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Abstract
There are two contributions in this paper. The first is that the abstract result for the
existence of the unique solution of certain nonlinear parabolic equation is obtained
by using the properties of H-monotone operators, consequently, the proof is simplified
compared to the corresponding discussions in the literature. The second is that the
connections between resolvent of H-monotone operators and solutions of nonlinear
parabolic equations are shown, and this strengthens the importance of H-monotone
operators, which have already attracted the attention of mathematicians because of
the connections with practical problems.
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1 Introduction and preliminaries
1.1 Introduction
Nonlinear boundary value problems involving the generalized p-Laplacian operator arise
from many physical phenomena, such as reaction-diffusion problems, petroleum extrac-
tion, flow through porous media and non-Newtonian fluids, just to name a few. Thus, the
study of such problems and their generalizations have attracted numerous attention in
recent years. In particular, we would mention the books of Lieberman [, ] where in []
the theory of linear and quasilinear parabolic second-order partial differential equations
is elaborated, with emphasis on the Cauchy-Dirichlet problem and the oblique deriva-
tive problem in bounded space-time domains; while in [] a detailed qualitative analysis
of second-order elliptic boundary value problems that involve oblique derivatives is pre-
sented. A sample of other research work that contributes to the literature of parabolic
and elliptic problems includes [–] listed chronologically as well as the references cited
therein. For time-periodic case which is the concern of this paper, we refer the reader to
[–].

In , Wei and Agarwal [] studied the following nonlinear elliptic boundary value
problem involving the generalized p-Laplacian:

{
– div[(C(x) + |∇u|)

p–
 ∇u] + ε|u|q–u + g(x, u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x)), a.e. on �,
(.)
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where  ≤ C(x) ∈ Lp(�), ε is a non-negative constant and ϑ denotes the exterior normal
derivative of �. It is shown that (.) has solutions in Ls(�) under some conditions, where
N

N+ < p ≤ s < +∞,  ≤ q < +∞ if p ≥ N , and  ≤ q ≤ Np
N–p if p < N , for N ≥ . We observe

that the proof, which uses Theorem . (stated in Section .) as the main tool, is very com-
plicated, since one needs to check that conditions (.) and (.) and the compactness of
A + C are satisfied.

In , Wei et al. [] extended the work on elliptic equation to the following nonlin-
ear parabolic equation involving the generalized p-Laplacian with mixed boundary con-
ditions:

⎧⎪⎨
⎪⎩

∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|p–u = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ β(u) – h(x, t), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), a.e. x ∈ �.

(.)

Some new technique has been used to tackle the existence of solutions of (.); specif-
ically, the problem is divided into the following two auxiliary equations: (i) a parabolic
equation with Dirichlet boundary conditions (.), and (ii) a parabolic equation with Neu-
mann boundary value conditions (.):

⎧⎪⎨
⎪⎩

∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|p–u = f (x, t), (x, t) ∈ � × (, T),

γ u = w, (x, t) ∈ � × (, T),
u(x, ) = u(x, T), a.e. x ∈ �,

(.)

{
∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u] + ε|u|p–u = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ β(u) – h(x, t), (x, t) ∈ � × (, T).
(.)

By using Theorems . and . (stated in Section .), it is shown that (.) has a unique
solution. By employing Theorem ., it is proved that (.) has a unique solution in
Lp(, T ; W ,p(�)), which implies that (.) has a unique solution in Lp(, T ; W ,p(�)), where
 ≤ p < +∞. However, we observe that the inequality (.) is not easy to check during the
discussion.

Motivated by the work of Kawohl et al. [, , , ], Serrin et al. [, , , ] as well as
Wei et al. [, ], in this paper we shall consider the following parabolic problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t – div[α(|∇u|p)|∇u|p–∇u] + λ|u|r–u

+ λ|u|r–u + g(x, u, ∂u
∂t , ε∇u) = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ ,α(|∇u|p)|∇u|p–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), x ∈ �,

(.)

where α : R+ ∪{} →R
+ is a continuous nonlinear mapping such that ptα′(t)+(p–)α(t) >

, α(t) ≤ k, for t ≥ , limt→+∞ α(t) = k > , here k and k are positive constants.
Let ϕ : � × R → R be a given function such that, for each x ∈ �, ϕx = ϕ(x, ·) : R →

R is a proper, convex and lower-semicontinuous function with ϕx() = . Let βx be the
subdifferential of ϕx, i.e., βx ≡ ∂ϕx. Suppose that  ∈ βx() and for each t ∈ R, the function
x ∈ � → (I + λβx)–(t) ∈ R is measurable for λ > . More details of (.) will be presented
in Section .
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There are some major differences between parabolic problems (.) and (.): (i) The
main part – div[α(|∇u|p)|∇u|p–∇u] in (.) includes the main part – div[(C(x, t) +
|∇u|)

p–
 ∇u] in (.); (ii) the term g(x, u, ∂u

∂t , ε∇u) is considered in (.) but not in (.);
(iii) βx(u(x, t)) in (.) is different from β(u) – h(x, t) in (.).

The existence of the unique solution of (.) will be discussed in L(, T ; L(�)), which
does not change while p is varying from N

N+ to +∞ for N ≥ . Hence, the result is dif-
ferent from that on (.) in []. Our main tool in this paper will be Theorem . (stated
in Section .). Consequently, the proof of our result is different from and comparatively
simplified with respect to that of [].

Actually, (.) is very general and it includes the following special cases. The related work
can be found in [–] and the references cited therein.

Example . If we set α(t) =  + t( + t)– 
 , t ≥ , then it is obvious that α : R+ ∪{} →R

+

is a continuous nonlinear mapping, α(t) ≤  and limt→+∞ α(t) = . Moreover,

ptα′(t) + (p – )α(t) =
pt

( + t) 


+ (p – ) + (p – )
t√

 + t
> .

So, if λ ≡ λ ≡ λ, then (.) becomes the following parabolic capillarity equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t – div[( + |∇u|p√

+|∇u|p
)|∇u|p–∇u] + λ|u|r–u + λ|u|r–u

+ g(x, u, ∂u
∂t , ε∇u) = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , ( + |∇u|p√
+|∇u|p

)|∇u|p–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),

u(x, ) = u(x, T), x ∈ �.

(.)

Example . For  < p ≤ , if we set α(t) = (C + t

p )

p–
 t

–p
p , t > , where C ≥ , then it is ob-

vious that α : R+ →R
+ is a continuous nonlinear mapping, α(t) ≤  and limt→+∞ α(t) = .

Moreover,

ptα′(t) + (p – )α(t) =
(
C + t


p
) p

 –t

p –[tC( – p) + (p – )t

(
C + t


p
)]

=
(
C + t


p
) p

 –t

p –[Ct + (p – )t


p +] > .

If λ ≡ , then (.) becomes the following parabolic equation with generalized p-
Laplacian:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t – div[(C(x) + |∇u|)

p–
 ∇u] + λ|u|r–u + g(x, u, ∂u

∂t , ε∇u)
= f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), x ∈ �.

(.)

Example . If, in (.), C(x) ≡ , then (.) becomes the following parabolic p-Laplacian
equation:

⎧⎪⎨
⎪⎩

∂u
∂t – �pu + λ|u|r–u + g(x, u, ∂u

∂t , ε∇u) = f (x, t), (x, t) ∈ � × (, T),
–〈ϑ , |∇u|p–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), x ∈ �.

(.)
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Example . For s ≤ , if we set α(t) = ( + t

p ) s

 t
m–p+

p , t > , where m ≥ , m + s +  =
p, then it is obvious that α : R+ → R

+ is a continuous nonlinear mapping, α(t) ≤  and
limt→+∞ α(t) = . Moreover,

ptα′(t) + (p – )α(t) = t
m–p+

p
(
 + t


p
) s

 –[m + (p – )t

p
]

> .

So, if λ ≡ , then (.) becomes the following parabolic curvature equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t – div[( + |∇u|) s

 |∇u|m–∇u] + λ|u|r–u + g(x, u, ∂u
∂t , ε∇u)

= f (x, t), (x, t) ∈ � × (, T),
–〈ϑ , ( + |∇u|) s

 |∇u|m–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),
u(x, ) = u(x, T), x ∈ �.

(.)

1.2 Preliminaries
Let X be a real Banach space with a strictly convex dual space X∗. We shall use (·, ·) to
denote the generalized duality pairing between X and X∗. We shall use “→” and “w-lim”
to denote strong and weak convergence, respectively. Let “X ↪→ Y ” denote the space X
embedded continuously in space Y . For any subset G of X, we denote by int G its interior
and G its closure, respectively. For two subsets G and G in X, if G = G and int G =
int G, then we say G is almost equal to G, which is denoted by G � G. A mapping
T : X → X∗ is said to be hemi-continuous on X [] if w-limt→ T(x + ty) = Tx for any
x, y ∈ X.

A function  is called a proper convex function on X [] if  is defined from X to
(–∞, +∞], not identically +∞, such that (( – λ)x + λy) ≤ ( – λ)(x) + λ(y), whenever
x, y ∈ X and  ≤ λ ≤ .

A function  : X → (–∞, +∞] is said to be lower-semicontinuous on X [] if
lim infy→x (y) ≥ (x), for any x ∈ X.

Given a proper convex function  on X and a point x ∈ X, we denote by ∂(x) the set
of all x∗ ∈ X∗ such that (x) ≤ (y) + (x – y, x∗), for every y ∈ X. Such element x∗ is called
the subgradient of  at x, and ∂(x) is called the subdifferential of  at x [].

Let Jr denote the duality mapping from X into X∗ , which is defined by

Jr(x) =
{

f ∈ X∗ : (x, f ) = ‖x‖r ,‖f ‖ = ‖x‖r–}, ∀x ∈ X,

where r >  is a constant. We use J to denote the usual normalized duality mapping. It is
known that, in general, Jr(x) = ‖x‖r–J(x), for all x �= . Since X∗ is strictly convex, J is a
single-valued mapping [].

A multi-valued mapping A : X → X is said to be accretive [, ] if (v –v, Jr(u –u)) ≥
, for any ui ∈ D(A) and vi ∈ Aui, i = , . The accretive mapping A is said to be m-accretive
if R(I + λA) = X for some λ > .

A multi-valued operator B : X → X∗ is said to be monotone [] if its graph G(B) is a
monotone subset of X × X∗ in the sense that (u – u, w – w) ≥ , for any [ui, wi] ∈ G(B),
i = , . Further, B is called strictly monotone if (u – u, w – w) ≥  and the equality holds
if and only if u = u. The monotone operator B is said to be maximal monotone if G(B)
is maximal among all monotone subsets of X × X∗ in the sense of inclusion. Also, B is
maximal monotone if and only if R(B + λJ) = X∗, for any λ > . The mapping B is said to be
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coercive [] if limn→+∞ (xn, x∗
n)/‖xn‖ = +∞ for all [xn, x∗

n] ∈ G(B) such that limn→+∞ ‖xn‖ =
+∞.

Let B : X → X∗ be a maximal monotone operator such that [, ] ∈ G(B), then the equa-
tion J(ut – u) + tBut �  has a unique solution ut ∈ D(B) for every u ∈ X and t > . The
resolvent JB

t and the Yosida approximation Bt of B are defined by []

JB
t u = ut ,

Btu = –

t

J(ut – u),

for every u ∈ X and t > . (Hence, [JB
t u, Btu] ∈ G(B).)

Definition . ([]) Let C be a closed convex subset of X and let A : C → X∗ be a multi-
valued mapping. Then A is said to be a pseudo-monotone operator provided that

(i) for each x ∈ C, the image Ax is a non-empty closed and convex subset of X∗;
(ii) if {xn} is a sequence in C converging weakly to x ∈ C and if fn ∈ Axn is such that

lim supn→∞(xn – x, fn) ≤ , then to each element y ∈ C, there corresponds an
f (y) ∈ Ax with the property that (x – y, f (y)) ≤ lim infn→∞(xn – x, fn);

(iii) for each finite-dimensional subspace K of X , the operator A is continuous from
C ∩ K to X∗ in the weak topology.

Definition . ([, ]) Let H be a Hilbert space. Let H : H → H be a single-valued
mapping and A : H → H be a multi-valued mapping. We say that A is H-monotone if A
is monotone and R(H + λA)(H) = H, for every λ > .

Lemma . ([]) If A : X → X∗ is a everywhere defined, monotone, and hemi-continuous
mapping, then A is maximal monotone. If, moreover, A is coercive, then R(A) = X∗.

Lemma . ([]) If  : X → (–∞, +∞] is a proper convex and lower-semicontinuous
function, then ∂ is maximal monotone from X to X∗.

Lemma . ([]) If A and A are two maximal monotone operators in X such that
(int D(A)) ∩ D(A) �= ∅, then A + A is maximal monotone.

Theorem . ([]) Let X be a real Banach space with a strictly convex dual space X∗. Let
J : X → X∗ be a duality mapping on X and there exists a function η : X → [, +∞) such
that for all u, v ∈ X,

‖Ju – Jv‖ ≤ η(u – v). (.)

Let A, C : X → X be accretive mappings such that
(i) either both A and C satisfy condition (.), or D(A) ⊂ D(C) and C satisfies

condition (.):

{
for u ∈ D(A) and v ∈ Au, there exists a constant C(a, f ) such that(

v – f , J(u – a)
) ≥ C(a, f ).

(.)

(ii) A + C is m-accretive and boundedly-inversely-compact.
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Let C : X → X be a bounded continuous mapping such that, for any y ∈ X, there is a
constant C(y) satisfying (C(u + y), Ju) ≥ –C(y) for any u ∈ X. Then the following results
hold:

(a) [R(A) + R(C)] ⊂ R(A + C + C);
(b) int[R(A) + R(C)] ⊂ int R(A + C + C).

Theorem . ([]) Let T : X → X∗ be a bounded and pseudo-monotone operator, K be
a closed and convex subset of X. Suppose that  is a lower-semicontinuous and convex
function defined on K which is not always +∞ such that (v) ∈ (–∞, +∞] for all v ∈ K .
Suppose there exists v ∈ K such that (v) < +∞ and

(v – v, Tv) + (v)
‖v‖ → ∞, as ‖v‖ → ∞, v ∈ K .

Then there exists u ∈ K such that

(u – v, Tu) ≤ (v) – (u), ∀v ∈ K .

Theorem . ([]) Let X be a real reflexive Banach space with both X and its dual X∗

being convex spaces. Let S : D(S) ⊂ X → X∗ be a linear maximal monotone operator and
T : X → X∗ be a pseudo-monotone and coercive operator. Then, for each f ∈ X∗, there exists
an u ∈ D(S) such that, in the weak sense, Su + Tu = f .

Theorem . ([]) Let X be a real reflexive Banach space with both X and its dual X∗

being strictly convex. Let J be the normalized duality mapping. Let A and B be two maximal
monotone operators in X. Suppose there exist  ≤ k <  and C, C >  such that

(
a, J–(Btv)

) ≥ –k‖Btv‖ – C‖Btv‖ – C (.)

for v ∈ D(A), a ∈ Av and t > , where Bt is the Yosida approximation of B. Then R(A) +
R(B) � R(A + B).

Theorem . ([]) Let A : H →H be a maximal monotone operator and H : H →H be
a bounded, coercive, hemi-contiunuous, and monotone mapping. Then A is H-monotone.

2 Main results
In this paper, unless otherwise stated, we shall assume that

N ≥ ,
N

N + 
< p < +∞,  ≤ ri ≤ min

{
p, p′}, i = , ,


p

+

p′ = ,


r

+

r′


= ,


r

+

r′


= .

In (.), � is a bounded conical domain of a Euclidean spaceRN with its boundary � ∈ C

[], T is a positive constant, λ, λ and ε are non-negative constants, and ϑ denotes the
exterior normal derivative of �. We shall assume that Green’s formula is available.
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Suppose that g : � ×R
N+ →R is a given function satisfying the following conditions:

(a) Carathéodory’s conditions

x → g(x, r) is measurable on �, for all r ∈ R
N+;

r → g(x, r) is continuous on R
N+, for almost all x ∈ �.

(b) Growth condition

g(x, s, . . . , sN+) ≤ h(x) + k|s|min{p/p′ ,},

where (s, s, . . . , sN+) ∈R
N+, h(x) ∈ L(�) ∩ Lp′ (�) and k is a positive constant.

(c) Monotone condition g is monotone with respect to r, i.e.,

(
g(x, s, . . . , sN+) – g(x, t, . . . , tN+)

)
(s – t) ≥ 

for all x ∈ � and (s, . . . , sN+), (t, . . . , tN+) ∈ R
N+.

(d) Coercive condition

g(x, s, . . . , sN+)s ≥ ks
 ,

where k is a fixed positive constant.
Now, we present our discussion in the sequel.

Lemma . ([]) Let X denote the closed subspace of all constant functions in W ,p(�).
Let X be the quotient space W ,p(�)/X. For u ∈ W ,p(�), define the mapping P : W ,p(�) →
X by

Pu =


meas(�)

∫
�

u dx.

Then there is a constant k >  such that for all u ∈ W ,p(�),

‖u – Pu‖p ≤ k‖∇u‖(Lp(�))N .

Lemma . Define the mapping B : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) by

(w, Bu) =
∫ T



∫
�

〈∫
�

α
(|∇u|p)|∇u|p–∇u,∇w

〉
dx dt + λ

∫ T



∫
�

|u|r–uw dx dt

+ λ

∫ T



∫
�

|u|r–uw dx dt

for any u, w ∈ Lp(, T ; W ,p(�)). Then B is strictly monotone, pseudo-monotone, and coer-
cive.

(Here, 〈·, ·〉 and | · | denote the Euclidean inner-product and Euclidean norm in R
N , re-

spectively.)
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Proof Step . B is everywhere defined.
For u, w ∈ Lp(, T ; W ,p(�)), we find

∣∣(w, Bu)
∣∣ ≤

∫ T



∫
�

k|∇u|p–|∇w|dx dt + λ

∫ T



∫
�

|u|r–|w|dx dt

+ λ

∫ T



∫
�

|u|r–|w|dx dt

≤ k‖u‖p/p′
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)) + λ‖w‖Lr (,T ;Lr (�))‖u‖r/r′

Lr (,T ;Lr (�))

+ λ‖w‖Lr (,T ;Lr (�))‖u‖r/r′
Lr (,T ;Lr (�)).

Since W ,p(�) ↪→ Lp(�) ↪→ Lr (�) and W ,p(�) ↪→ Lp(�) ↪→ Lr (�), for v ∈ W ,p(�),
we have ‖v‖Lr (�) ≤ k‖v‖W ,p(�), ‖v‖Lr (�) ≤ k‖v‖W ,p(�), where k and k are positive con-
stants. Hence,

∣∣(w, Bu)
∣∣ ≤ k‖u‖p/p′

Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�))

+ λk‖u‖r/r′
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�))

+ λk‖u‖r/r′
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)),

which implies that B is everywhere defined.
Step . B is strictly monotone.
For u, v ∈ Lp(, T ; W ,p(�)), we have

(u – v, Bu – Bv) ≥
∫ T



∫
�

[
α
(|∇u|p)|∇u|p– – α

(|∇v|p)|∇v|p–](|∇u| – |∇v|)dx dt

+ λ

∫ T



∫
�

(|u|r– – |v|r–)(|u| – |v|)dx dt

+ λ

∫ T



∫
�

(|u|r– – |v|r–)(|u| – |v|)dx dt.

If we set f (s) = s– 
p α(s), s > , then in view of the assumption of α, we have

f ′(s) =
[(

 –

p

)
α(s) + sα′(s)

]
s– 

p > ,

which implies that f is strictly monotone. Hence, B is strictly monotone.
Step . B is hemi-continuous.
It suffices to show that for any u, v, w ∈ Lp(, T ; W ,p(�)) and t ∈ [, ], (w, B(u + tv) –

Bu) →  as t → . Since

∣∣(w, B(u + tv) – Bu
)∣∣

≤
∫ T



∫
�

∣∣α(|∇u + t∇v|p)|∇u + t∇v|p–(∇u + t∇v)

– α
(|∇u|p)|∇u|p–∇u

∣∣|∇w|dx dt
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+ λ

∫ T



∫
�

∣∣|u + tv|r–(u + tv) – |u|r–u
∣∣|w|dx dt

+ λ

∫ T



∫
�

∣∣|u + tv|r–(u + tv) – |u|r–u
∣∣|w|dx dt,

by Lebesque’s dominated convergence theorem and noting that α is continuous, we find

lim
t→

(
w, B(u + tv) – Bu

)
= .

Hence, B is hemi-continuous.
Step . B is coercive.
We shall first show that for u ∈ Lp(, T ; W ,p(�)),

‖u‖Lp(,T ;W ,p(�)) ≤ k

(∫ T



∫
�

|∇u|p dx dt
) 

p
+ k, (.)

where k and k are positive constants.
In fact, using Lemma ., we know that, for u ∈ Lp(, T ; W ,p(�)),

∥∥∥∥u –


meas(�)

∫
�

u dx
∥∥∥∥

Lp(�)
≤ k

(∫
�

|∇u|p dx
) 

p
.

Thus,
∥∥∥∥u –


meas(�)

∫
�

u dx
∥∥∥∥

p

W ,p(�)

=
∥∥∥∥u –


meas(�)

∫
�

u dx
∥∥∥∥

p

Lp(�)
+

∥∥∥∥∇
(

u –


meas(�)

∫
�

u dx
)∥∥∥∥

p

(Lp(�))N

≤ (
kp

 + 
)∫

�

|∇u|p dx.

Since∥∥∥∥u –


meas(�)

∫
�

u dx
∥∥∥∥

W ,p(�)
≥ ‖u‖W ,p(�) –

∥∥∥∥ 
meas(�)

∫
�

u dx
∥∥∥∥

W ,p(�)
,

we have

‖u‖W ,p(�) ≤
∥∥∥∥u –


meas(�)

∫
�

u dx
∥∥∥∥

W ,p(�)
+ Const.

Therefore,

‖u‖Lp(,T ;W ,p(�)) ≤
∥∥∥∥u –


meas(�)

∫
�

u dx
∥∥∥∥

Lp(,T ;W ,p(�))
+ k

≤ (
kp

 + 
) 

p

(∫ T



∫
�

|∇u|p dx dt
) 

p
+ k.

If we set k = (kp
 + )


p , then (.) is true.
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Since limt→+∞ α(t) = k > , there exists sufficiently large K >  such that α(t) > l
 when-

ever t > K . Now, for u ∈ Lp(, T ; W ,p(�)), let ‖u‖Lp(,T ;W ,p(�)) → +∞. Using (.), we find

(u, Bu)
‖u‖Lp(,T ;W ,p(�))

=
∫ T


∫
�

α(|∇u|p)|∇u|p dx dt
‖u‖Lp(,T ;W ,p(�))

+ λ

∫ T


∫
�

|u|r dx dt
‖u‖Lp(,T ;W ,p(�))

+ λ

∫ T


∫
�

|u|r dx dt
‖u‖Lp(,T ;W ,p(�))

>


‖u‖Lp(,T ;W ,p(�))

[
l


∫ T



∫
�

|∇u|p dx dt + λ

∫ T



∫
�

|u|r dx dt

+ λ

∫ T



∫
�

|u|r dx dt
]

>


‖u‖Lp(,T ;W ,p(�))

l


∫ T



∫
�

|∇u|p dx dt → +∞.

This completes the proof. �

Lemma . The mapping  : Lp(, T ; W ,p(�)) →R defined by

(u) =
∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x) dt,

for any u ∈ Lp(, T ; W ,p(�)), is proper, convex, and lower-semicontinuous on Lp(, T ;
W ,p(�)). Moreover, the subdifferential ∂ of  is maximal monotone in view of Lemma ..

Proof The proof is similar to that of Lemma . in []. �

Lemma . ([]) Define S : D(S) → Lp′ (, T ; (W ,p(�))∗) by

Su(x, t) =
∂u
∂t

,

where

D(S) =
{

u ∈ Lp(, T ; W ,p(�)
)∣∣∣∂u

∂t
∈ Lp′(

, T ;
(
W ,p(�)

)∗), u(x, ) = u(x, T)
}

.

The mapping S is linear maximal monotone.

Definition . Define a mapping A : L(, T ; L(�)) → L(,T ;L(�)) by

Au =
{

w(x) ∈ L(, T ; L(�)
)|w(x) ∈ Bu + ∂(u) + Su

}
for u ∈ D(A) = {u ∈ L(, T ; L(�))| there exists a w(x) ∈ L(, T ; L(�)) such that w(x) ∈
Bu + ∂(u) + Su}.

Lemma . Define the mapping F : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) by

(v, Fu) =
∫ T



∫
�

g
(

x, u,
∂u
∂t

, ε∇u
)

v(x, t) dx dt

for u(x, t), v(x, t) ∈ Lp(, T ; W ,p(�)). Then F is everywhere defined.
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Proof Step . For u(x, t) ∈ Lp(, T ; W ,p(�)), x → g(x, u, ∂u
∂t , ε∇u) is measurable on �.

From the fact that u(x, t), ∂u
∂xi

∈ Lp(�), i = , , . . . , N , we see that x → (u, ∂u
∂x

, . . . , ∂u
∂xN

) is
measurable on �. Combining with the fact that g satisfies Carathéodory’s conditions, we
know that x → g(x, u, ∂u

∂t , ε∇u) is measurable on �.
Step . F is everywhere defined.
For u, v ∈ Lp(, T ; W ,p(�)), we have

∣∣(v, Fu)
∣∣ ≤

∫ T



∫
�

∣∣h(x)
∣∣∣∣v(x, t)

∣∣dx dt + k

∫ T



∫
�

∣∣u(x, t)
∣∣p/p′ ∣∣v(x, t)

∣∣dx dt

≤ (
T


p′ ∥∥h(x)

∥∥
Lp′ (�) + k‖u‖p/p′

Lp(,T ;W ,p(�))

)‖v‖Lp(,T ;W ,p(�)),

which implies that F is everywhere defined.
This completes the proof. �

Definition . Define the mapping H : L(, T ; L(�)) → L(, T ; L(�)) by

Hu(x) =
{

v(x) ∈ L(, T ; L(�)
)|v(x) = Fu(x)

}
for u ∈ D(H) = {u(x) ∈ L(, T ; L(�))| there exists v(x) ∈ L(, T ; L(�)) such that v(x) =
Fu(x)}, where F is the same as in Lemma ..

Lemma . The mapping H : L(, T ; L(�)) → L(, T ; L(�)) defined in Definition .
is bounded, coercive, hemi-continuous, and monotone.

Proof Step . H is bounded.
From condition (b) of g , we know that

‖Hu‖
L(,T ;L(�)) =

∫ T



∫
�

∣∣∣∣g
(

x, u,
∂u
∂t

, ε∇u
)∣∣∣∣



dx dt

≤ k‖u‖
L(,T ;L(�)) + k

∥∥h(x)
∥∥

L(�),

where k and k are positive constants. This implies that H is bounded.
Step . H is coercive.
From condition (d) of g , we know that

(u, Hu) =
∫ T



∫
�

g
(

x, u,
∂u
∂t

, ε∇u
)

u dx dt ≥ k

∫ T



∫
�

|u| dx dt

= k‖u‖
L(,T ;L(�)) → +∞,

as ‖u‖L(,T ;L(�)) → +∞. Hence, H is coercive.
Step . H is hemi-continuous.
Since g satisfies condition (a), we have, for any w(x, t) ∈ L(, T ; L(�)),

(
w, H(u + tv) – Hu

)
=

∫ ∫
�

[
g
(

x, u + tv,
∂u
∂t

+ t
∂v
∂t

, ε(∇u + t∇v)
)

– g
(

x, u,
∂u
∂t

, ε∇u
)]

w dx dt → ,

as t → , which implies that H is hemi-continuous.
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Step . H is monotone.
In view of condition (c) of g , we have

(u – v, Hu – Hv)

=
∫ T



∫
�

[
g
(

x, u,
∂u
∂t

, ε∇u
)

– g
(

x, v,
∂v
∂t

, ε∇v
)](

u(x, t) – v(x, t)
)

dx dt ≥ ,

which implies that H is monotone.
This completes the proof. �

Lemma . For all u, v ∈ Lp(, T ; W ,p(�)), we have

(
v, ∂(u)

)
=

∫ T



∫
�

βx
(
u|�(x, t)

)
v|�(x, t) d�(x) dt.

Moreover,  ∈ ∂().

Proof The idea of the proof mainly comes from Proposition .(ii) in []. For complete-
ness, we give the outline of the proof as follows.

Define the mapping G : Lp(, T ; Lp(�)) → Lp′ (, T ; Lp′ (�)) by Gu = βx(u), for any u ∈
Lp(, T ; Lp(�)). Also, define the mapping K : Lp(, T ; W ,p(�)) → Lp(, T ; Lp(�)) by K(v) =
v|� , for any v ∈ Lp(, T ; W ,p(�)). Then K∗GK = ∂, where  is the same as in Lemma ..

In fact, it is obvious that G is continuous. For u(x, t), v(x, t) ∈ Lp(, T ; Lp(�)), we have
(u – v, Gu – Gv) =

∫ T


∫
�

(βx(u) – βx(v))(u – v) d�(x) dt ≥ , since βx is monotone. Thus,
G is monotone. In view of Lemma ., G : Lp(, T ; Lp(�)) → Lp′ (, T ; Lp′ (�)) is maximal
monotone.

Define � : Lp(, T ; Lp(�)) → R by �(u) =
∫ T


∫
�

ϕx(u) d�(x) dt. It is easy to see that �

is a proper, convex, and lower-semicontinuous function on Lp(, T ; Lp(�)), which implies
that ∂� : Lp(, T ; Lp(�)) → Lp′ (, T ; Lp′ (�)) is maximal monotone in view of Lemma ..
Since

�(u) – �(v) =
∫ T



∫
�

[
ϕx(u) – ϕx(v)

]
d�(x) dt

≥
∫ T



∫
�

βx(v)(u – v) d�(x) dt = (Gv, u – v)

for all u(x, t), v(x, t) ∈ Lp(, T ; Lp(�)), we have Gv ∈ ∂�(v). So G = ∂� .
Now, it is clear that K∗GK : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) is maximal mono-

tone since both K and G are continuous. Finally, for any u, v ∈ Lp(, T ; W ,p(�)), we have

(v) – (u) = �(Kv) – �(Ku)

=
∫ T



∫
�

[
ϕx

(
v|�(x, t)

)
– ϕx

(
u|�(x, t)

)]
d�(x) dt

≥
∫ T



∫
�

βx
(
u|�(x, t)

)(
v|�(x, t) – u|�(x, t)

)
d�(x) dt

= (GKu, Kv – Ku) =
(
K∗GKu, v – u

)
.

Hence, we get K∗GK ⊂ ∂ and so K∗GK = ∂.
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It now follows that for all u, v ∈ Lp(, T ; W ,p(�)),

(
v, ∂(u)

)
=

∫ T



∫
�

βx
(
u|�(x, t)

)
v|�(x, t) d�(x) dt.

Moreover,  ∈ ∂() since  ∈ βx(). This completes the proof. �

Lemma . The mapping A : L(, T ; L(�)) → L(, T ; L(�)) defined in Definition . is
maximal monotone.

Proof Noting Lemmas .-., we can easily get the result that A is monotone.
Next, we shall show that R(I + A) = L(, T ; L(�)), which ensures that A is maximal

monotone.
Case . p ≥ . We define F : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) by

Fu = u, (v, Fu)Lp(,T ;W ,p(�))×Lp′ (,T ;(W ,p(�))∗) = (v, u)L(,T ;L(�)),

where (·, ·)L(,T ;L(�)) denotes the inner-product of L(, T ; L(�)). Then F is everywhere
defined, monotone and hemi-continuous, which implies that F is maximal monotone in
view of Lemma .. Combining with the facts of Lemmas ., .-., we have R(B + ∂ +
S + F) = Lp′ (, T ; (W ,p(�))∗).

For f ∈ L(, T ; L(�)) ⊂ Lp′ (, T ; (W ,p(�))∗), there exists u ∈ Lp(, T ; W ,p(�)) ⊂
L(, T ; L(�)) such that

f = Bu + ∂(u) + Su + Fu = Au + u,

which implies that R(I + A) = L(, T ; L(�)).
Case . N

N+ < p < , then p′ ≥ . Similar to Lemma ., we define B̂ : Lp′ (, T ; W ,p(�)) →
Lp(, T ; (W ,p(�))∗) by

(w, B̂u) =
∫ T



∫
�

〈∫
�

α
(|∇u|p)|∇u|p–∇u,∇w

〉
dx dt + λ

∫ T



∫
�

|u|r–uw dx dt

+ λ

∫ T



∫
�

|u|r–uw dx dt

for any u, w ∈ Lp′ (, T ; W ,p(�)). Then B̂ is maximal monotone and coercive. Similar to
Lemma ., define the mapping ̂ : Lp′ (, T ; W ,p(�)) →R by

̂(u) =
∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x) dt,

for any u ∈ Lp′ (, T ; W ,p(�)), then ∂̂ is maximal monotone. Similar to Lemma .,
define Ŝ : D(̂S) = {u ∈ Lp′ (, T ; W ,p(�))| ∂u

∂t ∈ Lp(, T ; (W ,p(�))∗), u(x, ) = u(x, T)} →
Lp(, T ; (W ,p(�))∗) by

Ŝu(x, t) =
∂u
∂t

.
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Then Ŝ is linear maximal monotone. Similar to Case , define F : Lp′ (, T ; W ,p(�)) →
Lp(, T ; (W ,p(�))∗) by

Fu = u, (v, Fu)Lp′ (,T ;W ,p(�))×Lp(,T ;(W ,p(�))∗) = (v, u)L(,T ;L(�)),

then we have R(̂B + ∂̂ + Ŝ + F) = Lp(, T ; (W ,p(�))∗). So, for f ∈ L(, T ; L(�)) ⊂
Lp(, T ; (W ,p(�))∗), there exists u ∈ Lp′ (, T ; W ,p(�)) ⊂ L(, T ; L(�)) such that

f = B̂u + ∂̂(u) + Ŝu + Fu = Au + u,

which implies that R(I + A) = L(, T ; L(�)). �

Theorem . For f (x, t) ∈ L(, T ; L(�)), the nonlinear parabolic equation (.) has a
unique solution u(x, t) in L(, T ; L(�)), i.e.,

(a) ∂u
∂t – div[α(|∇u|p)|∇u|p–∇u] + λ|u|r–u + λ|u|r–u + g(x, u, ∂u

∂t , ε∇u) = f (x, t), a.e.
(x, t) ∈ � × (, T);

(b) –〈ϑ ,α(|∇u|p)|∇u|p–∇u〉 ∈ βx(u(x, t)), a.e. x ∈ � × (, T);
(c) u(x, ) = u(x, T), x ∈ �.

Proof We split our proof into two steps.
Step . There exists a unique u(x, t) which satisfies Hu + λAu = f , where f (x, t) ∈

L(, T ; L(�)) is a given function.
From Theorem ., Lemmas . and ., we know that A is H-monotone. Thus,

R(H + λA) = L(, T ; L(�)). Then, for f (x, t) ∈ L(, T ; L(�)) in (.), there exists u(x, t) ∈
L(, T ; L(�)) such that Hu(x, t) + λAu(x, t) = f (x, t). Next, we shall prove that u(x, t) is
unique.

Suppose that u(x, t) and v(x, t) satisfy Hu + λAu = f and Hv + λAv = f , respectively. Then
 ≤ λ(u – v, Au – Av) = –(u – v, Hu – Hv) ≤ , which ensures that

 = (u – v, Au – Av) = (u – v, Bu – Bv) +
(
u – v, ∂(u) – ∂(v)

)
+ (u – v, Su – Sv).

Using Lemmas ., ., and ., we have (u – v, Bu – Bv) = , which implies that u(x, t) =
v(x, t), since B is strictly monotone.

Step . If u(x, t) ∈ L(, T ; L(�)) satisfies f = Hu + Au, then u(x, t) is the solution of (.).
Since (u + ϕ) = (u) for any ϕ ∈ C∞

 (� × (, T)), we have (ϕ, ∂(u)) = . Then, for
ϕ ∈ C∞

 (� × (, T)), we have

(ϕ, f – Hu) = (ϕ, Bu) +
(
ϕ, ∂(u)

)
+ (ϕ, Su) = (ϕ, Bu) + (ϕ, Su).

So

∫ T



∫
�

(
f – g

(
x, u,

∂u
∂t

, ε∇u
))

ϕ dx dt

=
∫ T



∫
�

〈
α
(|∇u|p)|∇u|p–∇u,∇ϕ

〉
dx dt + λ

∫ T



∫
�

|u|r–uϕ dx dt

+ λ

∫ T



∫
�

|u|r–uϕ dx dt +
∫ T



∫
�

∂u
∂t

ϕ dx dt
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= –
∫ T



∫
�

div
[
α
(|∇u|p)|∇u|p–∇u

]
ϕ dx dt + λ

∫ T



∫
�

|u|r–uϕ dx dt

+ λ

∫ T



∫
�

|u|r–uϕ dx dt +
∫ T



∫
�

∂u
∂t

ϕ dx dt,

which implies that the equation

∂u
∂t

– div
[
α
(|∇u|p)|∇u|p–∇u

]
+ λ|u|r–u

+ λ|u|r–u + g
(

x, u,
∂u
∂t

, ε∇u
)

= f (x, t), a.e. x ∈ � × (, T), (.)

is true.
By using (.) and Green’s formula, we have

∫ T



∫
�

〈
ϑ ,α

(|∇u|p)|∇u|p–∇u
〉
v|� d�(x) dt

=
∫ T



∫
�

div
[
α
(|∇u|p)|∇u|p–∇u

]
v dx dt +

∫ T



∫
�

〈
α
(|∇u|p)|∇u|p–∇u,∇v

〉
dx dt

=
(

v,
∂u
∂t

+ λ|u|r–u + λ|u|r–u + g
(

x, u,
∂u
∂t

, ε∇u
)

– f
)

+
(
v, Bu – λ|u|r–u – λ|u|r–u

)
= (v, Su + Bu + Hu – f ) =

(
v, –∂(u)

)
= –

∫ T



∫
�

βx
(
u|�(x)

)
v|�(x) d�(x) dt. (.)

Then

–
〈
ϑ ,α

(|∇u|p)|∇u|p–∇u
〉 ∈ βx

(
u(x, t)

)
, a.e. on � × (, T). (.)

From the definition of S, we can easily obtain u(x, ) = u(x, T) for all x ∈ �. Combining
with (.) and (.) we see that u is the unique solution of (.).

This completes the proof. �

Lemma . Define B̃ : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) by B̃u ≡ Bu – f (x, t), for
u ∈ Lp(, T ; W ,p(�)). Then B̃ is maximal monotone.

Proof Similar to the proof of Lemma ., we know that B̃ is everywhere defined, mono-
tone, and hemi-continuous. It follows that B̃ is maximal monotone. �

Definition . Define a mapping Ã : L(, T ; L(�)) → L(,T ;L(�)) by

Ãu =
{

w(x) ∈ L(, T ; L(�)
)|w(x) ∈ B̃u + ∂(u) + Su

}
for u ∈ D(Ã) = {u ∈ L(, T ; L(�))|there exists w(x) ∈ L(, T ; L(�)) such that w(x) ∈
B̃u + ∂(u) + Su}.

Definition . Let H be a Hilbert space and A be a H-monotone operator. The resolvent
operator of A, RH

A,λ : H →H, is defined by

RH
A,λ(u) = (H + λA)–u, ∀u ∈H.
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Theorem . u(x, t) = RH
Ã,() if and only if u(x, t) ∈ L(, T ; L(�)) is the solution

of (.).

Proof Let u(x, t) be the solution of (.). Then, using Green’s formula and Lemma ., we
have (

v, (H + Ã)u
)

=
∫ T



∫
�

〈
α
(|∇u|p)|∇u|p–∇u,∇v

〉
dx dt + λ

∫ T



∫
�

|u|r–uv dx dt

+ λ

∫ T



∫
�

|u|r–uv dx dt –
∫ T



∫
�

f (x, t)v(x, t) dx dt

+
∫ T



∫
�

g
(

x, u,
∂u
∂t

, ε∇u
)

v(x, t) dx dt +
(
v, ∂(u)

)
+

∫ T



∫
�

∂u
∂t

v dx dt

= –
∫ T



∫
�

div
[
α
(|∇u|p)|∇u|p–∇u

]
v dx dt

+
∫ T



∫
�

〈
ϑ ,α

(|∇u|p)|∇u|p–∇u
〉
v|� d�(x) dt

+ λ

∫ T



∫
�

|u|r–uv dx dt + λ

∫ T



∫
�

|u|r–uv dx dt

–
∫ T



∫
�

f (x, t)v(x, t) dx dt +
∫ T



∫
�

g
(

x, u,
∂u
∂t

, ε∇u
)

v(x, t) dx dt

+
∫ T



∫
�

βx(u|�)v|� d�(x) dt +
∫ T



∫
�

∂u
∂t

v dx dt

=
∫ T



∫
�

〈
ϑ ,α

(|∇u|p)|∇u|p–∇u
〉
v|� d�(x) dt +

∫ T



∫
�

βx(u|�)v|� d�(x) dt

= –
∫ T



∫
�

βx(u|�)v|� d�(x) dt +
∫ T



∫
�

βx(u|�)v|� d�(x) dt = .

Thus, u(x, t) = RH
Ã,().

If u(x, t) = RH
Ã,(), then noting Lemma ., we have for ϕ ∈ C∞

 (� × (, T)),

 =
∫ T



∫
�

∂u
∂t

ϕ dx dt +
∫ T



∫
�

〈
α
(|∇u|p)|∇u|p–∇u,∇ϕ

〉
dx dt

+ λ

∫ T



∫
�

|u|r–u dx dt + λ

∫ T



∫
�

|u|r–u dx dt

–
∫ T



∫
�

f ϕ dx dt +
∫ T



∫
�

g
(

x, u,
∂u
∂t

, ε∇u
)

ϕ dx dt,

which implies that the equation

∂u
∂t

– div
[
α
(|∇u|p)|∇u|p–∇u

]
+ λ|u|r–u

+ λ|u|r–u + g
(

x, u,
∂u
∂t

, ε∇u
)

= f (x, t), a.e. (x, t) ∈ � × (, T),

is true.
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Similar to the last part of Theorem ., we know that –〈ϑ ,α(|∇u|p)|∇u|p–∇u〉 ∈
βx(u(x, t)). From the definition of S, we know that u(x, ) = u(x, T) for all x ∈ �, which
implies that u(x, t) is the solution of (.). This completes the proof. �
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