′ > t (n = , , , . . .),

and by a similar method, we can prove that {(Aūni )′(t)} (n = , , , . . .) has a subsequence
which is convergent uniformly on each Jk (k – , , , . . .). For the sake of simplicity of no-
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tation, we may assume that {(Aūni )′(t)} (i = , , , . . .) itself converges uniformly on each Jk

(k = , , , . . .). Let

lim
i→∞(Aūni )

′(t) = y(t). ()

By (), () and the uniformity of convergence, we have

w̄′(t) = y(t), ∀t ∈ R+, ()

and so, w̄ ∈ PC[R+, R]. From () and (), we get

‖w̄‖S ≤ β

β – 
(
a∗

pq + Gpqb∗ + Npqγ
∗)

and

∥
∥w̄′∥∥

B ≤ β

β – 
(
a∗

pq + Gpqb∗ + Npqγ
∗).

Consequently, w̄ ∈ DPC[R+, R] and

‖w̄‖D ≤ β

β – 
(
a∗

pq + Gpqb∗ + Npqγ
∗).

Let ε >  be arbitrarily given. Choose a sufficiently large positive number η such that

∫ ∞

η

a(t)gpq(t) dt + Gpq

∫ ∞

η

b(t) dt + Npq
∑

tk≥η

γk < ε. ()

For any η < t < ∞, we have, by (), () and (),

 ≤ (Aūni )
′(t) – (Aūni )

′(η)

=
∫ t

η

f
(
s, ūni (s), ū′

ni
(s), (Tūni )(s), (Sūni )(s)

)
ds +

∑

η≤tk <t
Īk

(
ū′

ni

(
t–
k
))

≤
∫ t

η

a(s)gpq(s) ds + Gpq

∫ t

η

b(s) ds + Npq
∑

η≤tk <t
γk (i = , , , . . .),

which implies by virtue of () that

 ≤ (Aūni )
′(t) – (Aūni )

′(η) < ε, ∀t > η (i = , , , . . .). ()

Letting i → ∞ in () and observing () and (), we get

 ≤ w̄′(t) – w̄′(η) ≤ ε, ∀t > η. ()

On the other hand, since {(Aūni )′(t)} converges uniformly to w̄′(t) on [,η] as i → ∞, there
exists a positive integer i such that

∣
∣(Aūni )

′(t) – w̄′(t)
∣
∣ < ε, ∀t ∈ [,η], i > i. ()
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It follows from ()-() that

∣
∣(Aūni )

′(t) – w̄′(t)
∣
∣ ≤ ∣

∣(Aūni )
′(t) – (Aūni )

′(η)
∣
∣ +

∣
∣(Aūni )

′(η) – w̄′(η)
∣
∣

+
∣
∣w̄′(η) – w̄′(t)

∣
∣ < ε, ∀t > η, i > i. ()

By () and (), we have

∥
∥(Aūni )

′ – w̄′∥∥
B ≤ ε, ∀i > i,

hence

lim
i→∞

∥
∥(Aūni )

′ – w̄′∥∥
B = . ()

It is clear that () implies

(Aūni )
(
t+
k
)

– (Aūni )
(
t–
k
)

= Ik
(
ū′

ni

(
t–
k
))

(k, i = , , , . . .). ()

By virtue of the uniformity of convergence of {(Aūni )(t)}, we see that

lim
i→∞(Aūni )

(
t–
k
)

= w̄
(
t–
k
)
, lim

i→∞(Aūni )
(
t+
k
)

= w̄
(
t+
k
)

(k = , , , . . .),

so, () implies that

lim
i→∞ Ik

(
ū′

ni

(
t–
k
))

(k = , , , . . .)

exist and

w̄
(
t+
k
)

– w̄
(
t–
k
)

= lim
i→∞ Ik

(
ū′

ni

(
t–
k
))

(k = , , , . . .).

Let

lim
i→∞ Ik

(
ū′

ni

(
t–
k
))

= αk (k = , , , . . .).

Then αk ≥  (k = , , , . . .) and

w̄
(
t+
k
)

– w̄
(
t–
k
)

= αk (k = , , , . . .). ()

By () and condition (H), we have

Ik
(
ū′

ni

(
t–
k
)) ≤ Npqtkγk (k, i = , , , . . .), ()

so,

αk ≤ Npqtkγk (k = , , , . . .). ()
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For any given ε > , choose a sufficiently large positive integer k such that

Npq

∞∑

k=k+

tkγk < ε, ()

and then, choose another sufficiently large integer i such that

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣ <

ε

k
, ∀i > i (k = , , . . . , k). ()

It follows from ()-() that

∞∑

k=

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣ ≤

k∑

k=

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣

+
∞∑

k=k+

Ik
(
ū′

ni

(
t–
k
))

+
∞∑

k=k+

αk < ε, ∀i > i,

hence

lim
i→∞

∞∑

k=

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣ = . ()

By formula () and (), (), we have

(Aūni )(t) =
∫ t


(Aūni )

′(s) ds +
∑

<tk <t

Ik
(
ū′

ni

(
t–
k
))

, ∀t ∈ R+ (i = , , , . . .)

and

w̄(t) =
∫ t


w̄′(s) ds +

∑

<tk <t

αk , ∀t ∈ R+,

which imply

∣
∣(Aūni )(t) – w̄(t)

∣
∣ ≤ t

∥
∥(Aūni )

′ – w̄′∥∥
B

+
∑

<tk <t

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣, ∀t ∈ R+ (i = , , , . . .). ()

Since

∑

<tk <t

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣ = , ∀ < t ≤ t,

() implies

‖Aūni – w̄‖S ≤ ∥
∥(Aūni )

′ – w̄′∥∥
B + t–



∞∑

k=

∣
∣Ik

(
ū′

ni

(
t–
k
))

– αk
∣
∣ (i = , , , . . .). ()
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By (), () and (), we have

lim
i→∞‖Aūni – w̄‖S = . ()

It follows from () and () that ‖Aūni – w̄‖D →  as i → ∞, and the relative compactness
of A(Qpq) is proved. �

Lemma  Let conditions (H)-(H) be satisfied. Then u ∈ Q+ ∩ C[R′
++, R] is a positive

solution of IBVP () if and only if u ∈ Q+ is a solution of the following impulsive integral
equation:

u(t) =
t

β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

+
∫ t


(t – s)f

(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∑

<tk<t

{
Ik

(
u′(t–

k
))

+ (t – tk)Īk
(
u′(t–

k
))}

, ∀t ∈ R+, ()

i.e. u is a fixed point of operator A defined by ().

Proof If u ∈ Q+ ∩ C[R′
++, R] is a positive solution of IBVP (), then, by () and formula

(), we have

u(t) = tu′() +
∫ t


(t – s)f

(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

+
∑

<tk<t

{
Ik

(
u′(t–

k
))

+ (t – tk)Īk
(
u′(t–

k
))}

, ∀t ∈ R+. ()

Differentiation of () gives

u′(t) = u′() +
∫ t


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∑

<tk <t

Īk
(
u′(t–

k
))

, ∀t ∈ R+. ()

Under conditions (H)-(H), we have shown in the proof of Lemma  that the infinite
integral () and the infinite series () are convergent. So, by taking limits as t → ∞ in
both sides of () and using the relation u′(∞) = βu′(), we get

u′() =


β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

. ()

Now, substituting () into (), we see that u(t) satisfies equation ().
Conversely, if u ∈ Q+ is a solution of equation (), then direct differentiation of ()

twice gives

u′(t) =


β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

+
∫ t


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∑

<tk<t

Īk
(
u′(t–

k
))

, ∀t ∈ R+ ()
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and

u′′(t) = f
(
t, u(t), u′(t), (Tu)(t), (Su)(t)

)
, ∀t ∈ R′

++.

So, u ∈ C[R′
++, R] and

�u|t=tk = Ik
(
u′(t–

k
))

, �u′|t=tk = Īk
(
u′(t–

k
))

(k = , , , . . .).

Moreover, taking limits as t → ∞ in (), we see that u′(∞) exists and

u′(∞) =
β

β – 

{∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds +

∞∑

k=

Īk
(
u′(t–

k
))

}

= βu′().

Hence, u(t) is a positive solution of IBVP (). �

Lemma  (Fixed point theorem of cone expansion and compression with norm type, see
Corollary  in [] or Theorem  in [] or Theorem .. in [], see also [, ]) Let
P be a cone in a real Banach space E and 
, 
 be two bounded open sets in E such that
θ ∈ 
, 
̄ ⊂ 
, where θ denotes the zero element of E and 
̄i denotes the closure of 
i

(i = , ). Let the operator A : P ∩ (
̄\
) → P be completely continuous (i.e. continuous
and compact). Suppose that one of the following two conditions is satisfied:

(a) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
, where ∂
i denotes the
boundary of 
i (i = , ).

(b) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
; ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
.
Then A has at least one fixed point in P ∩ (
̄\
).

3 Main theorem
Theorem Let conditions (H)-(H) be satisfied. Assume that there exists r >  such that

β

β – 
(
a∗

r + Grb∗ + Nrγ
∗) < r, ()

where a∗
r , b∗ and γ ∗ are defined in conditions (H) and (H), and, Gr and Nr are defined

by two equalities below () and (), respectively. Then IBVP () has at least two positive
solutions u∗, u∗∗ ∈ Q+ ∩ C[R′

++, R] such that

 < inf
t∈R++

u∗(t)
t

≤ sup
t∈R++

u∗(t)
t

< r,

 < inf
t∈R+

(
u∗)′(t) ≤ sup

t∈R+

(
u∗)′(t) < r,

β–r < inf
t∈R++

u∗∗(t)
t

≤ sup
t∈R++

u∗∗(t)
t

< ∞

and

β–r < inf
t∈R+

(
u∗∗)′(t) ≤ sup

t∈R+

(
u∗∗)′(t) < ∞.
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Proof By Lemma  and Lemma , operator A defined by () is continuous from Q+ into
Q, and we need to prove that A has two fixed points u∗ and u∗∗ in Q+ such that  < ‖u∗‖D <
r < ‖u∗∗‖D.

By condition (H), there exists r >  such that

f (t, u, v, w, z) ≥ β(β – )
c∗ c(t)v, ∀t, u ∈ R++, v ≥ r, w, z ∈ R+. ()

Choose

r > max
{
βr, r

}
. ()

For u ∈ Q, ‖u‖D = r, we have, by () and (),

u′(t) ≥ β–r > r, ∀t ∈ R+,

so, () and () imply

(Au)′(t) ≥ 
β – 

∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

≥ β

c∗

∫ ∞


c(s)u′(s) ds ≥ r

c∗

∫ ∞


c(s) ds = r, ∀t ∈ R+,

and consequently,

∥
∥(Au)′

∥
∥

B ≥ r,

hence

‖Au‖D ≥ ‖u‖D, ∀u ∈ Q,‖u‖D = r. ()

By condition (H), there exists r >  such that

f (t, u, v, w, z) ≥ (β – )r
d∗ d(t), ∀t, u ∈ R++,  < v < r, w, z ∈ R+. ()

Choose

 < r < min{r, r}. ()

For u ∈ Q,‖u‖D = r, we have, by () and (),

r > r ≥ u′(t) ≥ β–r > ,

so, we get, by () and (),

(Au)′(t) ≥ 
β – 

∫ ∞


f
(
s, u(s), u′(s), (Tu)(s), (Su)(s)

)
ds

≥ r
d∗

∫ ∞


d(s) ds = r > r, ∀t ∈ R+,
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hence

∥
∥(Au)′

∥
∥

B > r,

and consequently,

‖Au‖D > ‖u‖D, ∀u ∈ Q,‖u‖D = r. ()

On the other hand, for u ∈ Q, ‖u‖D = r, () and () imply

‖Au‖D ≤ β

β – 
(
a∗

r + Grb∗ + Nrγ
∗). ()

Thus, from () and (), we get

‖Au‖D < ‖u‖D, ∀u ∈ Q,‖u‖D = r. ()

By () and () we know  < r < r < r, and, by Lemma , operator A is completely con-
tinuous from Qrr into Q. Hence, (), (), () and Lemma  imply that A has two fixed
points u∗, u∗∗ ∈ Qrr such that r < ‖u∗‖D < r < ‖u∗∗‖D ≤ r. The proof is complete. �

Example Consider the infinite boundary value problem for second order impulsive sin-
gular integro-differential equation of mixed type on the half line:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′(t) = e–t

t



( 

[u(t)]



+ 
u′(t) + [u′(t)]) + e–t

t


{(∫ t

 e–(t+)su(s) ds)

+ (
∫ ∞


u(s) ds

(+t+s) )}, ∀ < t < ∞, t �= k (k = , , , . . .),
�u|t=k = –k– 

u′(k–)+
√

u′(k–)
(k = , , , . . .),

�u′|t=k = k––k– √
u′(k–)

(k = , , , . . .),

u() = , u′(∞) = u′().

()

Conclusion IBVP () has at least two positive solutions u∗, u∗∗ ∈ PC[R+, R]∩C[R′
++, R]

such that

 < inf
<t<∞

u∗(t)
t

≤ sup
<t<∞

u∗(t)
t

< ,

 < inf
≤t<∞

(
u∗)′(t) ≤ sup

≤t<∞

(
u∗)′(t) < ,




< inf
<t<∞

u∗∗(t)
t

≤ sup
<t<∞

u∗∗(t)
t

< ∞

and




< inf
≤t<∞

(
u∗∗)′(t) ≤ sup

≤t<∞

(
u∗∗)′(t) < ∞.

Proof System () is an IBVP of form (). In this situation, tk = k (k = , , , . . .), K(t, s) =
e–(t+)s, H(t, s) = ( + t + s)–, β = , and

f (t, u, v, w, z) =
e–t

t 


(


u 


+

v

+ v
)

+
e–t

t 


(
w + z), ∀t, u, v ∈ R++, w, z ∈ R+,
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Ik(v) = –k– 
v +

√
v

, ∀v ∈ R++ (k = , , , . . .),

Īk(v) = k––k– √
v

, ∀v ∈ R++ (k = , , , . . .).

It is clear that ()-() are satisfied, so, () is a singular problem. It is easy to see that
condition (H) is satisfied and k∗ ≤ , h∗ ≤ . We have

f (t, u, v, w, z) ≤ e–t

t 



u 


+

e–t

t 


{




(

v

+ v
)

+



(
w + z)

}

,

so, condition (H) is satisfied for

a(t) =
e–t

t 


, g(u) =


u 


, b(t) =
e–t

t 


and

g(v, w, z) =




(

v

+ v
)

+



(
w + z)

with

gr(t) = max

{

u– 
 :

rt


≤ u ≤ rt
}

=
(


r

) 


t– 
 ,

a∗
r =

∫ ∞


a(t)gr(t) dt =




(

r

) 

∫ ∞



e–t

t 


dt < ∞
()

and

b∗ =
∫ ∞



e–t

t 


dt < ∞. ()

It is obvious that condition (H) is satisfied for γk = k––k– (γ ∗ = 
 ) and F(v) = v– 

 .
From

f (t, u, v, w, z) ≥ e–t

t 


v, ∀t, u, v ∈ R++, w, z ∈ R+

and

f (t, u, v, w, z) ≥ e–t

t 



v

, ∀t, u, v ∈ R++, w, z ∈ R+,

we see that conditions (H) and (H) are satisfied for

c(t) =
e–t

t 


(
c∗ = b∗, see ()

)

and

d(t) =
e–t

t 


(
d∗ = b∗),
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respectively. Finally, we check that inequality () is satisfied for r = , i.e.


(
a∗

 + Gb∗ + Nγ
∗) < . ()

By () and (), we have

a∗
 =

 




∫ ∞



e–t

t 


dt <
 





(∫ 



dt
t 


+

∫ ∞


e–t dt

)

=
 





(

 +



e–
)

<




(



)(

 +




)

=


,

and

b∗ <
∫ 



dt
t 


+

∫ ∞


e–t dt =




+



e– <



.

Moreover, it is easy to get

G <



, N = .

Hence


(
a∗

 + Gb∗ + Nγ
∗) < 

(


,
+


,

+




)

=
,
,

< .

Consequently, () holds, and our conclusion follows from the theorem. �
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