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Abstract
In this paper, we are concerned with the existence of positive classical solutions for a
class of second-order differential equations with the nonlinearity dependent on the
derivative. We also provide a range of the parameter in order to obtain the existence
of multiple solutions. The approach is based on variational methods. An example
illustrates the abstract results of this paper.
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1 Introduction
In  to , the French mathematicians Jacques Charles François Sturm (-)
and Joseph Liouville (-) published several papers that initiated a new subtopic of
mathematical analysis: the Sturm-Liouville theory. Sturm and Liouville were concerned
with the general linear homogeneous second-order differential equation of the form

(
p(x)u′)′ + q(x)u = λw(x)u if x ∈ [a, b], (.)

where the potentials are given functions. Under various boundary conditions, Sturm and
Liouville established that solutions of problem (.) can exist only for particular values of
the real parameter λ, which is called an eigenvalue. Relevant examples of linear Sturm-
Liouville problems are the Bessel equation and the Legendre equation.

The classical Sturm-Liouville theory does not depend upon the calculus of variations but
stems from the theory of ordinary linear or nonlinear differential equations. Linear Sturm-
Liouville equations can be also studied in the context of functional analysis by means
of self-adjoint operators or integral operators with a continuous symmetric kernel (the
Green’s function of the problem). Certain applications involving linear partial differential
equations can be treated with the help of the Sturm-Liouville theory, for instance the nor-
mal modes of vibration of a thin membrane. We also refer to [], where a perturbed nonlin-
ear Sturm-Liouville problem with superlinear convex nonlinearity is studied. In the recent
paper [], the authors study a class of discrete anisotropic Sturm-Liouville problems. We
also refer to [–] for related properties of solutions of Sturm-Liouville problems.

© 2015 Afrouzi et al.. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-015-0342-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0342-4&domain=pdf
mailto:vicentiu.radulescu@imar.ro


Afrouzi et al. Boundary Value Problems  (2015) 2015:81 Page 2 of 17

In the present paper, we are concerned with a class of nonlinear Sturm-Liouville prob-
lems and we establish some qualitative properties of the eigenvalues by using variational
principles. A feature of our work is the presence of the derivative in the nonlinear term,
which creates further technical constraints.

Our main purpose in this paper is to establish a range of eigenvalues in a suitable interval
in order to create at least one eigenfunction. As a consequence, we establish sufficient
conditions for the existence of two or three solutions.

Consider the following quasilinear Sturm-Liouville problem with Dirichlet boundary
condition on a bounded interval [a, b] in R:

{
–(p – )|u′(x)|p–u′′(x) = λf (x, u)h(x, u′), x ∈ (a, b),
u(a) = u(b) = .

(.)

We assume that p > , λ is a positive parameter, h : [a, b] × R → [, +∞) is a bounded
and continuous function with m := inf(x,t)∈[a,b]×R h(x, t) >  and f : [a, b] × R → R is an
L-Carathéodory function.

Dirichlet boundary value problems have been widely studied because of their applica-
tions to various fields of applied sciences such as mechanical engineering, control systems,
computer science, economics, artificial or biological neural networks and many others.

In this connection, several existence and multiplicity results for solutions to second-
order ordinary differential nonlinear equations, with the nonlinearity dependent on the
derivative and Dirichlet conditions at the ends, have been investigated making use of vari-
ational methods.

For instance, Graef et al. in [], by using a three critical point theorem of Ricceri [],
proved the existence of at least three classical solutions for the Dirichlet quasilinear elliptic
system

⎧
⎪⎨

⎪⎩

–(pi – )|u′
i(x)|pi–u′′

i (x)
= [λFui (x, u, . . . , un) + μGui (x, u, . . . , un)]hi(x, u′

i), x ∈ (a, b),
ui(a) = ui(b) =  for  ≤ i ≤ n,

(.)

where pi >  for  ≤ i ≤ n, λ >  and μ ≥  are parameters, a, b ∈ R with a < b, hi : [a, b] ×
R → [, +∞) is a bounded and continuous function with mi := inf(x,t)∈[a,b]×R hi(x, t) > 
for  ≤ i ≤ n, F : [a, b] × R

n → R is a function such that the mapping (t, t, . . . , tn) →
F(x, t, t, . . . , tn) is in C in R

n for all x ∈ [a, b], Fti is continuous in [a, b] × R
n for  ≤

i ≤ n, and F(x, , . . . , ) =  for all x ∈ [a, b]. Here, Fti denotes the partial derivative of F
with respect to ti. Similarly, G : [a, b] × R

n → R is a function such that (t, t, . . . , tn) →
G(x, t, t, . . . , tn) is in C in R

n for all x ∈ [a, b], and Gti is continuous in [a, b] × R
n for

 ≤ i ≤ n.
Successively, in [], the authors considered the system (.) in the case μ = , finding

the existence of infinitely many classical solutions for certain values of the parameter λ by
using variational methods.

Further, the authors in [], applying a recent critical point theorem of Ricceri [], estab-
lished the existence of at least one nontrivial solution for the problem

{
–u′′ = [λf (x, u) + g(u)]h(x, u′) in (, ),
u() = u() = ,



Afrouzi et al. Boundary Value Problems  (2015) 2015:81 Page 3 of 17

where λ is a positive parameter, f : [, ] × R → R is an L-Carathéodory function, g :
R → R is a Lipschitz continuous function with g() = , and h : [, ] ×R → [, +∞) is a
bounded and continuous function with m := inf(x,t)∈[,]×R h(x, t) > .

In the present paper, first we obtain the existence of at least one solution for problem
(.). It is worth noticing that, usually, to obtain the existence of one solution, asymptotic
conditions both at zero and at infinity on the nonlinear term are requested, while here
it is assumed only a unique algebraic condition (see (A) in Theorem .). As a conse-
quence, by combining with the classical Ambrosetti-Rabinowitz condition (see []), the
existence of two solutions is obtained (see Theorem .). Subsequently, an existence re-
sult of three nonnegative solutions is obtained combining two algebraic conditions which
guarantee the existence of two local minima for the Euler-Lagrange functional and ap-
plying the mountain pass theorem as given by Pucci and Serrin (see []) to ensure the
existence of the third critical point (see Theorem .).

As an example, we state here the following special case of Theorem ..

Theorem . Let h : R → [, +∞) be a bounded and continuous function with m :=
inft∈R h(t) >  and M := supt∈R h(t), and g : R → R be a nonnegative continuous function
with g() �=  such that

lim
t→+

g(t)
t

= +∞, lim
t→+∞

g(t)
t

= ,

and

∫ 


g(x) dx <

m
M

∫ 


g(x) dx.

Then, for each

λ ∈
]


m

∫ 
 g(x) dx

,


M
∫ 

 g(x) dx

[
,

the problem

{
–u′′(x) = λg(u)h(u′), x ∈ (, ),
u() = u() = 

(.)

admits at least three positive classical solutions in W ,
 ([, ]).

Finally, we point out that Theorem . ensures a precise conclusion in the sense that
a location of the parameter λ in order to obtain at least three distinct solutions is also
provided.

2 Preliminaries
For a given nonempty set X and two functionals �,� : X → R, we define the following
functions:

β(r, r) := inf
v∈�–(]r,r[)

supu∈�–(]r,r[) �(u) – �(v)
r – �(v)

,
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ρ(r, r) := sup
v∈�–(]r,r[)

�(v) – supu∈�–(]–∞,r]) �(u)
�(v) – r

for all r, r ∈R, with r < r, and

ρ(r) := sup
v∈�–(]r,+∞[)

�(v) – supu∈�–(]–∞,r]) �(u)
�(v) – r

for all r ∈ R.

Theorem . ([]) Let X be a real Banach space; � : X →R be a sequentially weakly lower
semicontinuous, coercive and continuously Gâteaux differentiable function whose Gâteaux
derivative admits a continuous inverse on X∗; � : X → R be a continuously Gâteaux dif-
ferentiable function whose Gâteaux derivative is compact. Put Iλ := � – λ� and assume
that there are r, r ∈ R, with r < r, such that

β(r, r) < ρ(r, r). (.)

Then, for each λ ∈] 
ρ(r,r) , 

β(r,r) [, there is u,λ ∈ �–(]r, r[) such that Iλ(u,λ) ≤ Iλ(u)
for all u ∈ �–(]r, r[) and I ′

λ(u,λ) = .

Theorem . ([]) Let X be a real Banach space; � : X → R be a continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on X∗; � :
X → R be a continuously Gâteaux differentiable function whose Gâteaux derivative is
compact. Fix infX � < r < supX � and assume that

ρ(r) > , (.)

and for each λ > 
ρ(r) the function Iλ = � – λ� is coercive.

Then, for each λ > 
ρ(r) , there is u,λ ∈ �–(]r, +∞[) such that Iλ(u,λ) ≤ Iλ(u) for all u ∈

�–(]r, +∞[) and I ′
λ(u,λ) = .

Let h : [a, b] ×R → [, +∞) be a bounded and continuous function with

m := inf
(x,t)∈[a,b]×R

h(x, t) > ,

and f : [a, b] ×R →R be an L-Carathéodory function.
We recall that f : [a, b] ×R→ R is an L-Carathéodory function if
(a) x 
→ f (x, ξ ) is measurable for every ξ ∈R;
(b) ξ 
→ f (x, ξ ) is continuous for almost every x ∈ [a, b];
(c) for every ρ > , there is a function lρ ∈ L([a, b]) such that

sup
|ξ |≤ρ

∣
∣f (x, ξ )

∣
∣ ≤ lρ(x),

for almost every x ∈ [a, b].
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Corresponding to f and h, we introduce the functions F : [a, b] ×R →R and H : [a, b] ×
R → [, +∞), respectively, as follows:

F(x, t) :=
∫ t


f (x, ξ ) dξ

and

H(x, t) :=
∫ t



(∫ τ



(p – )|δ|p–

h(x, δ)
dδ

)
dτ

for all x ∈ [a, b] and t ∈R. Also, we use the following notation:

M := sup
(x,t)∈[a,b]×R

h(x, t).

Here and in the following, let X := W ,p
 ([a, b]) equipped with the norm

‖u‖ :=
(∫ b

a

∣∣u′(x)
∣∣p dx

)/p

.

Then, X is a reflexive real Banach space. Since p > , X is compactly embedded in C([a, b])
and

‖u‖∞ ≤ (b – a)(p–)/p


‖u‖ (.)

for all u ∈ X (see, e.g., []).
By a classical solution of problem (.), we mean a function u such that u ∈ C([a, b]),

u′ ∈ AC([a, b]), and u(x) satisfies (.) a.e. on [a, b]. We say that a function u ∈ X is a weak
solution of problem (.) if

∫ b

a

(∫ u′(x)



(p – )|τ |p–

h(x, τ )
dτ

)
v′(x) dx – λ

∫ b

a
f
(
x, u(x)

)
v(x) dx = 

for all v ∈ X.
The following lemma is taken from [], Lemma ..

Lemma . A weak solution to (.) in X coincides with a classical solution to (.).

We cite recent monographs [–] as general references for the basic notions used in
the paper.

3 Main results
In this section we present our main results. To be precise, we establish an existence result
of at least one solution, Theorem ., which is based on Theorem ., and we point out
some consequences, Theorems ., . and .. Finally, we present another existence result
of at least one solution, Theorem ., which is based in turn on Theorem ..
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Throughout the sequel, α, β are two positive constants such that α + β < b – a. Now, put

D :=
(p – )p–

p
(
α–p+ + β–p+).

Given two nonnegative constants c, d, with

m(c)p �= Ddp(b – a)p–pM,

put

ad(c) :=
∫ b

a max|t|≤c F(x, t) dx –
∫ b–β

a+α
F(x, d) dx

m(c)p – Ddp(b – a)p–pM
.

Theorem . Assume that there exist a nonnegative constant c and two positive constants
c, d, with

c <
(b – a)(p–)/p(pD)/p


d <

(
m
M

)/p

c, (.)

such that

(A) F(x, t) ≥  for all (x, t) ∈ ([a, a + α] ∪ [b – β , b]) × [, d];
(A) ad(c) < ad(c).

Then, for each

λ ∈ 
(b – a)p–pmM

]


ad(c)
,


ad(c)

[
,

problem (.) admits at least one nontrivial classical solution ū ∈ X such that

m/p

(b – a)(p–)/pM/p c < ‖ū‖ <


(b – a)(p–)/p c.

Proof Our aim is to apply Theorem . to our problem. To this end, for each u ∈ X, let the
functionals �,� : X →R be defined by

�(u) :=
∫ b

a
H

(
x, u′(x)

)
dx

and

�(u) :=
∫ b

a
F
(
x, u(x)

)
dx,

and put

Iλ(u) := �(u) – λ�(u) ∀u ∈ X.

Note that the weak solutions of (.) are exactly the critical points of Iλ. The functionals �

and � satisfy the regularity assumptions of Theorem .. Indeed, by standard arguments,
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we have that � is continuously Gâteaux differentiable and its Gâteaux derivative is the
functional �′(u) ∈ X∗ given by

�′(u)(v) =
∫ b

a

(∫ u′(x)



(p – )|τ |p–

h(x, τ )
dτ

)
v′(x) dx

for every v ∈ X. Since �′ is monotone (see the proof of [], Lemma .), by applying
[], Proposition ., � is sequentially weakly lower semicontinuous. Again by [],
Lemma ., �′ : X → X∗ admits a continuous inverse. On the other hand, the fact that X
is compactly embedded into C([a, b]) implies that the functional � is well defined, con-
tinuously Gâteaux differentiable and with compact derivative, whose Gâteaux derivative
is given by

� ′(u)(v) =
∫ b

a
f
(
x, u(x)

)
v(x) dx

for every v ∈ X.
Also, since m ≤ h(x, t) ≤ M for all (x, t) ∈ [a, b] ×R, we see that


pM

‖u‖p ≤ �(u) ≤ 
pm

‖u‖p for all u ∈ X. (.)

Now, put

r :=
p

(b – a)p–pM
cp

 , r :=
p

(b – a)p–pM
cp

,

and

w(x) :=

⎧
⎪⎨

⎪⎩


αp– d(x – a)p– if a ≤ x < a + α,
d if a + α ≤ x ≤ b – β ,


βp– d(b – x)p– if b – β < x ≤ b.

It is easy to verify that w ∈ X and, in particular, one has

‖w‖p = dp(p – )p–(α–p+ + β–p+) = pDdp.

So, from (.), we have

Ddp

M
≤ �(w) ≤ Ddp

m
.

From condition (.), we obtain r < �(w) < r. For all u ∈ X such that �(u) < r, taking
(.) into account, one has |u(x)| < c for all x ∈ [a, b], from which it follows

sup
u∈�–(]–∞,r[)

�(u) = sup
u∈�–(]–∞,r[)

∫ b

a
F
(
x, u(x)

)
dx

≤
∫ b

a
max
|t|≤c

F(x, t) dx.
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Arguing as before, we obtain

sup
u∈�–(]–∞,r])

�(u) ≤
∫ b

a
max
|t|≤c

F(x, t) dx.

Since  ≤ w(x) ≤ d for each x ∈ [a, b], assumption (A) ensures that

�(w) ≥
∫ b–β

a+α

F(x, d) dx.

Then we get

∫ b

a
max
|t|≤c

F(x, t) dx ≥
∫ b–β

a+α

F(x, d) dx,

and thus ad(c) ≥ . At this point, one has

β(r, r) ≤ supu∈�–(]–∞,r[) �(u) – �(w)
r – �(w)

≤
∫ b

a max|t|≤c F(x, t) dx –
∫ b–β

a+α
F(x, d) dx

p

(b–a)p–pM cp
 – Ddp

m

= (b – a)p–pmM
∫ b

a max|t|≤c F(x, t) dx –
∫ b–β

a+α
F(x, d) dx

m(c)p – Ddp(b – a)p–pM

=
[
(b – a)p–pmM

]
ad(c).

Since ad(c) ≥ , hypothesis (A) implies that

∫ b

a
max
|t|≤c

F(x, t) dx <
∫ b–β

a+α

F(x, d) dx.

So, one has

ρ(r, r) ≥ �(w) – supu∈�–(]–∞,r]) �(u)
�(w) – r

≥
∫ b–β

a+α
F(x, d) dx –

∫ b
a max|t|≤c F(x, t) dx

Ddp
m – p

(b–a)p–pM cp


= (b – a)p–pmM
∫ b–β

a+α
F(x, d) dx –

∫ b
a max|t|≤c F(x, t) dx

Ddp(b – a)p–pM – m(c)p

=
[
(b – a)p–pmM

]
ad(c).

Hence, from assumption (A), one has β(r, r) < ρ(r, r). Therefore, from Theorem .,
for each λ ∈ 

(b–a)p–pmM ] 
ad(c) , 

ad(c) [, the functional Iλ admits at least one critical point ū
such that

r < �(ū) < r,
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that is,

m/p

(b – a)(p–)/pM/p c < ‖ū‖ <


(b – a)(p–)/p c.

So, applying Lemma ., the conclusion is achieved. �

Now, we point out an immediate consequence of Theorem ..

Theorem . Assume that there exist two positive constants c, d, with

(b – a)(p–)/p(pD)/p


d <

(
m
M

)/p

c,

such that assumption (A) in Theorem . holds. Furthermore, suppose that

(A) ∫ b
a max|t|≤c F(x, t) dx

m(c)p <
∫ b–β

a+α
F(x, d) dx

Ddp(b – a)p–pM
.

Then, for each

λ ∈
]

Ddp

m
∫ b–β

a+α
F(x, d) dx

,
(c)p

(b – a)p–pM
∫ b

a max|t|≤c F(x, t) dx

[
,

problem (.) admits at least one nontrivial classical solution ū ∈ X such that |ū(x)| < c for
all x ∈ [a, b].

Proof The conclusion follows from Theorem ., by taking c =  and c = c. Indeed, owing
to assumption (A), one has

ad(c) =
∫ b

a max|t|≤c F(x, t) dx –
∫ b–β

a+α
F(x, d) dx

m(c)p – Ddp(b – a)p–pM

<
( – Ddp(b–a)p–pM

m(c)p )
∫ b

a max|t|≤c F(x, t) dx
m(c)p – Ddp(b – a)p–pM

=


m(c)p

∫ b

a
max
|t|≤c

F(x, t) dx.

On the other hand, one has

ad() =
∫ b–β

a+α
F(x, d) dx

Ddp(b – a)p–pM
.

Hence, taking assumption (A) and (.) into account, Theorem . ensures the conclu-
sion. �

Now, we point out a special situation of our main result when the nonlinear term has
separable variables. To be precise, let γ ∈ L([a, b]) such that γ (x) ≥  a.e. x ∈ [a, b], γ �≡ ,
and let g : R →R be a nonnegative continuous function. Consider the following Dirichlet
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boundary value problem:

{
–(p – )|u′(x)|p–u′′(x) = λγ (x)g(u)h(x, u′), x ∈ (a, b),
u(a) = u(b) = .

(.)

Put G(t) :=
∫ t

 g(ξ ) dξ for all t ∈R, and set ‖γ ‖ :=
∫ b

a γ (x) dx.

Theorem . Assume that there exist two positive constants c, d, with

(b – a)(p–)/p(pD)/p


d <

(
m
M

)/p

c,

such that

(A)
G(c)

cp <
( pm

∫ b–β

a+α
γ (x) dx

D(b – a)p–pM‖γ ‖

)
G(d)

dp .

Then, for each

λ ∈
]

D
m

∫ b–β

a+α
γ (x) dx

dp

G(d)
,

p

(b – a)p–pM‖γ ‖

cp

G(c)

[
,

problem (.) admits at least one positive classical solution ū ∈ X such that ū(x) < c for all
x ∈ [a, b].

Proof Put f (x, ξ ) := γ (x)g(ξ ) for all (x, ξ ) ∈ [a, b] ×R. Clearly, one has F(x, t) = γ (x)G(t) for
all (x, t) ∈ [a, b] × R. Therefore, taking into account that G is a nondecreasing function,
Theorem . ensures the existence of a non-zero classical solution ū. We claim that it
is nonnegative. In fact, arguing by contradiction and setting A := {x ∈ [a, b] : ū(x) < },
one has A �= ∅. Put v̄ := min{ū, }, one has v̄ ∈ X. So, taking into account that ū is a weak
solution and by choosing v = v̄, from our sign assumptions on the data, one has

∫

A

(∫ ū′(x)



(p – )|τ |p–

h(x, τ )
dτ

)
ū′(x) dx = λ

∫

A
γ (x)g

(
ū(x)

)
ū(x) dx ≤ .

On the other hand,


M

‖ū‖p
W ,p

 (A)
≤

∫

A

(∫ ū′(x)



(p – )|τ |p–

h(x, τ )
dτ

)
ū′(x) dx.

So, ‖ū‖W ,p
 (A) = , which is absurd. Hence, our claim is proved. Now, owing to the strong

maximum principle (see, e.g., [], Theorem .) the classical solution ū, being non-zero,
is positive and the conclusion is achieved. �

We now give a special case of our main result as follows.

Theorem . Assume that

(A) limt→+
g(t)
tp– = +∞.
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Furthermore, for each c > , set

λ�
c :=

p

(b – a)p–pM‖γ ‖

cp

G(c)
.

Then, for every λ ∈ ],λ�
c[, problem (.) admits at least one positive classical solution.

Proof Fix c >  and λ ∈ ],λ�
c[. From (A) we get limt→+ tp

G(t) = . Thus, there exists a pos-
itive constant d satisfying

d <
m/p

(b – a)(p–)/p(pMD)/p c

such that

D
m

∫ b–β

a+α
γ (x) dx

dp

G(d)
< λ <

p

(b – a)p–pM‖γ ‖

cp

G(c)
.

Hence, owing to Theorem ., for every λ ∈ ],λ�
c[, problem (.) admits at least one pos-

itive classical solution ū ∈ X. The proof is complete. �

Remark . We claim that under the above assumptions, the mapping λ 
→ Iλ(ū) is
negative and strictly decreasing in ],λ�

c[. Indeed, the restriction of the functional Iλ to
�–(], r[), where r := (c)p

(b–a)p–pM , admits a global minimum, which is a critical point (lo-
cal minimum) of Iλ in X. Moreover, since w ∈ �–(], r[) and

�(w)
�(w)

≤ Ddp

mG(d)
∫ b–β

a+α
γ (x) dx

< λ,

we have

Iλ(ū) ≤ Iλ(w) = �(w) – λ�(w) < .

Next, we observe that

Iλ(u) = λ

(
�(u)

λ
– �(u)

)

for every u ∈ X and fix  < λ < λ < λ�
c . Set

mλ :=
(

�(ū)
λ

– �(ū)
)

= inf
u∈�–(],r[)

(
�(u)
λ

– �(u)
)

and

mλ :=
(

�(ū)
λ

– �(ū)
)

= inf
u∈�–(],r[)

(
�(u)
λ

– �(u)
)

.

Clearly, as claimed before, mλi <  (for i = , ), and mλ ≤ mλ thanks to λ < λ. Then the
mapping λ 
→ Iλ(ū) is strictly decreasing in ],λ�

c[ owing to

Iλ (ū) = λmλ ≤ λmλ < λmλ = Iλ (ū).

This concludes the proof of our claim.
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Remark . In other words, Theorem . ensures that if the asymptotic condition at zero
(A) is verified, then, for every parameter λ belonging to the real interval ],λ�[, where

λ� :=
p

(b – a)p–pM‖γ ‖
sup
c>

cp

G(c)
,

problem (.) admits at least one positive classical solution ū ∈ X.

Finally, we present an application of Theorem . which we will use in the next section
to obtain multiple solutions.

Theorem . Assume that there exist two constants c̄, d̄, with

 <
(b – a)(p–)/p(pD)/p


d̄,

such that

(A)
∫ b

a max|t|≤c̄ F(x, t) dx <
∫ b–β

a+α
F(x, d̄) dx;

(A) lim sup|t|→+∞
F(x,t)
|t|p ≤  uniformly in x.

Then, for each λ > λ̃, where

λ̃ :=
Dd̄p(b – a)p–pM – m(c̄)p

(b – a)p–pmM(
∫ b–β

a+α
F(x, d̄) dx –

∫ b
a max|t|≤c̄ F(x, t) dx)

,

problem (.) admits at least one nontrivial classical solution ũ ∈ X such that

‖ũ‖ >
m/p

(b – a)(p–)/pM/p c̄.

Proof The functionals � and � defined in the proof of Theorem . satisfy all regularity
assumptions requested in Theorem .. Moreover, by standard computations, assumption
(A) implies that Iλ, λ > , is coercive. So, our aim is to verify condition (.) of Theo-
rem .. To this end, put

r :=
p

(b – a)p–pM
c̄p

and

w(x) :=

⎧
⎪⎨

⎪⎩


αp– d̄(x – a)p– if a ≤ x < a + α,
d̄ if a + α ≤ x ≤ b – β ,


βp– d̄(b – x)p– if b – β < x ≤ b.

Arguing as in the proof of Theorem ., we obtain that

ρ(r) ≥ (b – a)p–pmM
∫ b–β

a+α
F(x, d̄) dx –

∫ b
a max|t|≤c̄ F(x, t) dx

Dd̄p(b – a)p–pM – m(c̄)p
.

So, from our assumption it follows that ρ(r) > .
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Hence, from Theorem . for each λ > λ̃, the functional Iλ admits at least one local
minimum ũ such that

‖ũ‖ >
m/p

(b – a)(p–)/pM/p c̄,

and the conclusion is achieved. �

4 Multiplicity results
The main aim of this section is to present multiplicity results. First, as a consequence of
Theorem ., taking into account the classical theorem of Ambrosetti and Rabinowitz, we
have the following multiplicity result.

Theorem . Let the assumptions of Theorem . be satisfied, and f (·, ) �=  in (a, b).
Moreover, let

(A) there exist positive constants ν and R such that νm > pM, and for all |t| ≥ R and x ∈
[a, b], one has

 < νF(x, t) ≤ t · f (x, t).

Then, for each

λ ∈ 
(b – a)p–pmM

]


ad(c)
,


ad(c)

[
,

problem (.) admits at least two nontrivial classical solutions ū, ū such that

m/p

(b – a)(p–)/pM/p c < ‖ū‖ <


(b – a)(p–)/p c. (.)

Proof Fix λ as in the conclusion. So, Theorem . ensures that problem (.) admits at least
one nontrivial classical solution ū satisfying condition (.) which is a local minimum of
the functional Iλ.

Now, we prove the existence of the second solution distinct from the first one. To this
end, we must show that the functional Iλ satisfies the hypotheses of the mountain pass
theorem.

Clearly, the functional Iλ is of class C and Iλ() = .
We can assume that ū is a strict local minimum for Iλ in X. Therefore, there is ρ > 

such that inf‖u–ū‖=ρ Iλ(u) > Iλ(ū), so condition [], (I), Theorem ., is verified.
From (A), by standard computations, there is a positive constant C such that

F(x, t) ≥ C|t|ν (.)

for all x ∈ [a, b] and |t| > R. In fact, setting a(x) := min|ξ |=R F(x, ξ ) and

ϕt(s) := F(x, st), ∀s > , (.)
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by (A), for every x ∈ [a, b] and |t| > R, one has

 < νϕt(s) = νF(x, st) ≤ st · f (x, st) = sϕ′
t(s), ∀s >

R
|t| .

Therefore,

∫ 

R/|t|
ϕ′

t(s)
ϕt(s)

ds ≥
∫ 

R/|t|
ν

s
ds.

Then

ϕt() ≥ ϕt

(
R
|t|

) |t|ν
Rν

.

Taking into account (.), we obtain

F(x, t) ≥ F
(

x,
R
|t| t

) |t|ν
Rν

≥ a(x)
|t|ν
Rν

≥ C|t|ν ,

where C >  is a constant. Thus, (.) is proved. Now, choosing any u ∈ X \ {}, one has

Iλ(tu) = (� – λ�)(tu) ≤ tp

pm
‖u‖p – λtνC

∫ b

a

∣
∣u(x)

∣
∣ν dx → –∞

as t → +∞ (since ν > p). So, the functional Iλ is unbounded from below and condition
[], (I), Theorem ., is verified. Therefore, Iλ satisfies the geometry of mountain pass.

Now, to verify the Palais-Smale condition, it is sufficient to prove that any sequence of
Palais-Smale is bounded. To this end, taking into account (A) one has

νIλ(un) –
∥∥I ′

λ(un)
∥∥

X∗‖un‖
≥ νIλ(un) – I ′

λ(un)(un)

= ν�(un) – λν�(un) – �′(un)(un) + λ� ′(un)(un)

≥
(

ν

pM
–


m

)
‖un‖p – λ

∫ b

a

[
νF

(
x, un(x)

)
– f

(
x, un(x)

)
un(x)

]
dx

≥
(

ν

pM
–


m

)
‖un‖p. (.)

If {un} is not bounded, from (.) we have a contradiction. Thus, Iλ satisfies the Palais-
Smale condition.

Hence, the classical theorem of Ambrosetti and Rabinowitz ensures a critical point ū

of Iλ such that Iλ(ū) > Iλ(ū). So, ū and ū are two distinct classical solutions of (.) and
the proof is complete. �

Corollary . Assume that there exist two positive constants c, d, with

(b – a)(p–)/p(pD)/p


d <

(
m
M

)/p

c,

such that (A) holds. Assume also that
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(A) there exist positive constants ν and R such that νm > pM, and for all |t| ≥ R, one has

 < νG(t) ≤ t · g(t).

Then, for each

λ ∈
]

D
m

∫ b–β

a+α
γ (x) dx

dp

G(d)
,

p

(b – a)p–pM‖γ ‖

cp

G(c)

[
,

problem (.) admits at least two nonnegative classical solutions ū, ū such that ū(x) < c
for all x ∈ [a, b].

Corollary . Assume that (A) and (A) are satisfied. Then, for each λ ∈],λ�[, problem
(.) admits at least two nonnegative classical solutions.

Next, as a consequence of Theorems . and ., the following theorem of the existence
of three classical solutions is obtained, and its consequence for the nonlinearity with sep-
arable variables is presented.

Theorem . Assume that (A) holds. Moreover, assume that there exist four positive con-
stants c, d, c̄, d̄, with

(b – a)(p–)/p(pD)/p


d <

(
m
M

)/p

c ≤ c̄ <
(b – a)(p–)/p(pD)/p


d̄,

such that (A), (A) and

(A) ∫ b
a max|t|≤c F(x, t) dx

(c)p <
m(

∫ b–β

a+α
F(x, d̄) dx –

∫ b
a max|t|≤c̄ F(x, t) dx)

Dd̄p(b – a)p–pM – m(c̄)p

are satisfied. Then, for each

λ ∈ � :=
]

max

{
λ̃,

Ddp

m
∫ b–β

a+α
F(x, d) dx

}
,

(c)p

(b – a)p–pM
∫ b

a max|t|≤c F(x, t) dx

[
,

problem (.) admits at least three classical solutions.

Proof First, we observe that � �= ∅ owing to (A). Next, fix λ ∈ �. Theorem . ensures
a nontrivial classical solution ū such that

‖ū‖ <


(b – a)(p–)/p c,

which is a local minimum for the associated functional Iλ, as well as Theorem . guaran-
tees a nontrivial classical solution ũ such that

‖ũ‖ >
m/p

(b – a)(p–)/pM/p c̄,

which is a local minimum for Iλ. Hence, the mountain pass theorem as given by Pucci and
Serrin (see []) ensures the conclusion. �
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Theorem . Assume that

(A) lim supt→+
G(t)
tp = +∞;

(A) lim supt→+∞
G(t)
tp = .

Further, assume that there exist two positive constants c̄, d̄, with

c̄ <
(b – a)(p–)/p(pD)/p


d̄,

such that

(A)
G(c̄)

c̄p <
( pm

∫ b–β

a+α
γ (x) dx

D(b – a)p–pM‖γ ‖

)
G(d̄)

d̄p
.

Then, for each

λ ∈
]

D
m

∫ b–β

a+α
γ (x) dx

d̄p

G(d̄)
,

p

(b – a)p–pM‖γ ‖

c̄p

G(c̄)

[
,

problem (.) admits at least three nonnegative classical solutions.

Proof Clearly, (A) implies (A). Moreover, by choosing d small enough and c = c̄, simple
computations show that (A) implies (A). Finally, from (A) we get (A) and, arguing as
in the proof of Theorem ., also (A). Hence, Theorem . ensures the conclusion. �

Remark . If g() �= , Corollaries . and . ensure two positive classical solutions
while Theorem . ensures three positive classical solutions (see the proof of Theo-
rem .).

Finally, we present the following example to illustrate our results.

Example . Consider the following Dirichlet problem:

{
–u′′(x) = λex( 

 + |u|u)h(u′), x ∈ (, ),
u() = u() = ,

(.)

where

h(t) :=

⎧
⎪⎨

⎪⎩

 if t < ,
–t

 if  ≤ t ≤ ,

 if t > .

Then h : R → [, +∞) is a bounded and continuous function with

m = inf
t∈R

h(t) =



>  and M = sup
t∈R

h(t) = .

Let g(t) := 
 + |t|t for all t ∈ R. Obviously, g() �= . Since

lim
t→+

g(t)
t

= lim
t→+

(


t
+ |t|

)
= +∞,
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condition (A) holds true. Choose ν =  and R = , we have νm > pM, and

 < G(t) ≤ t · g(t)

for all |t| ≥ . Moreover, one has

λ� =


∫ 
 ex dx

sup
c>

c

G(c)
=

(


e – 

)
sup
c>

c
 + c ≥

(


e – 

)
c

 + c

∣∣
∣
c= 


=


(e – )

.

Then, owing to Corollary . and Remark ., for each λ ∈ ], 
(e–) [, problem (.) admits

at least two positive classical solutions.
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1. Rădulescu, V: Finitely many solutions for a class of boundary value problems with superlinear convex nonlinearity.

Arch. Math. (Basel) 84, 538-550 (2005)
2. Molica Bisci, G, Repovš, D: On sequences of solutions for discrete anisotropic equations. Expo. Math. 32, 284-295

(2014)
3. Agarwal, RP, Hong, H-L, Yeh, C-C: The existence of positive solutions for the Sturm-Liouville boundary value problems.

Comput. Math. Appl. 35, 89-96 (1998)
4. Agarwal, RP, Bohner, M, Wong, PJ: Sturm-Liouville eigenvalue problems on time scales. Appl. Math. Comput. 99,

153-166 (1999)
5. Agarwal, RP, O’Regan, D: An Introduction to Ordinary Differential Equations. Springer, New York (2008)
6. Graef, JR, Heidarkhani, S, Kong, L: A critical points approach for the existence of multiple solutions of a Dirichlet

quasilinear system. J. Math. Anal. Appl. 388, 1268-1278 (2012)
7. Ricceri, B: A three critical points theorem revisited. Nonlinear Anal. 70, 3084-3089 (2009)
8. Afrouzi, GA, Hadjian, A: Infinitely many solutions for a class of Dirichlet quasilinear elliptic systems. J. Math. Anal. Appl.

393, 265-272 (2012)
9. Afrouzi, GA, Hadjian, A, Heidarkhani, S: Non-trivial solutions for a two-point boundary value problem. Ann. Pol. Math.

108, 75-84 (2013)
10. Ambrosetti, A, Rabinowitz, PH: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14,

349-381 (1973)
11. Pucci, P, Serrin, J: A mountain pass theorem. J. Differ. Equ. 60, 142-149 (1985)
12. Talenti, G: Some inequalities of Sobolev type on two-dimensional spheres. In: Walter, W (ed.) General Inequalities,

vol. 5. Internat. Ser. Numer. Math., vol. 80, pp. 401-408. Birkhäuser, Basel (1987)
13. Ciarlet, PG: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)
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