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Abstract
We consider a spectral problem for a class of singular Sturm-Liouville operators on the
unit interval with explicit singularity 2/x-2/x2, related to the Schrödinger operator
with radially symmetric potential. In particular, we give the asymptotic behavior of the
eigenvalues of the hydrogen atom equation.
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1 Introduction
The distribution of eigenvalues in differential operator’s spectral theory has an important
place. This classic issue was first examined in a finite interval for second order operators
in the th century by Sturm and Liouville. Later, where the regular boundary conditions
were satisfied, the distribution of eigenvalues of differential operators in a finite interval
in arbitrary order was also examined by Birkhoff in  [].

Especially, the distribution of eigenvalues of the operators with a discrete spectrum
defined in the whole of space for quantum mechanics has great importance. Firstly, the
formula for the distribution of the eigenvalues of the single-dimensional Sturm opera-
tor defined in the whole of the straight-line axis with increasing potential at infinity was
given by Titchmarsh in  []. Titchmarsh also has shown the distribution formula for
the Schrödinger operator. In later years, Levitan and Gasymov improved the Titchmarsh
method and found important asymptotic formulas for the eigenvalues of different differ-
ential operators [, ].

Two important methods have been dealt with to examine the asymptotic formula for
eigenvalues. The first method, the variation method, is due to Courant and Hilbert [].
Birman and Solomyak have improved this method in recent years []. The second method
that is related with the resolvent of the operator in question was suggested by Carleman
[]. Another important method for examining the asymptotic of the eigenvalues in singu-
lar condition was suggested by Fedoryuk []. This method is very useful in that it ensures
that the distribution of the eigenvalues of the operators with partial derivation are such
that the coefficients are analytic functions. Later, many studies have been conducted to ex-
amine the eigenvalues [–]. Many mathematicians have examined the eigenvalues so far.

The spectral problem for the Sturm-Liouville operator with Dirichlet boundary condi-
tion is given in detail in [] by Poeschel and Trubowitz. Guillot and Ralston have extended
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these results to the singular Sturm-Liouville operator

L = –
d

dx +

x + q(x)

with domain {y ∈ L[, ] : y, y′, absolutely continuous on (, ], Ly ∈ L[, ] and y() = }
[].

Later, this work was generalized by Carlson []. For real numbers b and real valued
functions q(x) ∈ L[, ], Carlson dealt with the operator

L(m, q) = –
d

dx +
m(m + )

x + q(x), m = , , , . . .

with domain {y ∈ L[, ] : y, y′, absolutely continuous on (, ], L(m, q)y ∈ L[, ],
limx↓ y(x) =  and y′() + by() = }. Similar features of the Sturm-Liouville operator were
studied in [–].

Consider the Schrödinger equation for two particles in dimensionless variables,

–
∂ψ

∂x –
∂ψ

∂y –
∂ψ

∂z + V (x, y, z)ψ = kψ . (.)

If the potential function V (x, y, z) depends only on r = (x +y +z)/, i.e. V (x, y, z) = V (r),
then the variables in (.) can be separated by putting

ψ(x, y, z) =
ψ(r)
r/ Y l

m(θ ,ϕ), l = , , , . . . ,

where x = r sin θ cosϕ, y = r sin θ sinψ , z = r cos θ , and Y l
m(θ ,ϕ) are the spherical harmon-

ics. This gives a differential equation of the form

dϕ

∂r +

r

dϕ

∂r
–

λ

r – V (r)ϕ + kϕ =  (.)

for the function ϕ(r), where λ = l + / (l = , , , . . .). If the potential function V (r) satisfies
the condition

∫ ∞
 r|V (r)|dr < ∞, then, for a solution of (.), which is regular at zero and

normalized, the following asymptotic formula is satisfied:

r/ϕ(r, k,λ) = A(k,λ) sin

[

kr –
π



(

λ –



)

+ δ(k,λ)
]

+ o()

for fixed λ, and k, and r → ∞.
In this formula, A(k,λ) is called the scattering amplitude and δ(k,λ) the scattering phase

or phase shift [].
In quantum mechanics the study of the energy levels of the hydrogen atom leads to the

equation [–]

–
dR
dr +

a
r

dR
dr

–
l(l + )

r R +
(

E +
a
r

)

R =  ( < r < ∞).

The substitution R = y/r reduces this equation to the form

y′′ +
[

E +

r

–
l(l + )

r

]

y = .
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Our aim here is to find the asymptotic behavior of the eigenvalues of the problem

–y′′ +
[


x –


x

+ q(x)
]

y = λy ( < x ≤ ),

y() = ,

with domain {y ∈ L[, ] : y, y′ that are absolutely continuous on (, ], Ly ∈ L[, ]}. Here
we have λ =

√
–E, E < .

Spectral problems for the hydrogen atom equation were considered by many mathe-
maticians. Particularly, the inverse problem was examined in Panakhov and Yilmazer’s
papers [, ].

2 Basic properties
We consider the singular Sturm-Liouville equation

–y′′ +
[


x –


x

+ q(x)
]

y = λy, x ∈ (, ], (.)

where the function q(x) ∈ L[, ]. Let us give the solutions of this equation by integral
equation representations.

Lemma  The solutions of (.) have the following form:

ϕ(x,λ, q) = x +



∫ x



(
x

t
–

t

x

)(

q(t) –

t

– λ

)

ϕ(t,λ, q) dt (.)

and

ψ(x,λ, q) = cx + cx– –



∫ 

x

(
x

t
–

t

x

)(

q(t) –

t

– λ

)

ψ(t,λ, q) dt, (.)

where q(x) ∈ L[, ].

Proof Let us show that (.) is satisfied. The general solution of the equation

–y′′ +

x y = 

is

y = cx + cx–.

Let us apply the method of variation of parameters of (.),

–y′′ +

x y =

[

λ +

x

– q(x)
]

y.

Taking the second derivative of the equation

y = u(x)x + u(x)x–
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and substituting this into (.), we obtain

u′
(x)x + u′

(x)x– = ,

–u′
(x)x + u′

(x)x– =
(

λ +

x

– q(x)
)

y(x).

If we multiply the first equation by –/x and combine with the second equation we have

–u′
(x)x =

(

λ +

x

– q(x)
)

y(x). (.)

Take the integral of this equation from  to x:

u(x) =



∫ x




t

(

q(t) – λ –

t

)

y(t) dt.

If we multiply the first equation by  and the second equation by x and combine these
equations we have


x

u′
(x) = x

(

λ +

x

– q(x)
)

y(x). (.)

Take the integral of this equation from  to x:

u(x) = –



∫ x


t

(

q(t) – λ –

t

)

y(t) dt.

Then we get the equation

y =



∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)

y(t) dt.

We use the above method to show (.). Take the integral of (.) from x to :

u(x) = –



∫ 

x


t

(

q(t) – λ –

t

)

y(t) dt.

Take the integral of (.) from x to :

u(x) =



∫ 

x
t

(

q(t) – λ –

t

)

y(t) dt.

Then we get the equation

y = –



∫ 

x

(
x

t
–

t

x

)(

q(t) – λ –

t

)

y(t) dt.

So we proved the theorem. �
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Now we will show that these solutions are analytic by using the method of successive
approximations. Addressing (.) first, let

y(x) = x, yn+(x) = y(x) +



∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)

yn(t) dt.

Theorem  The sequence yn(x) converges uniformly to a function ϕ(x,λ, q) satisfying (.)
and (.). Moreover, limx↓ x–ϕ(x,λ, q) =  and the mapping (λ, q) → ϕ(x,λ, q) is analytic
from C× L[, ] →C[, ].

Proof Let us show that

∣
∣yn(x) – yn–(x)

∣
∣ ≤ x

[(



)n( xn
∏n

m= m

)/

‖q – λ‖n


+
n–∑

k=

(
xn–k

(n – k)
∏n–

m= m

)/

‖q – λ‖n–k
 +

xn

n!

]

,

by using the method of induction. For k = ,

∣
∣y(x) – y(x)

∣
∣ =

∣
∣
∣
∣




∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)

y(t) dt
∣
∣
∣
∣

=
∣
∣
∣
∣




∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)

t dt
∣
∣
∣
∣

≤ x
∣
∣
∣
∣




∫ x



(

t –
t

x

)(

q(t) – λ –

t

)

dt
∣
∣
∣
∣.

We have |t – t

x | ≤ t,

∣
∣y(x) – y(x)

∣
∣ ≤ x

∣
∣
∣
∣




∫ x


t
(

q(t) – λ –

t

)

dt
∣
∣
∣
∣

≤ x
[∣
∣
∣
∣




∫ x


t
(
q(t) – λ

)
dt

∣
∣
∣
∣ +

x


]

.

By the Cauchy-Schwarz inequality, we get

∣
∣y(x) – y(x)

∣
∣ ≤ x

[



(∫ x


t dt

)/(∫ x



(
q(t) – λ

) dt
)/

+
x


]

≤ x
[




(
x



)/

‖q – λ‖ + x
]

.

For k = ,

∣
∣y(x) – y(x)

∣
∣ =

∣
∣
∣
∣




∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)
(
y(t) – y(t)

)
dt

∣
∣
∣
∣

=
∣
∣
∣
∣




∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)

t
[




(
t



)/

‖q – λ‖ + t
]

dt
∣
∣
∣
∣

≤ x
∣
∣
∣
∣




∫ x



(

t –
t

x

)(

q(t) – λ –

t

)[



(
t



)/

‖q – λ‖ + t
]

dt
∣
∣
∣
∣.
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Since |t – t

x | ≤ t,

∣
∣y(x) – y(x)

∣
∣ ≤ x

∣
∣
∣
∣




∫ x


t
(

q(t) – λ –

t

)[



(
t



)/

‖q – λ‖ + t
]

dt
∣
∣
∣
∣

≤ x
∫ x



(
t

∣
∣q(t) – λ

∣
∣ +




)[



(
t



)/

‖q – λ‖ + t
]

dt

≤ x
[




∫ x



(
t



)/∣
∣q(t) – λ

∣
∣‖q – λ‖ dt +




∫ x



(
t



)/

‖q – λ‖ dt
]

+ x
[




∫ x


t∣∣q(t) – λ

∣
∣dt +

t


]

.

By the Cauchy-Schwarz inequality, we get

∣
∣y(x) – y(x)

∣
∣ ≤ x

[(



)( x

.

)/

‖q – λ‖
 +

(
x

.

)/

‖q – λ‖ +
x

!

]

.

Assume that the inequality is true for k = n. Now we will show that the inequality holds
for k = n + ,

∣
∣yn+(x) – yn(x)

∣
∣ =

∣
∣
∣
∣




∫ x



(
x

t
–

t

x

)(

q(t) – λ –

t

)
(
yn(t) – yn–(t)

)
dt

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ x



t



(
x

t
–

t

x

)(

q(t) – λ –

t

)[(



)n( xn
∏n

m= m

)/

‖q – λ‖n


+
n–∑

k=

(
xn–k

(n – k)
∏n–

m= m

)/

‖q – λ‖n–k
 +

xn

n!

]

dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ x



(
t

∣
∣q(t) – λ

∣
∣ + 

)[(



)n( xn
∏n

m= m

)/

‖q – λ‖n


+
n–∑

k=

(
xn–k

(n – k)
∏n–

m= m

)/

‖q – λ‖n–k
 +

xn

n!

]

dt

∣
∣
∣
∣
∣

≤ x

[(



)n+( x(n+)
∏n+

m= m

)/

‖q – λ‖n+


+
n∑

k=

(
x(n+)–k

((n + ) – k)
∏n

m= m

)/

‖q – λ‖n+–k
 +

xn+

(n + )!

]

.

By the ratio test, the series converges. Then yn(x) converges uniformly by the Weierstrass
sufficiency theorem. �

Differentiation of (.) gives the formula

ϕ′(x,λ, q) = x +



∫ x



(
x
t

+
t

x

)(

q(t) –

t

– λ

)

ϕ(t,λ, q) dt

and

lim
x↓

xϕ′(x,λ, q) = .
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Turning to (.), let

y(x) = cx + cx–,

yn+(x) = y(x) –



∫ 

x

(
x

t
–

t

x

)(

q(t) –

t

– λ

)

yn(t) dt.

Theorem  The sequence xyn(x) converges uniformly for x ∈ (, ] to a function xψ(x,λ, q)
where ψ(x,λ, q) satisfies (.) and (.). Moreover, limx↓ xψ(x,λ, q) exists and the mapping
(λ, q) → xψ(x,λ, q) is analytic from C× L[, ] →C[, ].

Proof Let us show that

∣
∣yn(x) – yn–(x)

∣
∣ ≤ 

x

[(



)n( ( – x)n

n!

)/

‖q – λ‖n
|cn|

+
n–∑

k=

(
( – x)k

k!

)/

‖q – λ‖k
|ck| + |cn+|

]

by using the method of induction. For k = ,

∣
∣y(x) – y(x)

∣
∣ =

∣
∣
∣
∣




∫ 

x

(
x

t
–

t

x

)(

q(t) – λ –

t

)

y(t) dt
∣
∣
∣
∣

=



∫ 

x

∣
∣
∣
∣

(
x

t
–

t

x

)(

q(t) – λ –

t

)
(
ct + ct–)

∣
∣
∣
∣dt.

Since t ≥ x we get | x

t – t

x | = | t

x ( x

t – )| ≤ t

x and

∣
∣y(x) – y(x)

∣
∣ ≤ 



∫ 

x

t

x

∣
∣
∣
∣

(

q(t) – λ –

t

)
(
ct + ct–)

∣
∣
∣
∣dt

≤ 
x

(



∫ 

x

∣
∣(q(t) – λ

)(
ct + ct

)∣∣dt +
∫ 

x



∣
∣ct + c

∣
∣dt

)

.

Because of t ≤ , we have

∣
∣y(x) – y(x)

∣
∣ ≤ 

x

(



∫ 

x

∣
∣q(t) – λ

∣
∣|c|dt + |c|

)

.

By the Cauchy-Schwarz inequality, we get

∣
∣y(x) – y(x)

∣
∣ ≤ 

x
(
( – x)/‖q – λ‖|c| + |c|

)
.

Assume that the inequality is true for k = n. Now we will show that the inequality holds
for k = n + ,

∣
∣yn+(x) – yn(x)

∣
∣ =

∣
∣
∣
∣




∫ 

x

(
x

t
–

t

x

)(

q(t) – λ –

t

)
(
yn(t) – yn–(t)

)
dt

∣
∣
∣
∣.
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Since t ≥ x we get | x

t – t

x | = | t

x ( x

t – )| ≤ t

x . We have

∣
∣yn+(x) – yn(x)

∣
∣ ≤

∣
∣
∣
∣
∣

∫ 

x

t

x

(

q(t) – λ –

t

)

t

[(‖q – λ‖


)n( ( – t)n

n!

)/n

|cn|

+
n–∑

k=

(
( – t)k

k!

)/

‖q – λ‖k
|ck| + |cn+|

]

dt

∣
∣
∣
∣
∣

≤
∫ 

x

t
x

(∣
∣q(t) – λ

∣
∣ + 

)
[(‖q – λ‖



)n( ( – t)n

n!

)/n

|cn|

+
n–∑

k=

(
( – t)k

k!

)/

‖q – λ‖k
|ck| + |cn+|

]

dt.

Because of t ≤ , we have

∣
∣yn+(x) – yn(x)

∣
∣ ≤ 

x

∫ 

x



(∣∣q(t) – λ

∣
∣ + 

)
[(‖q – λ‖



)n( ( – t)n

n!

)/n

|cn|

+
n–∑

k=

(
( – t)k

k!

)/

‖q – λ‖k
|ck| + |cn+|

]

dt.

By the Cauchy-Schwarz inequality, we get

∣
∣yn+(x) – yn(x)

∣
∣ ≤ 

x

[(



)n+( ( – x)n+

(n + )!

)/

‖q – λ‖n+
 |cn+|

+
n∑

k=

(
( – x)k

k!

)/

‖q – λ‖k
|ck| + |cn+|

]

.

By the ratio test, the series converges. Then yn(x) converges uniformly by the Weierstrass
sufficiency theorem. �

3 Asymptotic behavior of eigenvalues
The main result of the paper is given by the following theorem.

Assume that  < x < x ≤ .

Theorem  If y is a nontrivial solution of the equation

–y′′ +
[


x –


x

+ q(x)
]

y = λy (.)

with y(x) = y′(x) + by(x) = , then

λ ≥ –
[


x

+
(

|b| + 
∫ x

x

|q|dx
)]

,

where b ∈R and q(x) ∈ L[, ].
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Proof Multiplying (.) by y and integrating of this equation from x to x gives the formula

∫ x

x

[

–y′′y + q(x)y – λy +
(


x –


x

)

y
]

dx = .

Since
∫ x

x


x y dx ≥  the remaining term will be negative or zero,

∫ x

x

[

–y′′y + q(x)y – λy –

x

y
]

dx ≤ . (.)

Integrating the first term by parts gives

∫ x

x

–y′′y dx = –y′(x)y(x) + y′(x)y(x) +
∫ x

x

(
y′) dx

= by(x) +
∫ x

x

(
y′) dx.

So (.) is equal to

by(x) +
∫ x

x

[
(
y′) + q(x)y – λy –


x

y
]

dx ≤ .

Moreover, we find
∫ x

x
q(x)y(x) dx and that equals

∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx

=
(

y(x)
∫ x

x

q(t) dt
)x

x

–
∫ x

x
y(x)y′(x)

∫ x

x

q(t) dt dx –
∫ x

x

y(x)q(x) dx

= y(x)
∫ x

x

q(t) dt –
∫ x

x

y(x)q(x) dx.

Then we have

∫ x

x

q(x)y(x) dx = y(x)
∫ x

x

q(t) dt –
∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx. (.)

Integrating
∫ x

x
y(x)y′(x) dx by parts gives

∫ x

x

y(x)y′(x) dx =
[
y(x)

]x
x

–
∫ x

x

y(x)y′(x) dx

= y(x) –
∫ x

x

y(x)y′(x) dx.

So we get the formula

y(x) =
∫ x

x

y(x)y′(x) dx.
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Adding (.) to by(x) and using the triangle inequality gives the formula

∣
∣by(x)

∣
∣ +

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣

≤ |b|y(x) +
∣
∣
∣
∣y

(x)
∫ x

x

q(t) dt
∣
∣
∣
∣ +

∣
∣
∣
∣

∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx
∣
∣
∣
∣

≤ |b|
∫ x

x

yy′ dx +
∫ x

x

|q|dx
∫ x

x

yy′ dx +
∫ x

x

∣
∣yy′∣∣

∫ x

x

∣
∣q(t)

∣
∣dt dx.

Since x ≤ x we get

∣
∣by(x)

∣
∣ +

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣ ≤

[

|b| + 
∫ x

x

|q|dx
]∫ x

x

yy′ dx.

By the Cauchy-Schwarz inequality, we get

∣
∣by(x)

∣
∣ +

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣

≤
(

|b| + 
∫ x

x

|q|dx
)


[∫ x

x

y dx
]/[

∫ x

x

(
y′) dx

]/

and, from the inequality of A/B/ ≤ εA + (/ε)B, we get

∣
∣by(x)

∣
∣ +

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣

≤
(

|b| + 
∫ x

x

|q|dx
)[

ε

(∫ x

x

y dx
)

+ /ε
(∫ x

x

(
y′) dx

)]

.

For any ε > |b| + 
∫ x

x
|q|dx,

by(x) +
∫ x

x

[
(
y′) + q(x)y – λy –


x

y
]

dx

≥
∫ x

x

[
(
y′) – λy –


x

y
]

dx – |b|y(x) –
∣
∣
∣
∣

∫ x

x

qy dx
∣
∣
∣
∣

≥
∫ x

x

[(
y′) – λy]dx –


x

∫ x

x

y dx

–
(

|b| + 
∫ x

x

|q|dx
)[

ε

(∫ x

x

y dx
)

+ /ε
(∫ x

x

(
y′) dx

)]

≥
[

 –
(

|b| + 
∫ x

x

|q|dx
)

/
ε

]∫ x

x

(
y′) dx

+
[

–λ –

x

– ε

(

|b| + 
∫ x

x

|q|dx
)]∫ x

x

y dx

= C(ε) +
[

–λ –

x

– ε

(

|b| + 
∫ x

x

|q|dx
)]∫ x

x

y dx,
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where C(ε) > . If we assume that

λ < –
[


x

+
(

|b| + 
∫ x

x

|q|dx
)]

,

the equation
∫ x

x
[–y′′y + q(x)y – λy – 

x y] dx should be positive. It contradicts our as-
sumption. So we proved the theorem. �

Theorem  If y is a nontrivial solution of the equation

–y′′ +
[


x –


x

+ q(x)
]

y = λy

with y(x) = y(x) = , then

λ ≥ –
[


x

+ 
(∫ x

x

|q|dx
)]

,

where q(x) ∈ L[, ].

Proof Multiplying the equation by y and integrating of this equation from x to x gives
the formula

∫ x

x

[

–y′′y + q(x)y – λy +
(


x –


x

)

y
]

dx = .

Since
∫ x

x


x y dx ≥  the remaining term will be negative or zero,

∫ x

x

[

–y′′y + q(x)y – λy –

x

y
]

dx ≤ . (.)

Integrating the first term by parts gives

∫ x

x

–y′′y dx = –y′(x)y(x) + y′(x)y(x) +
∫ x

x

(
y′) dx =

∫ x

x

(
y′) dx.

So (.) is equal to

by(x) +
∫ x

x

[
(
y′) + q(x)y – λy –


x

y
]

dx ≤ .

Moreover, we find
∫ x

x
q(x)y(x) dx and that equals

∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx

=
(

y(x)
∫ x

x

q(t) dt
)x

x

–
∫ x

x
y(x)y′(x)

∫ x

x

q(t) dt dx –
∫ x

x

y(x)q(x) dx

= –
∫ x

x

y(x)q(x) dx.
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Then we have
∫ x

x

q(x)y(x) dx = –
∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx,

since x ≤ x we get

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣ ≤

∫ x

x

|q|dx
∣
∣
∣
∣

∫ x

x

yy′ dx
∣
∣
∣
∣.

By the Cauchy-Schwarz inequality, we get

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣ ≤ 

∫ x

x

|q|dx
[∫ x

x

y dx
]/[∫ x

x

(
y′) dx

]/

,

and from the inequality of A/B/ ≤ εA + (/ε)B, we get

∣
∣
∣
∣

∫ x

x

q(x)y(x) dx
∣
∣
∣
∣ ≤ 

∫ x

x

|q|dx
[

ε

(∫ x

x

y dx
)

+ /ε
(∫ x

x

(
y′) dx

)]

.

For any ε > 
∫ x

x
|q|dx,

∫ x

x

[
(
y′) + q(x)y – λy –


x

y
]

dx

≥
∫ x

x

[
(
y′) – λy –


x

y
]

dx –
∣
∣
∣
∣

∫ x

x

qy dx
∣
∣
∣
∣

≥
∫ x

x

[(
y′) – λy]dx –


x

∫ x

x

y dx

– 
∫ x

x

|q|dx
[

ε

(∫ x

x

y dx
)

+ /ε
(∫ x

x

(
y′) dx

)]

≥
[

 –

ε

∫ x

x

|q|dx
]∫ x

x

(
y′) dx

+
[

–λ –

x

– ε

∫ x

x

|q|dx
]∫ x

x

y dx

= C(ε) +
[

–λ –

x

– ε

(

|b| + 
∫ x

x

|q|dx
)]∫ x

x

y dx,

where C(ε) > . If we assume that

λ < –
[


x

+ 
(∫ x

x

|q|dx
)]

,

the equation
∫ x

x
[–y′′y + q(x)y – λy – 

x y] dx should be positive. It contradicts our as-
sumption. So we get our result. �

Theorem  If y is a nontrivial solution of the equation

–y′′ +
[


x –


x

+ q(x)
]

y = , (.)
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where q(x) ∈ L[, ], and if y′(x) = y′(x) = , where  ≤ x ≤ x ≤ , then


x


+


x

≤ 
[∫ x

x

|q|dx
]

+


(x – x)

∫ x

x

|q|dx.

Proof Multiplying (.) by y and integrating of this equation from x to x gives the formula

∫ x

x

[

–y′′y + q(x)y +
(


x –


x

)

y
]

dx = .

Since
∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx = y(x)
∫ x

x

q(t) dt –
∫ x

x

q(x)y(x) dx

we get

∫ x

x

q(x)y(x) dx = y(x)
∫ x

x

q(t) dt –
∫ x

x

y(x)y′(x)
∫ x

x

q(t) dt dx. (.)

From the mean value theorem we can write

y(x) =
[
/(x – x)

]
∫ x

x

y dx, (.)

where x ∈ [x, x]. From (.) and integrating
∫ x

x
y(x)y′(x) dx by parts we have

y(x) = y(x) +
∫ x

x

yy′ dx =


x – x

∫ x

x

y dx +
∫ x

x

yy′ dx.

Adding (.) to
∫ x

x
y

x dx we have

∫ x

x

(

q –

x

)

y dx =
[


x – x

∫ x

x

y dx +
∫ x

x

yy′ dx
]∫ x

x

q dx

–
∫ x

x

yy′
∫ x

x

q(t) dt dx –
∫ x

x

y

x
dx.

From the triangle inequality we have the formula

∣
∣
∣
∣

∫ x

x

(

q –

x

)

y dx
∣
∣
∣
∣ ≤

∣
∣
∣
∣

[


x – x

∫ x

x

y dx +
∫ x

x

yy′ dx
]∫ x

x

q dx
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x

x

yy′
∫ x

x

q dt dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫ x

x

y

x
dx

∣
∣
∣
∣

≤
(


x – x

∫ x

x

|q|dx +

x

)∫ x

x

y dx + 
∫ x

x


∣
∣yy′∣∣

∫ x

x

q dt dx.

By using the inequality


∣
∣yy′∣∣ ≤ εy + (/ε)

(
y′),
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we get

∣
∣
∣
∣

∫ x

x

(

q –

x

)

y dx
∣
∣
∣
∣ ≤

[


x – x

∫ x

x

|q|dx +

x

]∫ x

x

y dx

+ 
[

ε

∫ x

x

y dx +

ε

∫ x

x

(
y′) dx

]∫ x

x

|q|dx.

Integrating
∫ x

x
–y′′y dx by parts gives

∫ x

x

–y′′y dx = –y′(x)y(x) + y′(x)y(x) +
∫ x

x

(
y′) dx =

∫ x

x

(
y′) dx, (.)

∫ x

x


x y dx ≥

∫ x

x


x


y dx. (.)

From (.) and (.) and for any ε > |b|+ 
∫ x

x
|q|dx, there exists a number C(ε) >  such

that
∫ x

x

[

–y′′y + q(x)y +
(


x –


x

)

y
]

dx

=
∫ x

x

(
y′) dx +

∫ x

x

(

q –

x

)

y dx +
∫ x

x


x y dx

≥
∫ x

x

(
y′) dx –

(


x – x

∫ x

x

|q|dx +

x

)∫ x

x

y dx

– 
(

ε

∫ x

x

y dx +

ε

∫ x

x

(
y′) dx

)∫ x

x

|q|dx +
∫ x

x


x


y dx

=
(

 –

ε

∫ x

x

|q|dx
)∫ x

x

(
y′) dx

+
{


x


+


x

–
(


x – x

+ ε

)∫ x

x

|q|dx
}∫ x

x

y dx

= C(ε) +
{


x


+


x

–
(


x – x

+ ε

)∫ x

x

|q|dx
}∫ x

x

y dx.

Let us assume that


x


+


x

–
(


x – x

+ ε

)∫ x

x

|q|dx > .

In this case, we get


x


+


x

> ε

∫ x

x

|q|dx +


(x – x)

∫ x

x

|q|dx

> 
(∫ x

x

|q|dx
)

+


(x – x)

∫ x

x

|q|dx.

Then we have
∫ x

x

[

–y′′y + q(x)y +
(


x –


x

)

y
]

dx > .
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This is a contradiction. So we proved the theorem. �

Conclusion In the Carlson case, the potentials are in L[, ], but in our paper, the po-
tentials are not in L[, ].
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