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Abstract
In the present paper, we investigate the existence of solutions to second order
nonlinear boundary value problems (BVPs) involving the distributional
Henstock-Kurzweil integral. The present results in this article are generalizations of
previous results in the literature.
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1 Introduction
New existence results are derived for solutions of the second order differential equation

–x′′(t) = f
(
t, x(t)

)
, t ∈ [, ], (.)

subject to the boundary conditions

x′() = , βx′() + x(η) = , (.)

where x′′, x′ stand for the distributional derivative of the function x ∈ C[, ], C[, ] de-
notes the space where the functions x : [, ] →R are continuous, f is a distribution (gen-
eralized function), β is a positive constant and η ∈ [, ]. The space C[, ] is considered
with the uniform norm ‖ · ‖∞.

In recent years, the existence of solutions of boundary value problems have been
studied by many authors [–]. Chew and Flordeliza, in [], generalized the classical
Carathéodory’s existence theorem on the Cauchy problem x′ = f (t, x) with x() = . Par-
ticularly, in [, ], the differential equations involving the approximate derivatives are con-
sidered. BVP (.)-(.), which has been studied in [] by using ordinary derivatives, came
from the steady-state of a heat bar model. The boundary conditions model the behavior
of a thermostat where the sensor measures the temperature. The heat bar is insulated at
t = , and the controller releases heat at t =  depending on the temperature at t = η. How-
ever, it is well known that the notion of a distributional derivative is very general, including
ordinary derivatives and approximate derivatives. Without loss of generality, we use the
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distributional derivatives to discuss (.)-(.) in a general form. The existence result ob-
tained under weaker conditions extends the previous results in the literatures.

This paper is organized as follows. In Section , we introduce fundamental concepts
and basic results of the distributional Henstock-Kurzweil integral. In Section , we apply
Schauder’s fixed point theorem to verify the existence of BVP (.) and (.). In Section ,
we give an example to illustrate Theorem . in this paper.

2 Distributional Henstock-Kurzweil integral
In this section, the definition of distributional Henstock-Kurzweil integral and its main
properties needed in this paper are presented.

Define the space

C∞
c =

{
φ : R →R | φ ∈ C∞ and φ has compact support in R

}
,

where the support of a function φ is the closure of the set on which φ does not equal zero.
A sequence {φn} ⊂ C∞

c converges to φ ∈ C∞
c if there is a compact set K such that all φn

have support in K and the sequence of derivatives φ
(m)
n converges to φ(m) uniformly for

every m ∈ N ∪ {}. Denote C∞
c endowed with this convergence property by D. Also, if

φ ∈ D, we call φ a test function. The dual space to D is denoted by D′ and if f ∈ D′ then
f : D →R, 〈f ,φ〉 ∈ R for φ ∈D.

For all f ∈D′, we define the distributional derivative f ′ of f to be a distribution satisfying
〈f ′,φ〉 = –〈f ,φ′〉, where φ is a test function and φ′ is the ordinary derivative of φ. With this
definition, it is easy to get that all distributions have derivatives of all orders and each
derivative is a distribution.

Let (a, b) be an open interval in R. We define

D
(
(a, b)

)
=

{
φ : (a, b) →R | φ ∈ C∞

c and φ has compact support in (a, b)
}

.

D′((a, b)) denotes the dual space of D((a, b)).
Let C[a, b] be the space of continuous functions on [a, b] and BC = {F ∈ C[a, b] | F(a) =

}. Note that BC is a Banach space with the uniform norm

‖F‖∞ = max
t∈[a,b]

∣∣F(t)
∣∣.

We give an introduction about the definition of the DHK -integral.

Definition . A distribution f is distributionally Henstock-Kurzweil integrable or briefly
DHK -integrable on [a, b] if f is the distributional derivative of a continuous function F ∈ BC .

The DHK -integral of f on [a, b] is defined by (DHK )
∫ b

a f = F(b), where F ∈ BC is the prim-
itive of f and ‘(DHK )

∫
’ denotes the DHK -integral. For succinctness, we refer to ‘(DHK )

∫
’ as

simply ‘
∫

’. Moreover, the space of DHK -integrable distributions is defined by

DHK =
{

f ∈D′((a, b)
) | f = F ′ for some F ∈ BC

}
.

With this definition, if f ∈ DHK then, for all φ ∈D((a, b)),

〈f ,φ〉 =
〈
F ′,φ

〉
= –

〈
F ,φ′〉 = –

∫ b

a
Fφ′.
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Now we give an example showing that the DHK -integral includes the HK-integral, and
hence includes Lebesgue and Riemann integrals (see [–] for details).

Example . In [], Lee points out that if F is a continuous function and pointwise dif-
ferentiable nearly everywhere on [a, b], then F is ACG∗ (generalized absolutely continu-
ous), and if F is a continuous function which is differentiable nowhere on [a, b], then F is
not ACG∗. A primitive F of the HK-integrable function f is ACG∗ (see [, ] for details).
Therefore, if F ∈ C[a, b] but is differentiable nowhere on [a, b], the distributional derivative
of F exists and is DHK -integrable but not HK-integrable. On another aspect, if F is ACG∗

then it belongs to C[a, b]. Hence F ′ is not only HK-integrable but also DHK -integrable.

Let us introduce some basic results of the distributional Henstock-Kurzweil integral
needed later.

Lemma . ([], Theorem , fundamental theorem of calculus)
(a) Let f ∈ DHK , and define F(t) =

∫ t
a f . Then F ∈ BC and F ′ = f .

(b) Let F ∈ C[a, b]. Then
∫ t

a F ′ = F(t) – F(a) for all t ∈ [a, b].

For f ∈ DHK and F ∈ BC with F ′ = f , we define the Alexiewicz norm by

‖f ‖ = ‖F‖∞.

We say a sequence {fn} ⊂ DHK converges strongly to f ∈ DHK if ‖fn – f ‖ →  as n → ∞.
Then the following result holds.

Lemma . ([], Theorem ) With the Alexiewicz norm, DHK is a Banach space.

Now we impose a partial ordering on DHK : for f , g ∈ DHK , we say that f � g (or g  f )
if and only if f – g is a positive measure on [a, b]. By the definition, if f , g ∈ DHK , then
∫

I f ≥ ∫
I g for every I = [c, d] ⊂ [a, b], whenever f � g . See [] for details.

It is shown that the following results hold.

Lemma . ([], Definition , integration by parts) Let f ∈ DHK , and g is a function of
bounded variation. Define fg = DH , where H(t) = F(t)g(t) –

∫ t
a F dg . Then fg ∈ DHK and

(DHK )
∫ b

a
fg = F(b)g(b) – (DHK )

∫ b

a
F dg.

Lemma . ([], Corollary , dominated convergence theorem for the DHK -integral) Let
{fn}∞n= be a sequence in DHK such that fn → f as n → ∞ in D′. Suppose that there exist
f–, f+ ∈ DHK satisfying f–  fn  f+ for ∀n ∈N. Then f ∈ DHK and limn→∞

∫ b
a fn =

∫ b
a f .

The next statement is modified from [] and [].

Lemma . Let f ∈ DHK and {fn}∞n= be a sequence in DHK such that fn → f as n → ∞ inD′.
Define Fn(x) =

∫ x
a fn and F(x) =

∫ x
a f . If g is a function of bounded variation and Fn → F as

n → ∞ uniformly on [a, b], then
∫ b

a fng → ∫ b
a fg as n → ∞.
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3 Main results
In this section, we firstly assume that f satisfies the following assumptions:

(C) f (t, x) is DHK -integrable with respect to t for all x ∈ C[, ];
(C) f (t, x) is continuous with respect to x for all t ∈ [, ], i.e., for each t ∈ [, ], ‖f (t, xn) –

f (t, x)‖ →  as ‖xn – x‖∞ →  for {xn} ⊂ C[, ];
(C) There exist f–, f+ ∈ DHK such that f–(·)  f (·, x)  f+(·) for all x ∈ C[, ].

Lemma . BVP (.)-(.) is equivalent to the integral equation

x(t) =
∫ 


βf

(
s, x(s)

)
ds +

∫ η


(η – s)f

(
s, x(s)

)
ds

–
∫ t


(t – s)f

(
s, x(s)

)
ds, t ∈ [, ], (.)

where η is a constant with  ≤ η ≤ .

Proof In view of Eq. (.), condition (C) and Lemma ., we have x′ ∈ C[, ], and for all
t ∈ [, ], s ∈ [, ],

∫ t

η

sx′′(s) ds = tx′(t) – x(t) –
(
ηx′(η) – x(η)

)

= –x(t) + x(η) + tx′(t) – ηx′(η)

= –x(t) + x(η) + t
∫ t


x′′(s) ds – η

∫ η


x′′(s) ds.

Then

x(t) = x(η) + t
∫ t


x′′(s) ds – η

∫ η


x′′(s) ds –

∫ t

η

sx′′(s) ds

= x(η) + t
∫ t


x′′(s) ds – η

∫ η


x′′(s) ds –

∫ 

η

sx′′(s) ds –
∫ t


sx′′(s) ds

= x(η) –
∫ η


(η – s)x′′(s) ds +

∫ t


(t – s)x′′(s) ds.

According to the boundary conditions, one has

x(t) = –β

∫ 


x′′(s) ds –

∫ η


(η – s)x′′(s) ds +

∫ t


(t – s)x′′(s) ds, t ∈ [, ].

Then

x(t) =
∫ 


βf

(
s, x(s)

)
ds +

∫ η


(η – s)f

(
s, x(s)

)
ds –

∫ t


(t – s)f

(
s, x(s)

)
ds. (.)

It is easy to calculate that BVP (.)-(.) holds by taking the derivative of both sides of
(.). This completes the proof. �
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Lemma . ([], Theorem .) Let M be a convex, closed subset of a normed space X.
Let T be a continuous map of M into a compact subset K of M. Then T has a fixed point.

With the help of the preceding two lemmas, we can now prove the existence of solutions
of BVP (.)-(.).

Theorem . Under assumptions (C)-(C), there exists at least one solution of BVP (.)-
(.).

Proof Suppose that

M = max
t∈[,]

∣∣
∣∣

∫ t


f–(s) ds

∣∣
∣∣ + max

t∈[,]

∣∣
∣∣

∫ t


f+(s) ds

∣∣
∣∣.

Then, for each t ∈ [, ], we have

–M ≤
∫ t


f–(s) ds ≤ M, –M ≤

∫ t


f+(s) ds ≤ M. (.)

Let B = {x ∈ C[, ] : ‖x‖∞ ≤ l, l = (β + )M > }. For each x ∈ B, t ∈ [, ], define

Ax(t) :=
∫ 


βf

(
s, x(s)

)
ds +

∫ η


(η – s)f

(
s, x(s)

)
ds –

∫ t


(t – s)f

(
s, x(s)

)
ds. (.)

Now we prove this theorem in three steps.
Step : A : B → B.
For all x ∈ B, by (.), one has

‖Ax‖∞ = max
t∈[,]

∣∣∣
∣

∫ 


βf

(
s, x(s)

)
ds +

∫ η


(η – s)f

(
s, x(s)

)
ds –

∫ t


(t – s)f

(
s, x(s)

)
ds

∣∣∣
∣

≤ max
t∈[,]

(β + t + η)
∣
∣∣
∣

∫ t


f
(
s, x(s)

)
ds

∣
∣∣
∣ + max

t∈[,]

∣
∣∣
∣

∫ t

η

sf
(
s, x(s)

)
ds

∣
∣∣
∣

≤ (β + )M + max
t∈[,]

∣∣∣
∣

∫ t


sf

(
s, x(s)

)
ds

∣∣∣
∣ + max

t∈[,]

∣∣∣
∣

∫ η


sf

(
s, x(s)

)
ds

∣∣∣
∣. (.)

Furthermore, let F(t) =
∫ t

 f (s, x(s)) ds for t ∈ [, ], and

‖F‖∞ = max
t∈[,]

∣
∣∣∣

∫ t


f
(
s, x(s)

)
ds

∣
∣∣∣.

Then, for all t ∈ [, ], one has

∣
∣∣
∣

∫ t


sf

(
s, x(s)

)
ds

∣
∣∣
∣ =

∣
∣∣
∣

∫ t


s dF(s)

∣
∣∣
∣ =

∣
∣∣
∣sF(s)|t –

∫ t


F(s) ds

∣
∣∣
∣

≤ ∣
∣sF(s)|t

∣
∣ +

∣∣
∣∣

∫ t


F(s) ds

∣∣
∣∣ ≤ ∣

∣F(s)|t
∣
∣ +

∣∣
∣∣

∫ t


F(s) ds

∣∣
∣∣

≤ ‖F‖∞. (.)
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In particular, for t = η, we have

∣∣
∣∣

∫ η


sf

(
s, x(s)

)
ds

∣∣
∣∣ ≤ ‖F‖∞. (.)

In view of (.)-(.), one has

‖Ax‖∞ ≤ (β + )M + max
t∈[,]

(∣
∣∣
∣

∫ t


sf

(
s, x(s)

)
ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ η


sf

(
s, x(s)

)
ds

∣
∣∣
∣

)

≤ (β + )M + ‖F‖∞ + ‖F‖∞

= (β + )M + ‖F‖∞.

By (.), we also obtain ‖F‖∞ ≤ M, then ‖Ax‖∞ ≤ (β + )M = l. Hence, A(B) ⊆ B.
Step : A(B) is equicontinuous.
Let t, t ∈ [, ], x ∈ B

∣
∣Ax(t) – Ax(t)

∣
∣

=
∣∣
∣∣

∫ t


(t – s)f

(
s, x(s)

)
ds –

∫ t


(t – s)f

(
s, x(s)

)
ds

∣∣
∣∣

=
∣
∣∣
∣t

∫ t


f
(
s, x(s)

)
ds – t

∫ t


f
(
s, x(s)

)
ds –

∫ t


sf

(
s, x(s)

)
ds +

∫ t


sf

(
s, x(s)

)
ds

∣
∣∣
∣

=
∣∣
∣∣t

∫ t


f
(
s, x(s)

)
ds + t

∫ t

t

f
(
s, x(s)

)
ds – t

∫ t


f
(
s, x(s)

)
ds +

∫ t

t

sf
(
s, x(s)

)
ds

∣∣
∣∣

=
∣
∣∣
∣(t – t)

∫ t


f
(
s, x(s)

)
ds + t

∫ t

t

f
(
s, x(s)

)
ds +

∫ t

t

sf
(
s, x(s)

)
ds

∣
∣∣
∣

≤ |t – t|
(∣

∣∣
∣

∫ t


f–(s) ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ t


f+(s) ds

∣
∣∣
∣

)
+ t

(∣
∣∣
∣

∫ t

t

f–(s) ds
∣
∣∣
∣ +

∣
∣∣
∣

∫ t

t

f+(s) ds
∣
∣∣
∣

)

+
∣∣∣
∣

∫ t

t

sf
(
s, x(s)

)
ds

∣∣∣
∣.

For every t ∈ [, ], we let F+(t) =
∫ t

 f+(s) ds, F–(t) =
∫ t

 f–(s) ds. By (C), we obtain

F–(t) ≤ F(t) ≤ F+(t), t ∈ [, ],

i.e.,

∫ t


f–(s) ds ≤

∫ t


f
(
s, x(s)

)
ds ≤

∫ t


f+(s) ds, t ∈ [, ].

Moreover,

∣∣
∣∣

∫ t

t

sf
(
s, x(s)

)
∣∣
∣∣ =

∣∣
∣∣sF(s)|t

t –
∫ t

t

F(s) ds
∣∣
∣∣ =

∣∣
∣∣tF(t) – tF(t) –

∫ t

t

F(s) ds
∣∣
∣∣

=
∣
∣∣∣(t – t)F(t) – t

(
F(t) – F(t)

)
–

∫ t

t

F(s) ds
∣
∣∣∣
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≤ ∣∣(t – t)F(t)
∣∣ + t

∣∣F(t) – F(t)
∣∣ +

∣
∣∣
∣

∫ t

t

F(s) ds
∣
∣∣
∣

≤ |t – t|
(∣

∣∣
∣

∫ t


f–(s) ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ t


f+(s) ds

∣
∣∣
∣

)

+ t

(∣∣
∣∣

∫ t

t

f–(s) ds
∣∣
∣∣ +

∣∣
∣∣

∫ t

t

f+(s) ds
∣∣
∣∣

)

+
(∣

∣∣
∣

∫ t

t

F+(s) ds
∣
∣∣
∣ +

∣
∣∣
∣

∫ t

t

F–(s) ds
∣
∣∣
∣

)
.

So,

∣∣Ax(t) – Ax(t)
∣∣ ≤ |t – t|

(∣
∣∣
∣

∫ t


f–(s) ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ t


f+(s) ds

∣
∣∣
∣

)

+ t

(∣∣
∣∣

∫ t

t

f–(s) ds
∣∣
∣∣ +

∣∣
∣∣

∫ t

t

f+(s) ds
∣∣
∣∣

)

+
(∣

∣∣
∣

∫ t

t

F+(s) ds
∣
∣∣
∣ +

∣
∣∣
∣

∫ t

t

F–(s) ds
∣
∣∣
∣

)
. (.)

Since f–(s), f+(s), F–(s), F+(s) ∈ DHK , then their primitives are continuous on [, ] and
hence uniformly continuous on [, ]. Then by (.), A(B) is equiuniformly continuous
on [, ] for all x ∈ B.

In view of Step , Step  and the Ascoli-Arzelà theorem, A(B) is relatively compact.
Step : A is a continuous mapping.
Let x ∈ B, {xn}n∈N be a sequence in B and xn → x as n → ∞.
By (C), one has

f (·, xn) → f (·, x) as n → ∞.

According to assumption (C) and Lemma ., we have

lim
n→∞

∫ t


f
(
s, xn(s)

)
ds =

∫ t


f
(
s, x(s)

)
ds, t ∈ [, ].

It is easy to verify, by Lemma ., that

lim
n→∞A(xn) = A(x).

Hence, A is continuous.
Thus, A satisfies the hypotheses of Lemma ., then there exists a fixed point ofA which

is a solution of (.). By Lemma ., BVP (.)-(.) has at least one solution. �

4 Example
In this section, we give an example for the application of Theorem ..

Example . Consider the initial value problem
⎧
⎪⎨

⎪⎩

–x′′ = t sin x + r, t ∈ [, ],
x′() = ,
βx′() + x() = ,

(.)



Liang et al. Boundary Value Problems  (2015) 2015:73 Page 8 of 8

where r is the distributional derivative of the Riemann function R(t) =
∑∞

n=
sin nπ t

n

in [].

It is easy to see that R(t) ∈ C[, ] and R() = , hence r is DHK -integrable. Let f (t, x) =
t sin x + r, then f (t, x) satisfies (C), (C). Moreover, let f–(t) = –t + r and f+(t) = t + r,
then

f–(·)  f (·, x)  f+(·),

i.e., (C) holds. Therefore, the initial value problem (.) has a solution.

Remark . It is well known that the function R(t) given by Riemann is continuous but
pointwise differentiable nowhere on [, ], then the distributional derivative r in (.) is
neither HK nor Lebesgue integrable. Hence, this example is not covered by any result
using HK or Lebesgue integral. Thus, Theorem . is more extensive.
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