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Abstract
Eigenvalue problems for even order regular quasi-differential equations with
boundary conditions which depend linearly on the eigenvalue parameter λ can be
represented by an operator polynomial L(λ) = λ2M – iλK – A, whereM is a self-adjoint
operator. Necessary and sufficient conditions are given such that also K and A are
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1 Introduction
In order to solve linear partial differential equations of the form

∂u
∂t + Au = ,

where A is a linear differential operator with respect to the variable x on an interval I , the
separation of variables method u(x, t) = y(x)eiωt leads to

ωy = Ay.

For t-independent boundary conditions Bu = , setting λ = ω, the operator theoretic re-
alization leads to an eigenvalue problem for an operator A in the Lebesgue space L(I)
with domain

D(A) =
{

y ∈ L(I) : Ay ∈ L(I), By = 
}

.

Such problems are well studied, and of particular importance is the case that A is self-
adjoint. Many applications in physics and engineering can be represented by such self-
adjoint operators.

However, problems like the Regge problem and the vibrating beam problem have bound-
ary conditions with partial first order derivatives with respect to t or whose mathematical
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model leads to an eigenvalue problem with the eigenvalue parameter λ = ω occurring lin-
early in the boundary conditions. Such problems have an operator representation of the
form

L(λ) = λM – iλK – A (.)

in a Hilbert space H = L(I) ⊕C
k , where k is the number of eigenvalue dependent bound-

ary conditions.
In general, the spectrum of L is no longer real but still has some particularly nice prop-

erties if K , M, A are self-adjoint with M ≥  and K ≥ , the resolvent set of L is nonempty,
and L has a compact resolvent: it is symmetric with respect to the imaginary axis and
eigenvalues with negative imaginary parts must lie on the imaginary axis. In this situa-
tion, the operators M and K are quite simple bounded self-adjoint operators. However,
the operator A is determined by three ingredients: the differential equation A, the param-
eter independent boundary conditions as homogeneous boundary conditions for A, and
the parameter dependent boundary conditions as an inhomogeneous part of A. Hence one
cannot make use of the criteria for self-adjointness in the case of parameter independent
boundary conditions. Rather, the parameter dependent case is a proper extension of the
parameter independent case.

For parameter independent boundary conditions, i.e., k = , characterizations of self-
adjointness for A in the case of formally symmetric even order quasi-differential expres-
sions are known both for the regular and the singular cases, see [] and in particular [],
Theorem  for the regular case. The simplest formulation of these self-adjointness condi-
tions makes use of quasi-derivatives, and we will henceforth mostly use quasi-derivatives
y[j] rather than derivatives y(j). For the definition of the quasi-derivatives y[j], we refer the
reader to (.)-(.), see also Remark ..

Some special cases of self-adjoint boundary conditions for regular nth order differential
equations with k >  are known. In [], the second order problem related to the Regge
problem was investigated, whereas the fourth order differential equation y() –(gy′)′ related
to a vibrating beam was dealt with in [], where the boundary conditions are of the form

Bj(λ)y = y[pj](aj) + λβjy[qj](aj), j = , . . . , , (.)

with exactly one boundary condition depending on λ. A classification of all self-adjoint
boundary conditions of the form (.) was obtained in []. A corresponding result for
sixth order differential equations was given in [].

In this paper we consider nth order quasi-differential equations and derive necessary
and sufficient conditions for n boundary conditions of the form (.) to generate self-
adjoint operators K and A.

In Section  we give a precise definition of the boundary value problem and the quadratic
operator pencil L associated with it. In Section  we derive necessary and sufficient con-
ditions for K to be self-adjoint and for A to be symmetric. In Section  it is shown that A
is self-adjoint if A is symmetric.

2 The eigenvalue problem
We first summarize some basic facts about quasi-differential equations for the conve-
nience of the reader. For a more comprehensive discussion of quasi-differential equations,
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the reader is referred to [] and to [] in the scalar case and to [, ] for the general case
with matrix coefficients.

Let I = (a, b) be an interval with –∞ < a < b < ∞, and let m be a positive integer. For a
given set S, Mm(S) denotes the set of m × m matrices with entries from S. Let

Zm(I) :=
{

G = (gr,s)m
r,s= ∈ Mm

(
L(I)

)
,

gr,r+ invertible a.e. for  ≤ r ≤ m – , gr,s =  for  ≤ r +  < s ≤ m
}

, (.)

where L(I) denotes the complex-valued Lebesgue integrable functions on I .
For G ∈ Zm(I), define

Q := {y : I →C, y measurable} (.)

and

y[] := y, y ∈ Q. (.)

Inductively, for r = , . . . , m, we define

Qr =
{

y ∈ Qr– : y[r–] ∈ AC(I)
}

, (.)

y[r] = g–
r,r+

(

y[r–]′ –
r∑

s=

gr,sy[s–]

)

, y ∈ Qr , (.)

where gm,m+ :=  and where AC(I) denotes the set of complex-valued functions which are
absolutely continuous on I . Finally we set

Ay := imy[m], y ∈ Qm. (.)

The expression A = AG is called the quasi-differential expression associated with G, and
the function y[r],  ≤ r ≤ m, is called the rth quasi-derivative of y. We also write D(A) for
Qm.

Observe that the quasi-derivatives defined in (.) depend on G. However, since we are
only going to deal with a single quasi-differential equation, we will not indicate this de-
pendence explicitly.

In the remainder of the paper, we assume that m = n is an even positive integer, that
G = (gr,s)n

r,s= ∈ Zn(I), and that w : I →R is positive a.e. and satisfies w ∈ L(I).
Together with (.) we consider the boundary conditions Bj(λ)y = , j = , . . . , n, taken

at the endpoint a for j = , . . . , n and at the endpoint b for j = n + , . . . , n. We assume for
simplicity that

Bj(λ)y = y[pj](aj) + iλβjy[qj](aj), (.)

where aj = a for j = , . . . , n, aj = b for j = n + , . . . , n, βj ∈ C and  ≤ pj, qj ≤ n – . Of
course, the numbers qj are ambiguous and irrelevant in case βj = .
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The differential expression (.) and the boundary conditions (.) define the eigenvalue
problem

(–)ny[n] = λwy, (.)

Bj(λ)y = , j = , . . . , n. (.)

We put

� =
{

j ∈ {, . . . , n} : βj 	= 
}

, � = {, . . . , n} \ �,

�a
r = �r ∩ {, . . . , n}, �b

r = �r ∩ {n + , . . . , n}, for r = , ,

and

k = |�|. (.)

Assumption . We assume that the numbers p, . . . , pn, qj for j ∈ �a
 are distinct and that

the numbers pn+, . . . , pn, qj for j ∈ �b
 are distinct.

Assumption . means that for any pair (r, aj) the term y[r](aj) occurs at most once in
the boundary conditions (.).

For j ∈ �, we choose αj ∈R and εj ∈C such that βj = αjεj.
For y ∈ D(A), we define YR =

( Y (a)
Y (b)

)
with Y = (y[], y[], . . . , y[n–])T. We denote the col-

lection of the n boundary conditions (.) by U and define the following matrices related
to U :

UrYR =
(
y[pj](aj)

)
j∈�r

, r = , ,

VYR =
(
εjy[qj](aj)

)
j∈�

,
where y ∈ D(A). (.)

Remark . In case that �r = ∅ for r =  or r = , the corresponding matrix Ur will be
identified with the ‘zero’ operator from C

n into {}.

The weighted Lebesgue space L(I, w) is the Hilbert space of all equivalence classes of
complex-valued measurable functions f such that (f , f )w :=

∫
I w(x)|f (x)| dx < ∞. For con-

venience we define the operator Amax on L(I, w) by

D(Amax) =
{

y ∈ L(I, w) : w–Ay ∈ L(I, w)
}

, Amaxy = w–Ay.

We will associate the quadratic operator pencil

L(λ) = λM – iλK – A(U) (.)

in the space L(I, w) ⊕Ck with problem (.), (.), where

M =

(
I 
 

)

and K =

(
 
 K

)

with K = diag(αj : j ∈ �).
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The operator A(U) in L(I, w) ⊕C
k is defined by

D
(
A(U)

)
=

{

ỹ =

(
y

VYR

)

: y ∈ D(Amax), UYR = 

}

,

(
A(U)

)
ỹ =

(
Amaxy
UYR

)

, ỹ ∈ D
(
A(U)

)
.

It is easy to see that a function y ∈ D(Amax) satisfies Ay = λwy and Bj(λ)y =  for j =
, . . . , n if and only if there is c ∈ C

k such that (y, c)T ∈ D(A(U)) such that L(λ)(y, c)T = .
In this case c is uniquely determined by y. Indeed, if y ∈ D(Amax) with Ay = λwy and
Bj(λ)y =  for j = , . . . , n, then UYR =  shows that (y, VYR)T ∈ D(A(U)) and

L(λ)

(
y

VYR

)

=

(
λy – Amaxy

–iλKVYR – UYR

)

.

Clearly, the first component is , and so is the second component since

iλKVYR + UYR = iλK
(
εjy[qj](aj)

)
j∈�

+
(
y[pj](aj)

)
j∈�

=
(
Bj(λ)y

)
j∈�

.

Hence the operator pencil L is an operator realization of the eigenvalue problem (.),
(.).

It is clear that M and K are bounded self-adjoint operators and that M is non-negative.
The operator A(U) is not self-adjoint, in general, and we will give necessary and sufficient
conditions for the operator A(U) to be self-adjoint.

3 Symmetry conditions for A(U)
We will denote the canonical inner product in L(I, w) ⊕C

k by 〈·, ·〉.
The Lagrange form of A(U) is defined by

FU (ỹ, z̃) =
〈
A(U)ỹ, z̃

〉
–

〈
ỹ, A(U)z̃

〉
, ỹ, z̃ ∈ D

(
A(U)

)
.

The operator A(U) is symmetric if and only if its Lagrange form is identically zero. For
this it is necessary that A is formally symmetric, and for the remainder of this paper we
make therefore the following assumption.

Assumption . We assume that

G = –CG∗C,

where

C =
(
(–)rδr,n+–s

)n
r,s= (.)

and δ is the Kronecker delta.
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It is easy to verify that Assumption . holds if and only if

gr,s = (–)r+s+gn+–s,n+–r , r, s = , . . . , n. (.)

Remark . Classical formally self-adjoint differential expressions are of the form

(–)n
n∑

j=

(
gjy(j))(j)

with gj ∈ Cj[, a] for j = , . . . , n and invertible gn. It is easy to verify that this is a quasi-
differential equation with quasi-derivatives

y[r] = y(r), r = , . . . , n – ,

y[n] = gny(n),

y[r] = y[r–]′ + gn–ry[n–r], r = n + , . . . , n.

The corresponding matrix G = (gr,s)n
r,s= has the entries gr,r+ =  for r = , . . . , n –  and

r = n + , . . . , n – , gn,n+ = g–
n , gr,n–r+ = –gn–r for r = n + , . . . , n, while all other entries

are zero. It is easy to see that Assumption . holds in this case if and only if gj = gj for j =
, . . . , n, so that the formal self-adjointness condition reduces to the well-known condition
that all gj, j = , . . . , n, are real-valued functions.

From [], Lemma . we know that the Lagrange identity

(
w–Ay, z

)
w –

(
y, w–Az

)
w = Z∗

RDYR, y, z ∈ D(Amax) (.)

holds, where

D = (–)n

(
C 
 –C

)

. (.)

Proposition . The Lagrange form FU of A(U) has the representation

FU (ỹ, z̃) = Z∗
RWYR, ỹ, z̃ ∈ D

(
A(U)

)
,

where

W = D +
(
V ∗

 U – U∗
 V

)
. (.)

Proof Let ỹ, z̃ ∈ D(A(U)). Then

FU (ỹ, z̃) =
(
w–Ay, z

)
w + (VZR)∗UYR –

(
y, w–Az

)
w – (UZR)∗VYR,

and an application of the Lagrange identity (.) completes the proof of the lemma. �

By definition, an operator in a Hilbert space is symmetric if and only if its Lagrange form
is identically zero. Hence we have the following.
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Corollary . The differential operator A(U) is symmetric if and only if Z∗
RWYR =  for

all ỹ, z̃ ∈ D(A(U)).

The nullspace and range of a matrix M are denoted by N(M) and R(M), respectively.

Proposition . The differential operator A(U) is symmetric if and only if W (N(U)) ⊂
(N(U))⊥.

Proof From [], Corollary . we know that

{
YR : y ∈ D(Amax)

}
= C

n. (.)

Hence {YR : ỹ ∈ D(A(U))} = N(U). An application of Proposition . completes the
proof. �

Corollary . If A(U) is symmetric, then rank W = (n – k) and W (N(U)) = (N(U))⊥.

Proof Since dim(N(U))⊥ = rank U = n – k, we have

n – k ≥ dim W
(
N(U)

) ≥ dim N(U) – (n – rank W ) = –n + k + rank W . (.)

Hence rank W ≤ (n – k). Since V ∗
 U – U∗

 V has k non-zero entries and D is invert-
ible, rank W ≥ (n – k) and rank W = (n – k) follows. In this case, all the inequalities of
(.) are equalities and dim W (N(U)) = dim(N(U))⊥ holds. Thus it follows from Propo-
sition . that W (N(U)) = (N(U))⊥. �

In view of Corollary ., we may assume that rank W = (n – k) when investigating the
symmetry of A(U). Since (N(U))⊥ = R(U∗

 ), see [], Theorem IV.., Proposition .
and Corollary . lead to the following.

Corollary . Let rank W = (n – k). Then the differential operator A(U) is symmetric if
and only if W (N(U)) = R(U∗

).

We now give an explicit description for the condition rank W = (n – k).

Proposition . rank W = (n – k) if and only if the following conditions hold:
. For s ∈ �, ps + qs = n – ;
. For s ∈ �

(a)
 , εs = (–)qs+n;

. For s ∈ �
(b)
 , εs = (–)qs+n+.

Proof Note that

V ∗
 U – U∗

 V =

(
V 
 V

)

, (.)

where

V =
∑

s∈�
(a)


(εsδi,qs+δj,ps+ – εsδi,ps+δj,qs+)n
i,j=,
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V =
∑

s∈�
(b)


(εsδi,qs+δj,ps+ – εsδi,ps+δj,qs+)n
i,j=.

Since D has exactly one non-zero entry in each row and column and V ∗
 V – V ∗

 V has
exactly k non-zero entries, it follows that rank W = (n – k) if and only if each non-zero
entry of V cancels a non-zero entry of (–)n–C and each non-zero entry of V cancels a
non-zero entry of (–)nC. Since the non-zero entries of C are in rows i and columns j such
that i + j = n + , we obtain that rank W = (n – k) if and only if conditions , , and  are
satisfied. �

Corollary . The boundary eigenvalue problem (.), (.) has an operator pencil rep-
resentation (.) with self-adjoint operator K and symmetric operator A(U) if and only
if

. βj ∈R and pj + qj = n –  for all j ∈ �;
. W (N(U)) = R(U∗

 ).

Proof We have seen in Proposition . that three sets of conditions have to be satisfied
in order that the necessary condition rank W = (n – k) for symmetry of A(U) holds.
Conditions  and  can always be satisfied if we put αj = βj(–)qs+n for j ∈ �a

 and αj =
βj(–)qs+n+ for j ∈ �b

 , and for K to be self-adjoint it is therefore necessary and sufficient
that βj are real. The remaining conditions now follow easily from Proposition . and
Corollary .. �

We could now give explicit conditions for symmetry of A(U) in terms of the boundary
conditions (.). However, we will see in the next section that A(U) is self-adjoint if and
only if it is symmetric. In order to avoid duplication we will therefore postpone deriving
these explicit conditions to the next section.

4 Self-adjointness conditions for A(U)
From Corollary . we know that for self-adjointness of K and A(U) the condition βj ∈R

for all j ∈ � is necessary. Hence we require without loss of generality that the numbers εs

for s ∈ � are chosen as in Proposition ., conditions  and .

Assumption . For s ∈ �
(a)
 , let εs = (–)qs+n, and for s ∈ �

(b)
 , let εs = (–)qs+n+.

For convenience, we set

p̃j = pj + , q̃j = qj +  for j = , . . . , n,

p̃j = pj + n + , q̃j = qj + n +  for j = n + , . . . , n.

The range R(U∗
r ) of U∗

r for r = ,  is the span of all standard unit vectors ep̃j in C
n with

j ∈ �r , and R(V ∗
 ) is the span of all standard unit vectors eq̃j in C

n with j ∈ �. Hence it
follows from Assumptions . and . that

UU∗
 = idCn–k , UU∗

 = idCk , VV ∗
 = idCk , (.)

UU∗
 = , VU∗

 = , UV ∗
 = . (.)
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Theorem . The operator A(U) is densely defined, the domain D((A(U))∗) of its adjoint
(A(U))∗ is the set of all z̃ =

( z
d
)

in L(I, w) ⊕ C
k such that there is c ∈ C

k such that z ∈
D(Amax) and

D∗ZR + U∗
 d – V ∗

 c ∈ R
(
U∗


)
. (.)

For z̃ =
( z

d
) ∈ D((A(U)∗)), the vectors d and c are uniquely determined by z, namely, d =

–UD∗ZR and c = VD∗ZR, and

(
A(U)

)∗̃z =

(
Amaxz

VD∗ZR

)

. (.)

Proof By definition of the adjoint (possibly as a linear relation), z̃ =
( z

d
) ∈ L(I, w) ⊕ C

k

belongs to D((A(U))∗) if and only if there is ũ =
( u

c
) ∈ L(I, w) ⊕ C

k such that for all ỹ =
( y

VYR

) ∈ D(A(U)) the identity

〈
A(U )̃y, z̃

〉
= 〈̃y, ũ〉 (.)

holds.
Hence let z̃, ũ ∈ L(I, w) ⊕C

k such that (.) holds for all ỹ ∈ D(A(U)). If y has compact
support in I , then (.) reduces to

(Amaxy, z)w = (y, u)w.

This, the formal symmetry Assumption . and [], Theorem . show that z ∈ D(Amax)
and Amaxz = u. We can now conclude that (.) holds if and only if

(Amaxy, z)w + d∗UYR = (y,Amaxz)w + c∗VYR.

In view of the Lagrange identity (.), the above is equivalent to

Z∗
RDYR + d∗UYR = c∗VYR.

Since the range of all YR with y ∈ D(A(U)) is N(U), it follows that (.) is equivalent to
z ∈ D(Amax), u = Amaxz and

D∗ZR + U∗
 d – V ∗

 c ∈ N(U)⊥ = R
(
U∗


)
. (.)

Applying U and V, respectively, to (.) and observing (.) and (.) it follows that d
and c are uniquely given by d = –UD∗ZR and c = VD∗ZR. From the uniqueness of u and
c we see that (A(U))∗ is not only a linear relation but a linear operator, so that A(U) is
densely defined. �

Remark . The matrix D is invertible and

D– = –D = D∗, (.)

see [], (.).
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Proposition . Assume that rank W = (n – k). Then UD = V and VD = –U.

Proof By definition of U and D we can write

UD = (–)n

(
Ua

 C 
 –Ub

 C

)

,

where Uα
 = (δj,pi+)i∈�α

 ,j=,...,n for α = a, b. In view of Proposition . we conclude that

Uα
 C =

(
δn+–j,pi+(–)pi+)

i∈�α
 ,j=,...,n

=
(
δj,qi+(–)qi

)
i∈�α

 ,j=,...,n.

Hence UD = V, and (.) gives VD = UD = –U. �

Proposition . If A(U) is symmetric, then A(U) is self-adjoint.

Proof We have to show that D((A(U))∗) ⊂ D(A(U)). By Theorem ., D((A(U))∗) is the
set of all

( z
VZR

)
such that z ∈ D(Amax) and D∗ZR + U∗

 d – Vc ∈ R(U∗
). But Theorem .,

Proposition . and (.) imply

D∗ZR – V ∗
 c + U∗

 d = D∗ZR – V ∗
 VD∗ZR – U∗

 UD∗ZR

= –DZR – V ∗
 UZR + U∗

 VZR

= –WZR,

so that D((A(U))∗) ⊂ D(A(U)) if and only if W –(R(U∗
 )) ⊂ N(U).

We know that rank U = n – k and dim N(U) = n – rank U = n + k, whereas
dim N(W ) = n – rank W = k by Corollary .. Altogether, we conclude

dim W –(R
(
U∗


)) ≤ dim N(W ) + rank U = n + k = dim N(U).

But from Corollary . we conclude that N(U) ⊂ W –(R(U∗
 )), and it follows that N(U) =

W –(R(U∗
)). �

Proposition . Assume rank W = (n – k). Then W (N(U)) = R(U∗
) if and only if

(i) ps + pr 	= n –  for all r, s ∈ �a
,

(ii) ps + pr 	= n –  for all r, s ∈ �b
.

Proof Defining for c = a, b,

Mc = span
{

epj+ : j ∈ �c

} ⊂C

n, c = a, b,

Nc = C
n � Mc = span

{
ej : j ∈ {, . . . , n} \ {

ps +  : s ∈ �c

}} ⊂C

n,

Wa = (–)nC + V, Wb = (–)n+C + V,
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where V and V are as in (.), it follows that

R
(
U∗


)

=

{(
ua

ub

)

: ua ∈ Ma, ub ∈ Mb

}

, N(U) =

{(
ua

ub

)

: ua ∈ Na, ub ∈ Nb

}

,

and

W = D + V ∗
 U – U∗

 V =

(
Wa 
 Wb

)

in view of (.) and (.). Therefore W (N(U)) = R(U∗
) if and only if Wc(Nc) = Mc for

c = a, b. Now let c ∈ {a, b}. From Proposition . and its proof we find for j ∈ {, . . . , n}
that

Wc(ej) =

⎧
⎨

⎩
±en+–j if j ∈ {, . . . , n} \ {ps + , qs +  : s ∈ �c

},
 if j ∈ {ps + , qs +  : s ∈ �c

}.

Observing condition  in Proposition . it follows that

Wc(Nc) = span
{

en+–j : j ∈ {, . . . , n}
\ ({

ps + , qs +  : s ∈ �c

} ∪ {

ps +  : s ∈ �c

})}

= span
{

ej : j ∈ {, . . . , n}
\ ({

ps + , qs +  : s ∈ �c

} ∪ {

n – ps : s ∈ �c

})}

.

Hence Wc(Nc) = Mc holds if and only if the sets


c
 :=

{
ps + , qs +  : s ∈ �c


} ∪ {

n – ps : s ∈ �c

}

and 
c
 :=

{
ps +  : s ∈ �c


}

are complementary subsets of {, . . . , n}. But by Assumption . and condition  in Propo-
sition . the listed elements in 
c

 as well as in 
c
 are mutually distinct, so that the sets


c
 and 
c

 are complementary if and only if they are disjoint. It is clear that this latter
property holds if and only if n – pj /∈ 
c

 for all j ∈ �c
. This completes the proof of the

proposition. �

Theorem . The boundary eigenvalue problem (.), (.) has an operator pencil repre-
sentation (.) with self-adjoint operators K and A(U) if and only if

. βj ∈R and pj + qj = n –  for all j ∈ �;
. ps + pr 	= n –  for all r, s ∈ �a

,
. ps + pr 	= n –  for all r, s ∈ �b

.

Proof This theorem is an immediate consequence of Corollary . and Propositions .
and .. �
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