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Abstract
In this paper, by using variational methods, we study the existence of nonplanar
periodic solutions for the following spatial restricted 3-body and 4-body problems: for
N = 2 or 3, Nmass points with positive massesm1, . . . ,mN move in a central
configuration (for N = 2, two bodies are in a Euler configuration; for N = 3, three
bodies are in a Lagrange configuration), and they move in the plane of N circular
obits; the N + 1th mass point, called the zero mass point, moves on the perpendicular
axis passing through the center of the masses.
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1 Introduction and main results
In this paper, we study the spatial circular restricted -body and -body problems. For
N =  or , suppose N mass points with positive masses m, . . . , mN move in the plane
of their circular orbits q(t), . . . , qN (t), the radius r, . . . , rN of orbits are all positive and the
center of masses is at the origin; suppose the N +th mass point, called the zero mass point,
does not influence the motion of the given N mass points, and moves on the vertical axis
of the plane for the first N mass points, here the vertical axis passes through the center of
masses.

It is known that q(t), . . . , qN (t) (N =  or ) satisfy the Newtonian equations:

miq̈i =
∂U
∂qi

, i = , . . . , N , (.)

where

U =
∑

≤i<j≤N

mimj

|qi – qj| . (.)

The orbit q(t) = (, , z(t)) ∈ R for zero mass point is governed by the gravitational forces
of m, . . . , mN (N =  or ) and therefore it satisfies the following equation:

q̈ =
N∑

i=

mi(qi – q)
|qi – q| , N =  or . (.)
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For N ≥ , there are many papers concerned with the restricted N-body problem; see
[–] and the references therein. In [], Sitnikov considered the following model: two mass
points of equal mass m = m = 

 move in the plane of their elliptic orbits and the center of
the masses is at rest, the third mass point which does not influence the motion of the first
two moves on the line perpendicular to the plane containing the first two mass points and
goes through the center of mass, and he used geometrical methods to prove the existence
of the oscillatory parabolic orbit of

z̈(t) =
–z(t)

(|z(t)| + |r(t)|)/ , (.)

where r(t) = r(t + π ) >  is the distance from the center of mass to one of the first two
mass points. McGehee [] used stable and unstable manifolds to study the homoclinic
orbits (parabolic orbits) of (.). In [], Mathlouthi studied the periodic solutions for the
spatial circular restricted -body problems by minimax variational methods. Li et al. []
used Jacobi’s necessary conditions for the variational minimizers to study the existence of
nonplanar periodic solutions for spatial restricted N + -body problems with a zero mass
moving on the vertical axis of the plane for N equal masses.

In this article, we study the spatial circular restricted -body and -body problems with
a zero mass point moving on the perpendicular axis of the circular orbits plane for given
masses m, . . . , mN (N =  or ) in their respective central configuration.

Define

W ,(R/TZ, R) =
{

u(t)|u(t), u′(t) ∈ L(R, R), u(t + T) = u(t)
}

.

The inner product and the norm of W ,(R/TZ, R) are

〈u, v〉 =
∫ T



(
uv + u′ · v′)dt, (.)

‖u‖ =
[∫ T


|u| dt

] 


+
[∫ T



∣∣u′∣∣ dt
] 


. (.)

We consider the Lagrangian functional of (.)

f (q) =
∫ T



[


|q̇| +

N∑

i=

mi

|q – qi|

]
dt

=
∫ T



[


∣∣z′∣∣ +

m√
r

 + z
+ · · · +

mN√
r

N + z

]
dt � f (z), N =  or  (.)

on �j, j = , , where

� =
{

q(t) =
(
, , z(t)

)∣∣∣z(t) ∈ W ,(R/TZ, R), z
(

t +
T


)
= –z(t)

}

and

� =
{

q(t) =
(
, , z(t)

)|z(t) ∈ W ,(R/TZ, R), z(–t) = –z(t)
}

.
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Our main results are the following.

Theorem . For N = , let the mass points of m, m be in a Euler configuration, then
the minimizer of f (q) on the closure �̄i of �i (i = , ) exists and it is a nonplanar and
noncollision periodic solution of (.).

Theorem . For N = , let the mass points of m, m, m be in a Lagrange configuration,
then the minimizer of f (q) on the closure �̄i of �i (i = , ) exists and it is a nonplanar and
noncollision periodic solution of (.).

Remark . Obviously, the nonplanar periodic solutions we got in the above two theo-
rems are collisionless.

2 Preliminaries
In this section, we will list some basic lemmas and inequality for proving our Theorems .
and ..

Lemma . (Poincaré-Wirtinger inequality []) Let q ∈ W ,(R/TZ, RK ) and
∫ T

 q(t) dt =
, then

∫ T



∣∣q(t)
∣∣ dt ≤ T

π

∫ T



∣∣q̇(t)
∣∣ dt. (.)

Lemma . (Tonelli []) Let X be a reflexive Banach space, S be a weakly closed subset of
X, f : S → R ∪ +∞. If f �≡ +∞ is weakly lower semi-continuous and coercive (f (x) → +∞
as ‖x‖ → +∞), then f attains its infimum on S.

Lemma . (Palais’ symmetry principle []) Let σ be an orthogonal representation of a
finite or compact group G, H be a real Hilbert space, f : H → R satisfies f (σ · x) = f (x),
∀σ ∈ G, ∀x ∈ H .

Set F = {x ∈ H|σ · x = x,∀σ ∈ G}. Then the critical point of f in F is also a critical point
of f in H .

Remark . By Palais’ symmetry principle, we know that the critical point of f (q) in �̄i =
�i (i = , ) is a periodic solution of Newtonian equation (.).

Lemma . f (q) in (.) attains its infimum on �̄i = �i (i = , ).

Proof By using Lemma ., for ∀z ∈ �i, i = , , the equivalent norm of (.) in �i (i = , )
is

‖z‖ ∼=
[∫ T



∣∣z′∣∣ dt
] 


. (.)

Hence by the definitions of f (q), it is easy to see that f is C and coercive on �i (i = , ).
In order to get Lemma ., we only need to prove that f is weakly lower semi-continuous
on �i (i = , ). In fact, for ∀zn ∈ �i, if zn ⇀ z weakly, by compact embedding theorem, we
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have uniform convergence:

max
≤t≤T

∣∣zn(t) – z(t)
∣∣ → , n → ∞, (.)

which implies

∫ T



m√
r

 + z
n

+ · · · +
mN√

r
N + z

n

dt

→
∫ T



m√
r

 + z
+ · · · +

mN√
r

N + z
dt, N =  or . (.)

It is well known that the norm and its square are weakly lower semi-continuous. Therefore,
combined with (.), we obtain

lim inf
n→∞ f (zn) ≥ f (z),

that is, f is weakly lower semi-continuous on �i (i = , ). By Lemma ., we can see that
f (q) in (.) attains its infimum on �̄i = �i (i = , ). �

3 Proof of Theorem 1.1
In this section, we consider the spatial circular restricted -body problem with a zero mass
point moving on the vertical axis of the moving plane for two mass points with arbitrary
given positive masses m, m in a Euler configuration. Suppose the planar circular orbits
are

q(t) =
(

r cos
π

T
t, r sin

π

T
t, 

)
, (.)

q(t) =
(

–r cos
π

T
t, –r sin

π

T
t, 

)
; (.)

here the radii r, r are positive constants depending on mi (i = , ) and T (see Lemma .).
We also assume that

mq(t) + mq(t) = . (.)

We consider the Lagrangian functional of (.)

f (q) =
∫ T



[


|q̇| +

m

|q – q| +
m

|q – q|
]

dt

=
∫ T



[


∣∣z′∣∣ +

m√
r

 + z
+

m√
r

 + z

]
dt � f (z) (.)

on �i, i = , .

Lemma . The radii r, r of the planar circular orbits for the masses m, m are

r =
(

T
π (m + m)

) 


m, r =
(

T
π (m + m)

) 


m.
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Proof Substituting (.), (.) into (.), it is easy to get

r =
m

m
r. (.)

It follows from (.) and (.) that

q̈ = m
q – q

|q – q| . (.)

Then by (.), (.), and (.), we have

–
π

T q = m
(– m

m
– )q

r
 | – m

m
– | , (.)

which implies

r =
(

T
π (m + m)

) 


m. (.)

Hence by (.), we obtain

r =
(

T
π (m + m)

) 


m. (.)
�

Proof of Theorem . Clearly, q(t) = (, , ) is a critical point of f (q) on �̄i = �i (i = , ).
The second variation of (.) in the sphere neighborhood of q(t) = (, , ) (coordinate
origin O) is given by

δf (O,ϕ) =
∫ T



(
ϕ′

 –
(

m

r


+
m

r


)
ϕ



)
dt, ∀ϕ = (, ,ϕ) ∈ �i, i = , . (.)

Let

ϕ̃(t) =
(

, , sin
π

T
t
)

. (.)

Obviously, ϕ̃ ∈ �i (i = , ) and

˙̃ϕ(t) =
(

, ,
π

T
cos

π

T
t
)

. (.)

Since

m
 + m

 ≥ 
√

m
 · m

 = m
 m

 > m
 m

, (.)

it is easy to see that

(
m

 + m

)
(m + m) > m

 + m


> m
 m

, (.)
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which implies

√
m

 m


√
m

 + m
(m + m)

< , (.)

that is
√

m
 + m



m
 m


(m + m) > . (.)

It follows from (.), (.), and (.) that

√m

r


+
m

r


=

√
m

 + m


m
 m


(m + m) · π

T

>
π

T
, (.)

that is

m

r


+
m

r


>
π

T . (.)

By (.), we have

δf (O, ϕ̃) =
∫ T



[
π

T cos π

T
t –

(
m

r


+
m

r


)
sin π

T
t
]

dt

=
π

T
–

(
m

r


+
m

r


)
· T



=
[

π

T –
(

m

r


+
m

r


)]
· T



< , (.)

which implies q(t) = (, , ) is not a local minimum for f (q) on �i (i = , ). Hence the
minimizers of f (q) on �i (i = , ) are not always at the center of the masses, they must
oscillate periodically on the vertical axis, that is, the minimizers are not always co-planar,
therefore, we get nonplanar periodic solutions.

Combined with Lemma ., the proof is completed. �

4 Proof of Theorem 1.2
In this section, we consider the spatial circular restricted -body problem with a zero
mass point moving on the vertical axis of the moving plane for three mass points with
arbitrary positive masses m, m, m in a Lagrange configuration. Suppose there exist
θ, θ, θ ∈ [, π ) such that the planar circular orbits are

q(t) =
(

r cos

(
π

T
t + θ

)
, r sin

(
π

T
t + θ

)
, 

)
, (.)

q(t) =
(

r cos

(
π

T
t + θ

)
, r sin

(
π

T
t + θ

)
, 

)
, (.)
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q(t) =
(

r cos

(
π

T
t + θ

)
, r sin

(
π

T
t + θ

)
, 

)
, (.)

here the radius r, r, r are positive constants depending on mi (i = , , ) and T (see
Lemma .). We also assume that

mq(t) + mq(t) + mq(t) =  (.)

and

|qi – qj| = l,  ≤ i �= j ≤ , (.)

where the constant l >  depends on mi (i = , , ) and T (see Lemma .). We consider
the Lagrangian functional of equation (.)

f (q) =
∫ T



[


|q̇| +

m

|q – q| +
m

|q – q| +
m

|q – q|
]

dt

=
∫ T



[


∣∣z′∣∣ +

m√
r

 + z
+

m√
r

 + z
+

m√
r

 + z

]
dt � f (z) (.)

on �i, i = , .
In order to get Theorem ., we firstly prove Lemmas . and . as follows.

Lemma . Let M = m + m + m, we have l = 
√

MT

π .

Proof It follows from (.) and (.) that

q̈ = m
q – q

|q – q| + m
q – q

|q – q| . (.)

Then by (.), (.), and (.), we obtain

–
π

T q =

l (mq + mq – mq – mq)

=

l (–mq – mq – mq), (.)

which implies

l =
MT

π , (.)

that is,

l = 

√
MT

π . (.)
�

Lemma . The radius r, r, r of the planar circular orbits for the masses m, m, m are

r =

√
m

 + mm + m


M
l,
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r =

√
m

 + mm + m


M
l,

r =
√

m
 + mm + m


M

l.

Proof Choose the geometrical center of the initial configuration (q(), q(), q())
as the origin of the coordinate (x, y, z). Without loss of generality, by (.), we may
suppose the location coordinates of q(), q(), q() are A(

√
l

 , , ), A(–
√

l
 , l

 , ),
A(–

√
l

 , – l
 , ). Then we can get the coordinate of the center of masses m, m, m is

C(
√


 ml–

√


 ml–
√


 ml

M ,
m
 l– m

 l
M , ). To make sure assumption (.) holds, we introduce the

new coordinates

⎧
⎪⎪⎨

⎪⎪⎩

X = x –
√


 ml–

√


 ml–
√


 ml

M ,

Y = y –
m
 l– m

 l
M ,

Z = z.

Hence in the new coordinates (X, Y , Z), the location coordinates of q(), q(), q() are

A(
√


 ml+

√


 ml
M , – m

 l+ m
 l

M , ), A(–
√


 ml

M ,
m
 l+ml

M , ), A(–
√


 ml

M , –
m
 l+ml

M , ) and the cen-
ter of the masses m, m, m are at the origin O(, , ). Then compared with (.)-(.),
we have

r = |AO| =

√
m

 + mm + m


M
l, (.)

r = |AO| =

√
m

 + mm + m


M
l, (.)

r = |AO| =
√

m
 + mm + m


M

l (.)

and

sin θ =
–m + m


√

m
 + mm + m



, cos θ =
√

(m + m)


√

m
 + mm + m



, (.)

sin θ =
m + m


√

m
 + mm + m



, cos θ = –
√

m


√

m
 + mm + m



, (.)

sin θ = –
m + m


√

m
 + mm + m


, cos θ = –

√
m


√

m
 + mm + m


. (.)

�

Proof of Theorem . Clearly, q(t) = (, , ) is a critical point of f (q) on �̄i = �i (i = , ).
The second variation of (.) in the sphere neighborhood of q(t) = (, , ) (coordinate
origin O) is given by

δf (O,ϕ) =
∫ T



(
ϕ′

 –
(

m

r


+
m

r


+
m

r


)
ϕ



)
dt, ∀ϕ = (, ,ϕ) ∈ �i, i = , . (.)
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Let

ϕ̃(t) =
(

, , sin
π

T
t
)

(.)

and

A =

√
m

 + mm + m


M
,

B =

√
m

 + mm + m


M
,

C =
√

m
 + mm + m


M

.

Obviously, ϕ̃ ∈ �i (i = , ) and

˙̃ϕ(t) =
(

, ,
π

T
cos

π

T
t
)

. (.)

It is easy to check that

M > m
 + mm + m

,

M > m
 + mm + m

, (.)

M > m
 + mm + m

,

which implies

m

A +
m

B +
m

C > m + m + m = M. (.)

Therefore
√

M√
m
A + m

B + m
C

< , (.)

that is,

√
m
A + m

B + m
C√

M
> . (.)

It follows from (.)-(.) and (.) that

√m

r


+
m

r


+
m

r


=
√

m

A +
m

B +
m

C

√

l

=
√

m

A +
m

B +
m

C · π√
MT

>
π

T
,
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that is,

m

r


+
m

r


+
m

r


>
π

T . (.)

By (.), we have

δf (O, ϕ̃) =
∫ T



[
π

T cos π

T
t –

(
m

r


+
m

r


+
m

r


)
sin π

T
t
]

dt

=
π

T
–

(
m

r


+
m

r


+
m

r


)
· T



=
[

π

T –
(

m

r


+
m

r


+
m

r


)]
· T



< , (.)

which implies q(t) = (, , ) is not a local minimum for f (q) on �i (i = , ). Hence the
minimizers of f (q) on �i (i = , ) are not always at the center of the masses, they must
oscillate periodically on the vertical axis, that is, the minimizers are not always co-planar,
therefore, we get nonplanar periodic solutions.

Combined with Lemma ., the proof is completed. �
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