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Abstract
In this present paper, the existence of pullback attractors for the 2D Navier-Stokes
equation with weak damping and continuous delay is considered; by virtue of the
classical Galerkin method, we derive the existence and uniqueness of global weak
and strong solutions. Using the Aubin-Lions lemma and some energy estimate in the
Banach space with delay, we obtain the uniform bound and the existence of a
uniform pullback absorbing ball for the solution’s semi-processes, and we conclude to
the global attractors via verifying the pullback asymptotical compactness by the
generalized Arzelà-Ascoli theorem.
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1 Introduction
In this present paper, we investigate the existence of a pullback attractor for the D Navier-
Stokes equations with weak damping and continuous delay that governs the motion of an
incompressible fluid:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – ν�u + (u · ∇)u + αu + ∇p
= f (t – ρ(t), u(t – ρ(t))), (x, t) ∈ �τ ,

div u = , (x, t) ∈ �τ ,
u = , (x, t) ∈ ∂�τ ,
u(τ , x) = u(x), x ∈ �,
u(t, x) = φ(t – τ , x), (x, t) ∈ �τh,

(.)

where � ⊂R
 is a bounded domain with smooth boundary ∂�, �τ = � × (τ , +∞), �τh =

�× (τ – h, τ ), τ ∈R is the initial time, ν is the kinematic viscosity of the fluid, u = u(t, x) =
(u(t, x), u(t, x)) is the velocity vector field, which is unknown, p is the pressure, α >  is
positive constant, αu is the weak damping, f (t – ρ(t), u(t – ρ(t))) is the external force term
which contains memory effects during a fixed interval of time of length h > , ρ(t) is an
adequate given delay function, u is the initial velocity field at the initial time τ ∈ R, φ is
the initial state of delay in [τ – h, τ ], h >  is a constant.
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When α =  in (.), the external force equals , then the system reduces to the well-
known D incompressible Navier-Stokes equation:

vt – ν�v + (v · ∇)ψ + (ψ · ∇)v + ∇p = , (.)

∇ · v = . (.)

Since the last century, the global well-posedness and large-time behavior of solutions to
the Navier-Stokes equations have attracted many mathematicians.

For more results as regards the well-posedness and long-time behavior of the D au-
tonomous incompressible Navier-Stokes equations, such as the existence of global solu-
tions, the existence global attractors, the Hausdorff dimension, and the inertial manifold
approximation, we can refer to Ladyzhenskaya [], Robinson [], Sell and You [], Temam
[, ]. Moreover, Caraballo and Real [–] derived the existence of a global attractor for
the D autonomous incompressible Navier-Stokes equation with delays; Chepyzhov and
Vishik [, ] investigated the long-time behavior and convergence of the corresponding
uniform (global) attractors for the D Navier-Stokes equation with singularly oscillating
forces as the external force tending to a steady state by virtue of a linearization method and
estimated the corresponding difference equations. Foias and Temam [, ] gave a survey
of the geometric properties of solutions and the connection between solutions, dynamical
systems, and turbulence for the Navier-Stokes equations, such as the existence of ω-limit
sets; Rosa [] and Hou and Li [] obtained the existence of global (uniform) attractors for
the D autonomous (non-autonomous) incompressible Navier-Stokes equations in some
unbounded domain, respectively; Lu et al. [] and Lu [] proved the existence of uniform
attractors for D non-autonomous incompressible Navier-Stokes equations with normal
or less regular normal external force by establishing a new dynamical systems framework;
Miranville and Wang [] derived the attractors for non-autonomous nonhomogeneous
Navier-Stokes equations.

For the well-posedness of D incompressible Navier-Stokes equations, in , Leray
[, ] derived the existence of a weak solution by a weak convergence method; Hopf []
improved Leray’s result and obtained the familiar Leray-Hopf weak solution in . Since
the Navier-Stokes equations lack an appropriate prior estimate and the strong nonlinear
property, the existence of a strong solution remains open. For infinite-dimensional dynam-
ical systems, Sell [] constructed the semiflow generated by the weak solution which lacks
the global regularity and obtained the existence of global attractor of the incompressible
Navier-Stokes equations on any bounded smooth domain. Cheskidov and Foias [] intro-
duced a weak global attractor with respect to the weak topology of the natural phase space
for a D Navier-Stokes equation with periodic boundary; Flandoli and Schmalfuß [] de-
duced the existence of weak solutions and attractors for D Navier-Stokes equations with
a nonregular force; Kloeden and Valero [] investigated the weak connection of the at-
tainability set of weak solutions of D Navier-Stokes equations; Cutland [] obtained
the existence of global solutions for the D Navier-Stokes equations with small samples
and germs. Chepyzhov and Vishik [–] investigated the trajectory attractors for a D
non-autonomous incompressible Navier-Stokes system based on the work of Leray and
Hopf. Using the weak convergence topology of the space H (see below for the definition),
Kapustyan and Valero [] proved the existence of a weak attractor in both autonomous
and non-autonomous cases, and gave an existence result of strong attractors. Kapustyan
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et al. [] considered revised D incompressible Navier-Stokes equations generated by
an optimal control problem, and they proved the existence of pullback attractors by con-
structing a dynamical multivalued process.

However, the infinite-dimensional systems for D and D incompressible Navier-Stokes
equations have not yet been completely resolved, so many mathematicians pay attention to
this challenging problem, such as the existence of an inertial manifold for D incompress-
ible Navier-Stokes equations and the global attractors for the D incompressible Navier-
Stokes equations. In this regard, some mathematicians pay attention to the Navier-Stokes
equation with weak or strong damping to approximate the standard equations, such as
[–] for the D and D incompressible Naver-Stokes equations with damping. How-
ever, there are fewer results for the large-time behavior for the Navier-Stokes equations
with weak damping and distributed delay. In this paper, we shall show the existence of
uniform pullback attractors for the problem (.).

This paper will be organized as follows: in Section , we shall give some preliminaries;
in Section , the existence and uniqueness of global weak and strong solutions will be
derived; we shall prove the existence of a uniform pullback absorbing ball in Section ;
with the pullback attractors we will conclude in the last section.

2 Some preliminaries
In this paper, C will stand for a generic positive constant, depending on � and some con-
stants, but independent of the choice of the initial time τ and t. The Hausdorff semi-
distance in X from one set B to another set B is defined as

distX(B, B) = sup
b∈B

inf
b∈B

‖b – b‖X .

We set E := {u|u ∈ (C∞
 (�)), div u = }, H is the closure of the set E in the (L(�))

topology, W is the closure of the set E in the (H(�)) topology, i.e.,

W =
{

u ∈ W |‖u‖W = ‖u‖
H , u|∂� = 

}
. (.)

P is the Helmholz-Leray orthogonal projection in (L(�)) onto the space H , A := –P�

is the Stokes operator subject to the nonslip homogeneous Dirichlet boundary condition
with the domain (H(�)) ∩ V , and A is a self-adjoint positively defined operator on H .
A– is a compact operator from H to H . The sequence {ωj}∞j= is an orthonormal system of
eigenfunctions of A, {λj}∞j= ( < λ ≤ λ ≤ · · · ) are the eigenvalues of the Stokes operator
A corresponding to the eigenfunctions {ωj}∞j=. Let

Vs := D
(
A

s

)
, ‖V‖s :=

∥
∥A

s
 V

∥
∥, s ∈ R, (.)

where V := V = (H
(�)) ∩ H is a Hilbert space, and ‖v‖ = ‖v‖V = ‖∇v‖. Clearly, V = H ,

and V ↪→ H ≡ H ′ ↪→ V ′; H ′ and V ′ are dual spaces of H and V , respectively, where the
injection is dense, continuous. | · | and (·, ·) denote the norm and inner product of H , i.e.,

(u, v) =
∑

j=

∫

�

uj(x)vj(x) dx, ∀u, v ∈ (
L(�)

); (.)
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and ‖ · ‖ and ((·, ·)) denote the norm and inner product in V , i.e.,

(
(u, v)

)
=

∑

i,j=

∫

�

∂uj

∂xi
· ∂vj

∂xi
dx, ∀u, v ∈ (

H
(�)

) (.)

and

‖∇u‖ :=
∑

i=,j=

‖∂iuj‖
L(�), ∀u = (u, u). (.)

The norm ‖ · ‖∗ denotes the norm in V ′, 〈·〉 denotes the dual product in V and V ′.
We define the following bilinear form operator:

B(u, v) := P
(
(u · ∇)v

)
, ∀u, v ∈ E, (.)

and the trilinear form operator

b(u, v, w) =
∑

i,j=

∫

�

ui
∂vj

∂xi
· wj dx =

(
B(u, v), w

)
. (.)

Clearly, the trilinear operator satisfies

b(u, v, v) = , b(u, v, w) = –b(u, w, v), ∀u, v, w ∈ V , (.)
∥
∥b(u, v, w)

∥
∥ ≤ C‖u‖ 

 ‖u‖ 

V ‖v‖V ‖w‖V , ∀u, v, w ∈ V , (.)

∥
∥b(u, v, u)

∥
∥ ≤ C‖u‖ 

 ‖u‖ 

V ‖v‖V , ∀u, v ∈ V , (.)

∥
∥b(u, v, w)

∥
∥ ≤ C‖u‖V ‖v‖V ‖w‖ 

 ‖w‖ 

V , ∀u, v, w ∈ V , (.)

∥
∥b(u, v, w)

∥
∥ ≤ Cλ



V ‖u‖V ‖v‖V ‖w‖V , ∀u, v, w ∈ V . (.)

Next, we introduce some useful inequalities and lemmas.
Young’s inequality is

ab ≤ ε

p
ap +



qε


p–
bq, q =

p
p – 

,  < p < ∞,∀a, b, ε > . (.)

The Poincaré inequality is

‖u‖ ≤ λ
– 


 ‖u‖V , ∀u ∈ V , (.)

where λ is the first eigenvalue of A under the homogeneous Dirichlet boundary condition.

Lemma . Let X = H , V or V ′, such that ‖Pu‖X ≤ ‖u‖X , and Pu → u in X.

Proof See e.g. [] or []. �
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Definition . Let X and Y be Banach spaces, X ⊂ Y , we say that X is compactly embed-
ded in Y , written

X ⊂⊂ Y ,

provided
(i) ‖X‖Y ≤ C‖X‖X (x ∈ X) for some constant C;

(ii) each bounded sequence in X is precompact in Y .

Lemma . (The Lions-Aubin lemma) Let X ⊂⊂ H ⊂ Y be Banach spaces; X is the return
of itself, if un is a uniformly bounded sequence in L(, T ; Y ), and there exists p > , making
dvn
dt uniformly bounded in Lp(, T ; Y ), such that un has a subsequence which has strong

convergence in L(, T ; H).

Proof See e.g. [] or []. �

Lemma . (The Gronwall inequality) Let g , h, y all be locally integrable functions in
(t, +∞) and satisfy

dy
dt

≤ gy + h, ∀t ≥ t; (.)

dy
dt is locally integrable, and we have

y(t) ≤ y(t) exp

{∫ t

t

g(τ ) dτ

}

+
∫ t

t

h(s) exp

{

–
∫ s

t
g(τ ) dτ

}

ds, ∀t ≥ t. (.)

Proof See e.g. []. �

Lemma . (The uniform Gronwall inequality) Let g(t), h(t), and y(t) be three positive
locally integrable functions on (t, +∞) such that y(t) is locally integrable on (t, +∞) and
the following inequalities are satisfied:

dy
dt

≤ gy + h, ∀t ≥ t, (.)
∫ t+r

t
g(s) ds ≤ a,

∫ t+r

t
h(s) ds ≤ a,

∫ t+r

t
y(s) ds ≤ a, ∀t ≥ t, (.)

where r, ai (i = , , ) are positive constants. Then we have

y(t + r) ≤
(

a

r
+ a

)

ea , ∀t ≥ t. (.)

Proof See e.g. []. �

Lemma . (The generalized Arzelà-Ascoli theorem) Let {fγ (θ ) : γ ∈ �} ⊂ C = C([–r, ];
X); it is equicontinuous, and for ∀θ ∈ [–r, ], {fγ (θ ) : γ ∈ �} has relative compactness in
C([–r, ]; X).
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Proof See e.g. []. �

Next, we shall give some definitions and a theorem as regards the existence of pullback
attractors for non-autonomous systems.

Definition . Let X be a metric space, the set class {U(t, τ )} (–∞ < τ ≤ t < +∞) : X → X
is called a process in X, if

(i) U(τ , τ )x = x, τ ∈ R, ∀x ∈ X ;
(ii) U(t, τ ) = U(t, s)U(s, τ ), ∀τ ≤ s ≤ t, τ ∈ R.

Let P(X) denote all the family of nonempty subsets of X, and D the class of all families
D̂ = {D(t)|t ∈ �} ⊂P(X).

Definition . The process class {U(·, ·)} is said to be pullbackD-asymptotically compact,
if for any t ∈ R, D̂ ∈ D, and τn → –∞, xn ∈ D(τn), the sequence {U(t, τn)xn} possesses a
convergence subsequence.

Definition . A family B = {B(t)|t ∈ R} ∈ D is said to be pullback D-absorbing if, for
each t ∈ R and D̂ ∈D, there exists τ(t, D̂) ≤ t such that

U(t, τ )D(τ ) ⊂ B(t), ∀τ ≤ τ(t, D̂).

Definition . A family Â = {A(t)|t ∈ R} ∈P(X) is said to be a global pullback D-attractor
with respect to the process {U(·, ·)}, if

(i) A(t) is compact for any t ∈ R;
(ii) Â is pullback D-attracting, i.e.,

∀D̂ ∈D, t ∈ R, lim
τ→–∞ dist

(
U(t, τ )D(τ ), A(t)

)
= ,

where dist(C, C) denotes the Hausdorff semi-distance between C and C defined
as dist(C, C) = supx∈C infy∈C d(x, y) for C, C ⊂ X ;

(iii) Â is invariant, i.e., for all –∞ < τ ≤ t < +∞, we have U(t, τ )A(τ ) = A(t).

Definition . We claim that A(t) =
⋃

D̂∈D�(D̂, t), t ∈ R, where �(D̂, t) is defined as

�(D̂, t) =
⋂

s≤t

(⋃

τ≤s
U(t, τ )D(τ )

)

, ∀D̂ ∈D.

Next we give a result for the existence of a global pullback D-attractor.

Theorem . (See []) Suppose the process {U(t, τ )} is continuous and pullback
D-asymptotically compact, and there exists B̂ ∈ D which is pullback D-absorbing with
respect to {U(t, τ )}. Then the family Â = {A(t)|t ∈ R} ⊂ P(X), A(t) = �(B̂, t), t ∈ R, is a
global pullback D-attractor which is minimal in the sense that if Ĉ = {C(t)|t ∈ R} ⊂ P(X)
is closed and limτ→–∞ dist(U(t, τ )B(τ ), C(t)) = , then A(t) ⊂ C(t).
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3 Existence of global weak and strong solutions
For each t ∈ (τ , T) when T > τ , we define u : (τ – h, T) → (L(�)), here ut is a function in
(–h, ) satisfying ut = u(t + s), s ∈ (–h, ).

In the following sections, we denote by CH = C([–h, ]; H) and CV = C([–h, ]; V ) two
Banach spaces equipped with the norms

‖u‖CH = sup
θ∈[–h,]

∣
∣u(t + θ )

∣
∣ (.)

and

‖u‖CV = sup
θ∈[–h,]

∥
∥u(t + θ )

∥
∥, (.)

respectively, L
H = L(–h, ; H), L

V = L(–h, ; V ).
Assume that v ∈ H , η ∈ L

H , then the problems (.) can be written in the equivalent
form

du
dt

+ νAu + αu + B(u) + ∇p = f
(
t – ρ(t), u

(
t – ρ(t)

))
, (.)

u(τ ) = u, u(t) = φ(t), t ∈ (τ – h, τ ). (.)

In (.), the functions f : [–h,∞) × H → H and φ : [–h, ] → H are continuous and
satisfy:

(a) ρ : [,∞) → [, h], | dρ

dt | ≤ M < ;
(b) f (t, u) satisfies the Lipschitz condition with respect to u;
(c) there exist constants a > , b >  such that |f (t, u)| ≤ a|u| + b;
(d) (νλ) > ae

–M + 
h , a

(–M)α > νλ, where λ is the first eigenvalue of A under the
homogeneous Dirichlet boundary condition;

(e) from the assumption (d) (i.e., (νλ) > ae
–M + 

h > a
–M ), we have –νλ + ae

(–M)νλ
< ,

so there exists θ > , such that θ – νλ + ae
(–M)νλ

< . Noting α > , we can deduce

θ – νλ – α +
ae

( – M)νλ
< ;

(f ) from (b), there exists a positive number L(β) such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L(β)|u – v|.

We shall give the main results in this section.

Theorem . Let u ∈ H , φ ∈ L
H , the assumptions (a)∼(f) hold, then there exists a unique

global weak solution of (.), that satisfies

u ∈ L∞(, T ; H) ∩ L(, T ; V ).

Proof Assume the orthogonal base in H of A is wj such that Awj = λjwj holds for j = , , . . . ,
Wm = span{w, w, . . . , wm} is the subspace of H . Constructing the approximation solution
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um(t) =
∑n

j=umk(t)wk (k = , , . . . , m) of problem (.), where umk(t) is to be determined,
um(t) satisfies the approximation equation

dum

dt
+ νAum + αum + PmB(um, um) = Pmf

(
t – ρ(t), u

(
t – ρ(t)

))
, (.)

um(s) = Pmφ(s), s ∈ [–h, ], (.)

where Pm : H → H is the Leray-Helmholtz projection; the pressure p has disappeared by
virtue of the application of the P.

Next, we shall use the Faedo-Galerkin method to find the global weak solution. We de-
note fm = f (t, u(t)), fmρ = f (t – ρ(t), u(t – ρ(t))).

By the local existence of a solution for the ordinary differential equation, we see that the
approximation equation of (.)-(.) possesses a local solution.

Taking the inner product of (.) with um at both sides, using Young’s inequality, we
obtain




d|um|
dt

+ νλ|um| + α|um|

≤ |um| · |fmρ |

≤ α|um|


+
|fm|
α

≤ α|um| +
|fm|
α

≤ α|um| +


α

(
a
∣
∣um

(
t – ρ(t)

)∣
∣ + b

)
, (.)

i.e.,

d|um|
dt

≤ 
α

(
a
∣
∣um

(
t – ρ(t)

)∣
∣ + b

)
– νλ|um|. (.)

Integrating (.) over [, t], we derive

∣
∣um(t)

∣
∣ ≤ ∣

∣um()
∣
∣ +

bT
α

+
a
α

∫ t



∣
∣um

(
s – ρ(s)

)∣
∣ ds – νλ

∫ t



∣
∣um(s)

∣
∣ ds

≤ ∣
∣um()

∣
∣ +

bT
α

+
a

α( – M)

∫ t

–h

∣
∣um(r)

∣
∣ dr – νλ

∫ t



∣
∣um(s)

∣
∣ ds

≤ K + K

∫ t

–h

∣
∣um(r)

∣
∣ dr – νλ

∫ t



∣
∣um(s)

∣
∣ ds, (.)

where K = |um()| + bT
α

+ K
∫ 

–h |um(r)| dr, K = a
α(–M) , K = K – νλ. From (d), K =

a
α(–M) – νλ > .

Hence

|um| ≤ K + (K – νλ)
∫ t



∣
∣um(s)

∣
∣ ds, (.)

i.e.,

|um| ≤ K + K

∫ t



∣
∣um(s)

∣
∣ ds, (.)
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and by the Gronwall inequality, we conclude

∣
∣um(t)

∣
∣ ≤ KeKT . (.)

From (.) we see that um is uniformly bounded in L∞(, T ; H) ∩ L(, T ; V ).
According to the Alaoglu compact theorem, we can find a subsequence (also denoted as

um(t)) such that

um →∗ u ∈ L∞(, T ; H); (.)

um → u ∈ L(, T ; V ), (.)

i.e., u ∈ L∞(, T ; H) ∩ L(, T ; V ).
Next, we shall prove dum

dt is uniformly bounded in L(, T ; V ′).
Since

dum

dt
= –νAum – αum – PmB(um, um) + Pmf

(
t – ρ(t), u

(
t – ρ(t)

))
(.)

and um ∈ L(, T ; V ), we have νAum ∈ L(, T ; V ′) and

∥
∥
(
PmB(um, um), um

)∥
∥

L(,T ;V∗)

≤
∫ T



∥
∥B(um, um)

∥
∥

∗ ds =
∫ T



∥
∥(um · ∇)um

∥
∥

∗ ds

≤ c

∫ T


|um|‖um‖ ds

≤ c‖um‖
L∞(,T ;H)‖um‖

L(,T ;H)

≤ c‖um‖
L∞(,T ;H)‖um‖

L(,T ;V ), (.)

i.e., PmB(um, um) is uniformly bounded in L(, T ; V ′), and Pmf (t – ρ(t), u(t – ρ(t))) ∈
L(, T ; V ) implies dum

dt is uniformly bounded in L(, T ; V ′).
In the following, we shall prove the uniqueness of the global solution.
Assume u(t; ,φ), v(t; ,φ) are two solutions of (.), whose initial data is (,φ); setting

w(t) = u(t) – v(t), it follows that

dw
dt

– ν�w + B(u, u) – B(v, v) + αw

= f
(
t – ρ(t), u

(
t – ρ(t)

))
– f

(
t – ρ(t), v

(
t – ρ(t)

))
. (.)

Noting that

B(u, u) – B(v, v) = B(w, u) + B(u, w) (.)

and

∣
∣b(w, u, w)

∣
∣ ≤ c|w|‖w‖‖u‖, (.)
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taking the inner product of (.) with w at both sides, by using Young’s inequality, we
obtain




d|w|
dt

+ ν‖w‖ + α|w|

≤ ∣
∣b(w, u, w)

∣
∣ + L(β)|w|∣∣w(

t – ρ(t)
)∣
∣

≤ c|w|‖w‖‖u‖ + L(β)|w|∣∣w(
t – ρ(t)

)∣
∣

≤ ν


‖w‖ +

c


ν
‖u‖|w| +

α|w|


+
L(β)

α

∣
∣w

(
t – ρ(t)

)∣
∣

≤ ν‖w‖ +
c


ν

‖u‖|w| + α|w| +
L(β)

α

∣
∣w

(
t – ρ(t)

)∣
∣. (.)

Integrating (.) over [, t], and noting

∫ t



∣
∣w

(
s – ρ(s)

)∣
∣ ds ≤ 

 – M

∫ t

–h

∣
∣w(s)

∣
∣ ds, (.)

we get

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣ +

∫ t



c


ν
‖u‖∣∣w(s)

∣
∣ ds +

L(β)
( – M)α

∫ t

–h

∣
∣w(s)

∣
∣ ds

=
∣
∣w()

∣
∣ +

∫ t



(
c


ν

‖u‖ +
L(β)

( – M)α

)
∣
∣w(s)

∣
∣ ds

+
L(β)

( – M)α

∫ 

–h

∣
∣u(r) – v(r)

∣
∣ dr, (.)

since

∫ 

–h

∣
∣u(r) – v(r)

∣
∣ dr =

∫ 

–h
|φ – φ| dr = , (.)

we derive

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣ +

∫ t



(
c


ν

‖u‖ +
L(β)

( – M)α

)
∣
∣w(s)

∣
∣ ds, (.)

and by the Gronwall inequality, we conclude

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣e

∫ t
(

c


ν ‖u‖+ L(β)
(–M)α ) ds. (.)

Theorem . proves that for u ∈ H , φ ∈ L
H , for the problem (.) there exists a unique

solution ut(·; τ , (u,φ)). Similar to the construction of a semigroup for an autonomous
system, we define the semi-process, the non-autonomous system {U(t, τ )φ : CH → CH},
which satisfies

U(t, τ )φ = ut
(·; τ ,

(
φ(),φ

))
, ∀φ ∈ CH , t ≥ τ ,

U(t, τ )φ = Id.
(.)

�
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Theorem . Let u ∈ V , φ ∈ L
V , the assumptions (a)∼(f) hold, then there exists a unique

global strong solution of (.) which satisfies

u ∈ L∞(, T ; V ) ∩ L(, T ; D(A)
)
.

Proof By the local existence of a solution for an ordinary differential equation, we see that
the approximation equation of (.)-(.) possesses a local solution easily, here we omit
the details.

Let um(t) be the approximation solution of (.), from Theorem ., there exists a k =
k(T) > , such that

∣
∣um(t)

∣
∣ ≤ k,  ≤ t ≤ T . (.)

Define a functional as

W
(
t, um(t)

)
=

∥
∥um(t)

∥
∥ +


ν( – M)

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds, (.)

differentiating the function W (t, um(t)) with respect to t, we derive

dW
dt

≤ –ν|Aum| – α(Aum, um) – b(um, um, Aum) + (Aum, fρ)

+


ν( – M)
(|fm| – |fmρ |)

≤ –ν|Aum| – α‖um‖ + c|um| 
 ‖um‖|Aum| 

 + (Aum, fρ)

+


ν( – M)
(|fm| – |fmρ |)

≤ –ν|Aum| – αλ|um| + c|um| 
 ‖um‖|Aum| 

 + (Aum, fρ)

+


ν( – M)
(|fm| – |fmρ |), (.)

i.e.,

dW
dt

≤ –ν|Aum| + αλk +
ν


|Aum| +


ν c

 |um|‖um‖ +
|fρ |
ν

+ ν|Aum|

+


ν( – M)
(|fm| – |fmρ |)

≤ –


ν|Aum| + αλk +


ν c

 |um|‖um‖ +


ν( – M)
|fm|

–
 + M

ν( – M)
|fmρ |

≤ –


ν|Aum| + αλk +


ν c

 k‖um‖ +


ν( – M)
(
ak + b

)
, (.)

which implies

dW
dt

+


ν|Aw| ≤ 

ν c
 k‖um‖ +

(
a

ν( – M)
+ αλ

)

k +
b

ν( – M)
. (.)
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Integrating (.) from  to t with respect to the time variable, we get

‖um‖ +


ν( – M)

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds +

ν



∫ t


|Aum| ds – W

(
, um()

)

≤ 
ν c

 k
∫ t


‖um‖ ds +

(
a

ν( – M)
+ αλ

)

Tk +
bT

ν( – M)
. (.)

According to the uniform Gronwall inequality, there exists a R = R(T), such that

∥
∥um(t)

∥
∥ ≤ R. (.)

From Theorem ., there exists Q = Q(T), such that

∫ T


W

(
s, um(s)

)
ds

≤
∫ T



∥
∥um(s)

∥
∥ ds +


ν( – M)

∫ T



∫ s

s–r

∣
∣f

(
v, u(v)

)∣
∣ dv ds

≤
∫ T



∥
∥um(s)

∥
∥ ds +

rT
ν( – M)

(
ak + b

)

≤ Q. (.)

Hence, um is uniformly bounded in L∞(, T ; V ) ∩ L(, T ; D(A)), by the structure of the
equation, dum

dt is uniformly bounded in L(, T ; H), the proof is similar to Theorem .,
here we omit the details. Then there exists u ∈ L∞(, T ; V ) ∩ L(, T ; D(A)), such that

um →∗ u in L∞(, T ; V ); (.)

um → u in L(, T ; D(A)
)
; (.)

dum

dt
→ du

dt
in L(, T ; H). (.)

According to the compact embedding theorem, we derive

um → u in L(, T ; V ). (.)

The uniqueness of the global solution is similar to Theorem .. �

Theorem . Assume that the assumptions (a)∼(f) hold, u ∈ H , φ ∈ L
H , the semi-

processes {Uf (t, τ )|t ≥ τ } defined by (.) is continuous for arbitrary t ≥ τ .

Proof Assume u(t), v(t) be two solutions of (.), whose initial data is (φ(),φ), (ψ(),ψ)
respectively, setting w(t) = u(t) – v(t), corresponding to the initial data w() = u() – v(),
it follows that

dw
dt

– ν�w + B(u, u) – B(v, v) + αw

= f
(
t – ρ(t), u

(
t – ρ(t)

))
– f

(
t – ρ(t), v

(
t – ρ(t)

))
, (.)
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noting that

B(u, u) – B(v, v) = B(w, u) + B(u, w),
∣
∣b(w, u, w)

∣
∣ ≤ c|w|‖w‖‖u‖, (.)

taking the inner product of (.) with um at both sides, using Young’s inequality, we derive




d|w|
dt

+ ν‖w‖ + α|w|

≤ ∣
∣b(w, u, w)

∣
∣ + L(β)|w|∣∣w(

t – ρ(t)
)∣
∣

≤ c|w|‖w‖‖u‖ + L(β)|w|∣∣w(
t – ρ(t)

)∣
∣

≤
(

ν‖w‖


+

c


ν
‖u‖|w|

)

+
α|w|


+

L(β)
α

∣
∣w

(
t – ρ(t)

)∣
∣

≤ ν‖w‖ +
c


ν

‖u‖|w| + α|w| +
L(β)

α

∣
∣w

(
t – ρ(t)

)∣
∣, (.)

i.e.,

d|w|
dt

≤ c


ν
‖u‖|w| +

L(β)
α

∣
∣w

(
t – ρ(t)

)∣
∣. (.)

Integrating (.) from  to t with respect to the time variable, and noting that

∫ t



∣
∣w

(
s – ρ(s)

)∣
∣ ds ≤ 

 – M

∫ t

–h

∣
∣w(s)

∣
∣ ds, (.)

∣
∣w(t)

∣
∣ –

∣
∣w()

∣
∣ ≤

∫ t



c


ν
‖u‖|w| ds +

L(β)
α( – M)

∫ t

–h

∣
∣w(s)

∣
∣ ds

=
∫ t



c


ν
‖u‖|w| ds +

L(β)
α( – M)

∫ t



∣
∣w(s)

∣
∣ ds

+
L(β)

α( – M)

∫ 

–h

∣
∣w(r)

∣
∣ dr, (.)

since

u(t) – v(t) = φ(t – τ ) – ψ(t – τ ), τ – h ≤ t ≤ τ , (.)

using the formula

∫ 

–h

∣
∣w(r)

∣
∣ dr =

∫ 

–h

∣
∣u(r) – v(r)

∣
∣ dr

≤ ‖φ – ψ‖
L

H
, (.)

we derive

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣ +

L(β)
α( – M)

‖φ – ψ‖
L

H

+
∫ t



(
c


ν

‖u‖ +
L(β)

α( – M)

)
∣
∣w(s)

∣
∣ ds, (.)
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hence, by the Gronwall inequality, we get

∣
∣w(t)

∣
∣ ≤

(
∣
∣w()

∣
∣ +

L(β)
α( – M)

‖φ – ψ‖
L

H

)

e
∫ t

(
c


ν ‖u‖+ L(β)

α(–M) ) ds, ∀t ≥ τ – h, (.)

‖wt‖
CH

≤
(

∣
∣w()

∣
∣ +

L(β)
α( – M)

‖φ – ψ‖
L

H

)

e
∫ t

(
c


ν ‖u‖+ L(β)

α(–M) ) ds, ∀t ≥ τ . (.)

The continuous dependence can be obtained obviously. �

4 Existence of pullback absorbing set
In this section, we shall prove the existence of a pullback absorbing set for the D Navier-
Stokes equation with continuous delay and weak damping.

The uniqueness of the solution in Theorem . proves that the operator U(t, τ )φ is a
semi-process.

However, we choose the skew-product flow in the space H × L
H = M

H , and define a
family of mappings Ũ(·, ·) : M

H → L
H , as follows:

Ũ(t, τ )(u,φ) = ut
(·; τ , (u,φ)

)
, ∀(u,φ) ∈ M

H , t ≥ τ , (.)

obviously,

Ũ(t, τ )φ = Ũ(t, τ )
(
φ(),φ

)
, t ≥ τ ,φ ∈ CH . (.)

For arbitrary (u,φ) ∈ M
H , the corresponding norm can be described as

∥
∥(u,η)

∥
∥

M
H

= |u| +
∫ 

–h

∣
∣φ(s)

∣
∣ ds. (.)

Lemma . Assume that {B(t)}t∈R are a bounded sets in CH , then the mapping Ũ(·, ·) is
attracting in CH , such that {B(t)}t∈R for the semi-process {U(·, ·)} is also attracting in CH .

Theorem . Assume that the assumptions (a)∼(f) hold, u ∈ H , φ ∈ L
H , the semi-

processes {U(t, τ )} possesses a bounded pullback absorbing set B in CH .

Proof Denote by D a bounded set in M
H , then there exists a d > , such that

|u| +
∫ 

–h

∣
∣φ(s)

∣
∣ ds ≤ d. (.)

Denote

J(t, ut) = eθ t∣∣u(t)
∣
∣ +


( – M)νλ

∫ t

t–ρ(t)
eθseθh∣∣f (s, us)

∣
∣ ds, (.)

where θ is an appropriate positive number, satisfying

θ – νλ – α +
aeθh

( – M)νλ
< . (.)
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Denote f = f (t, u(t)), fρ = f (t – ρ(t), u(t – ρ(t))), differentiate the function J(t, ut) with
respect to t, and we derive

d
dt

J(t, ut) ≤ θeθ t|u| + eθ t
(

u,
du
dt

)

+


( – M)νλ

[
eθ teθh|f | – eθ (t–ρ(t))eθ t|fρ |]

≤ θeθ t|u| + eθ t(u,ν�u – αu – B(u, u) + fρ
)

+


( – M)νλ

[
eθ teθh|f | – eθ t|fρ |]

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| + eθ t|u||fρ |

+


( – M)νλ

[
eθ teθh|f | – eθ t|fρ |]

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| + eθ t
(

νλ|u|


+
|fρ |
νλ

)

+
eθ teθh

( – M)νλ
|f | –

eθ t

( – M)νλ
|fρ |

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| +
eθ teθh

( – M)νλ
|f |

–
Meθ t

( – M)νλ
|fρ |

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| +
eθ teθh

( – M)νλ

(
a|u| + b

)

≤
(

θ – νλ – α +
aeθ teθh

( – M)νλ

)

|u|eθ t +
beθ teθh

( – M)νλ
, (.)

i.e.,

d
dt

J(t, ut) ≤
(

θ – νλ – α +
aeθ teθh

( – M)νλ

)

|u|eθ t +
beθ teθh

( – M)νλ
. (.)

Since

b(u, u, u) = , |u||fρ | ≤ νλ|u| +
|fρ |
νλ

, (.)

integrating (.) from τ to t with respect to time variable, combining (a)∼(e), we obtain

eθ t∣∣u(t)
∣
∣ ≤ 

( – M)νλ

∫ τ

τ–ρ(t)
eθseθh∣∣f (s, us)

∣
∣ ds

+
(

θ – νλ – α +
aeθh

( – M)νλ

)∫ t

τ

∣
∣u(s)

∣
∣eθs ds

+
beθh

( – M)νλ

∫ t

τ

eθs ds + eθτ |u|

≤ 
( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds
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+
(

θ – νλ – α +
aeθh

( – M)νλ

)∫ t

τ

∣
∣u(s)

∣
∣eθs ds

+
beθh

( – M)νλ

eθ t – eθτ

θ
+ eθτ |u|, (.)

here θ – νλ – α + aeθh

(–M)νλ
< , hence

eθ t∣∣u(t)
∣
∣ ≤ eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

+
beθh

( – M)θνλ

(
eθ t – eθτ

)
, t ≥ τ , (.)

choosing σ ∈ [–h, ], substituting for t: t + σ , we have

eθ (t–h)∣∣u(t + σ )
∣
∣ ≤ eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

+
beθh

( – M)θνλ

(
eθ (t+σ ) – eθτ

)
, (.)

i.e.,

eθ t∣∣u(t + σ )
∣
∣ ≤ eθh

(

eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

+
beθh

( – M)θνλ
eθh(eθ t – eθτ

)
, (.)

hence

eθ t∣∣u(t + σ )
∣
∣ ≤ eθh

(

eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

+
beθh

( – M)θνλ
eθ t

≤ C + Ceθ t , (.)

where

C = eθh
(

eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

,

C =
beθh

( – M)θνλ
.

(.)

By the Gronwall inequality, we get

eθ t|ut| ≤ C + Ceθ t . (.)

Combining (.)-(.), we conclude

‖ut‖
CH

≤ Ce–θ t + C (t ≥ τ + h), (.)
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substituting for τ : t – s, denoting u(·, ·) as u(·; t – s, (u,φ)) also for arbitrary t, s ≥ h, we
have

‖ut‖
CH

=
∥
∥Ũ(t, t – s)(u,φ)

∥
∥

CH

≤ eθh
(

eθ (t–s)|u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

e–θ t + C

≤ eθh
(

e–θs|u| +
e–θ teθh

( – M)νλ

∫ 

–h
eθs∣∣f (s, us)

∣
∣ ds

)

+ C

≤ eθh
(

e–θsd +
eθh

( – M)νλ

∫ 

–h
eθs∣∣f (s, us)

∣
∣ ds

)

+ C. (.)

Denoting

ρ̃ =
eθh

( – M)νλ

∫ 

–h
eθs∣∣f (s, us)

∣
∣ ds + C, ρ̃ = ρ̃

H , (.)

then for some T̃D(t) ≥ h, such that ‖Ũ(t, t – s)(u,φ)‖CH ≤ ρ̃H for s ≥ T̃D(t), there exists a
ball BCH (, ρ̃H ) for the semi-process Ũ(t, t – s)(u,φ), B is a pullback absorbing set.

From Lemma ., the ball BCH (, ρ̃H) for the semi-process {U(t, t – s)φ} is also a pullback
absorbing set, which completes the proof. �

Theorem . Assume that the assumptions in Theorem . hold, there exists a bounded
pullback attracting set for the semi-process {U(·, ·)} in CV .

Proof Let

Q(t, ut) = |u| +


( – M)α

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds. (.)

Differentiate the function Q(t, ut) with respect to t, and we derive

dQ
dt

= 
(

u,
du
dt

)

+


( – M)α
(|f | – |fρ |)

≤ 
(
u,νu – αu – B(u, u) + fρ

)
+


( – M)α

(|f | – |fρ |)

≤ –ν‖u‖ + |u||fρ | – α|u| +


( – M)α
(|f | – |fρ |)

≤ –ν‖u‖ + α|u| +
|fρ |
α

– α|u| +


( – M)α
|f |

–


( – M)α
|fρ |

≤ –ν‖u‖ +


( – M)α
|f | –

 + M
( – M)α

|fρ |

≤ –ν‖u‖ +


( – M)α
|f |

≤ –ν‖u‖ +


( – M)α
(
a|u| + b

)
. (.)
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From (.) and (.), there exist T > , δ > , we have max{|u|, |ut|} ≤ δ
 , for t > T .

Integrating (.) from t to t + r with respect to the time variable, we obtain

Q(t + r) + ν

∫ t+r

t
‖u‖ ds

≤ Q(t, ut) +
a

( – M)α
δ

 r +
br

( – M)α

≤ |u| +


( – M)α

∫ t

t–ρ(t)

(
a|u| + b

)
ds +

aδ
 r

( – M)α
+

br
( – M)α

, (.)

hence

ν

∫ t+r

t
‖u‖ ds ≤

(

 +
(r + h)a

( – M)α

)

δ
 +

(r + h)b
( – M)α

. (.)

From (.), we have

∫ t+r

t
‖u‖ ds ≤ δ

 , (.)

here

δ
 =


ν

[(

 +
(r + h)a

( – M)α

)

δ
 +

(r + h)b
( – M)α

]

. (.)

Denoting

W (t, ut) = ‖u‖ +


( – M)ν

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds, (.)

we have
∫ t+r

t
W ds =

∫ t+r

t
‖u‖ ds +


( – M)ν

∫ t+r

t

(∫ s

s–ρ(s)

(
a|u| + b

)
dr

)

ds

≤ rδ
 +

rh
( – M)ν

(
aδ

 + b
)

= δ. (.)

Differentiate the function W with respect to t, and combining with the Young’s inequal-
ity, we get

dW
dt

=
d‖u‖

dt
+


( – M)ν

(|f | – |fρ |)

≤ –ν|Au| – 
∣
∣(Au,αu)

∣
∣ + 

∣
∣b(u, u, Au)

∣
∣ + (Au, fρ)

+


( – M)ν
(|f | – |fρ |)

≤ –ν|Au| – α‖u‖ + c|u| 
 ‖u‖|Au| 

 + |Au||fρ |

+


( – M)ν
(|f | – |fρ |)
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≤ –ν|Au| – α‖u‖ + 
(

ν


|Au| +


ν c

 |u|‖u‖
)

+ ν|Au| +
|fρ |
ν

+


( – M)ν
(|f | – |fρ |)

≤ –
ν


|Au| – α‖u‖ –

 + M
( – M)ν

|fρ | +

ν c

 |u|‖u‖ +
|f |

( – M)ν

≤ 
ν c

 |u|‖u‖ +
|f |

( – M)ν

≤ 
ν c

 δ

 ‖u‖ +


( – M)ν

(
a|u| + b

)
. (.)

If we denote

a =

ν c

 δ

 δ


r,

a =


( – M)ν
(
a|u| + b

)
r, (.)

a = δ,

by the uniform Gronwall inequality, it follows that

W ≤
(

a

r
+ a

)

ea (t ≥ h + r). (.)

Noting that ‖u‖ ≤ W (t, ut), using a similar technique to Theorem ., we easily get

‖u‖
CV

≤
(

a

r
+ a

)

ea (t ≥ h + r), (.)

substituting for τ : t – s, denoting u(·, ·) as u(·; t – s, (u,φ)), for arbitrary t, s ≥ h, we derive

∥
∥Ũ(t, t – s)(u,φ)

∥
∥

CV
≤

(
a

r
+ a

)

ea
(
t ≥ T̃D(t) + h + r

)
; (.)

here ρ̃
V = ( a

r + a)ea , BCV (, ρ̃V ) is a bounded pullback attracting set for the semi-
processes {U(·, ·)} in CV . �

5 Existence of pullback attractors in H
The main results in our paper can be stated as follows.

Theorem . Assume that (a)∼(f) hold, u ∈ H , φ ∈ L
H , there exists a pullback attractor

A of the problem (.) for the solutions’ semi-process {Uf (t, τ )|t ≥ τ }.

Proof Theorem . guarantees that there exists a bounded attracting set of the problem
(.), and Theorem . proves that the problem (.) possesses a bounded attracting set in
CV , respectively. If we can prove ut is compact in CH , then the problem (.) possesses a
pullback attractor; this is equivalent to proving the next two properties by the generalized
Arzelà-Ascoli theorem:
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() V ⊂⊂ H is compact.
() {U(t, τ )} is equicontinuous.

We have

∣
∣u(t; t + θ,φ) – u(t; t + θ,φ)

∣
∣ =

∣
∣
∣
∣

∫ t+θ

t+θ

u′(r) dr
∣
∣
∣
∣, (.)

and we get

∣
∣u(t; t + θ,φ) – u(t; t + θ,φ)

∣
∣

≤
∫ t+θ

t+θ

∣
∣u′(r)

∣
∣dr

≤
∫ t+θ

t+θ

(|fρ | + ν|Au| + α|u| +
∣
∣B(u)

∣
∣
)

dr

≤
∫ t+θ

t+θ

( |fρ |
ν

+
ν


+

ν


+

ν|Au|
ν

+
ν


+

α|u|
ν

+ c|Au|‖u‖
)

dr

≤
∫ t+θ

t+θ

( |fρ |
ν

+
ν


+

ν


+

ν|Au|


+
ν


+

α‖u‖

νλ
+

c
‖u‖

ν
+

ν|Au|


)

dr

≤
∫ t+θ

t+θ

( |fρ |
ν

+ ν + ν + ν|Au| + ν +
α‖u‖

νλ
+

c
‖u‖

ν
+ ν|Au|

)

dr

=
∫ t+θ

t+θ

( |fρ |
ν

+ ν + ν|Au| +
α‖u‖

νλ
+

c
‖u‖

ν

)

dr. (.)

Taking the inner product of (.) with Au at both sides, we obtain




d‖u‖

dt
+ ν|Au| + α‖u‖ + b(u, u, Au)

= (fρ , Au)

= |fρ | · |Au|

≤ |fρ |
ν

+
ν|Au|


, (.)

such that

∫ t+θ

t+θ

ν|Au| dr ≤ 
ν

∫ t+θ

t+θ

|fρ | dr +
∥
∥u(t + θ)

∥
∥, (.)

and substituting (.) into (.), we get

∣
∣u(t + θ) – u(t + θ)

∣
∣

≤
∫ t+θ

t+θ

[
|fρ |

ν
+ ν +

(
α

νλ
+

c

ν

+ 
)

‖u‖
]

dr

≤
(

ν +
α + λc

 + νλ

νλ
‖u‖ρ̃

V

)

|θ – θ| +

ν

∫ t+θ

t+θ

|fρ | dr. (.)
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Hence, U is equicontinuous, and compactness is proved.
From the fundamental theory of the existence of the pullback attractor generated by the

problem (.), one completes the proof. �
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