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Abstract
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1 Introduction and main results
In this paper, we consider the following Hamiltonian systems with prescribed energy:

ü(t) + ∇V
(
u(t)

)
=  (.)

with



∣
∣u̇(t)

∣
∣ + V

(
u(t)

)
= H , (.)

where u ∈ C(R, RN ), V ∈ C(RN \ {}, R) has a singularity at the origin. ∇V (x) denotes the
gradient with respect to the x variable, (·, ·) : RN ×RN → R denotes the standard Euclidean
inner product in RN and | · | is the induced norm. The parabolic and hyperbolic orbits are
defined as follows.

Definition  (see []) If u(t) is a solution for problem (.)-(.) satisfying

∣∣u(t)
∣∣ → +∞ and

∣∣u̇(t)
∣∣ →  as t → ±∞,

then u(t) is called a parabolic orbit.
If u(t) satisfies

∣
∣u(t)

∣
∣ → +∞ and

∣
∣u̇(t)

∣
∣ >  as t → ±∞,

then u(t) is called a hyperbolic orbit.
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The solutions of Hamiltonian systems have been studied by many mathematicians (see
[–] and the references therein). In , Chazy showed that there are only seven pos-
sible final evolutions in the three-body problem. And the parabolic and hyperbolic orbits
have been obtained for problem (.) when V is singular at the origin by [, , ] with
variational methods. In [], the authors obtained the existence of collision-free parabolic
orbits for a Newtonian n-body problem starting from any initial configuration and asymp-
totic to every minimizing normalized central configuration.

In this paper, we mainly consider the strong force case. For this case, in , Felmer
and Tanaka obtained the following theorem.

Theorem A (see []) Assume that N ≥  and the following conditions hold:

(A) V ∈ C(RN \ {}, R),
(A) V (x) ≤  for all x ∈ RN \ {},
(A) there are constants ζ > , ρ >  and d >  such that

(i) –V (x) ≥ d
|x|ζ for  < |x| ≤ ρ ,

(ii) (x,∇V (x)) + V (x) → +∞ as |x| → ,
(A) there exist ν >  and C >  such that

–V (x) ≤ C
|x|ν– and

∣∣∇V (x)
∣∣ ≤ C

|x|ν for |x| ≥ .

Then, for any given H >  and θ+ �= –θ–, there exists a solution u(t) of (.)-(.) such that

lim
t→±∞

u(t)
|u(t)| = θ±,

where θ+, θ– ∈ SN– = {x ∈ RN | |x| = } are the asymptotic directions for the solution u(t).

The proof of Theorem A depends on the difference of the given asymptotic directions.
In this paper, we try to relax the conditions on the asymptotic directions and the growth
condition (V). First, we consider problem (.)-(.) on a bounded interval, and then we
let the interval go to infinity to get hyperbolic orbits. The following theorems are our main
results.

Theorem  Suppose N ≥  and V ∈ C(RN \ {}, R) satisfies (A), (A) and the following
conditions:

(V) V (x) + (x,∇V (x)) → +∞ as |x| → ,
(V) V (x) → –∞ as |x| → ,
(V) (∇V (x), x) →  as |x| → +∞,
(V) there exist constants β > , M >  and σ ≥  such that

|x|β ∣
∣V (x)

∣
∣ ≤ M for all |x| ≥ σ.

Then, for any H > , there exists at least one hyperbolic orbit for problem (.)-(.).
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Remark  Compared with condition (A), there is no condition on ∇V (x) in (V), and we
can give an example which satisfies (V), but not condition (A), such as

V (x) =

⎧
⎪⎪⎨

⎪⎪⎩

– ln(|x|+|x|–)
|x| for |x| ≤ ,

Q(x) for  ≤ |x| ≤ ,
– +sin |x|

|x| for |x| ≥ ,
(.)

where Q(x) ∈ C(RN , R) such that V (x) (≤ ) is of C class. It is easy to see that (.) also
satisfies (A), (A), (V), (V) and (V).

In order to estimate the asymptotic direction of the hyperbolic orbit, we need to
strengthen condition (V), which is the following theorem.

Theorem  Suppose N ≥  and V ∈ C(RN \ {}, R) satisfies (A), (A), (V), (V), (V)
and the following condition:

(V) there exist κ > , ρ >  and σ >  such that

|x|κ ∣∣∇V (x)
∣
∣ ≤ ρ for all |x| ≥ σ.

Then, for any H > , there exists at least one hyperbolic orbit for problem (.)-(.) which
possesses any given asymptotic directions at infinity.

Remark  There is no restriction on the asymptotic directions of the hyperbolic solution
at infinity in Theorems  and , which is different from Theorem A, and the restriction on
the asymptotic directions is important in the proof of the blow-up argument.

Remark  Since the total energy is a positive constant, to show a solution u(t) is a hyper-
bolic solution, we just need to show that |u(t)| → ∞ as t → ±∞.

The paper is organized as follows. In Section , we present some preliminaries. In Sec-
tion , we obtain the existence of approximate solutions. In Section , we give some es-
timates of the approximate solutions. In Section , we give the proof of Theorem . In
Section , we give the proof of Theorem .

2 Variational settings
For any given two unite vectors (directions) e± ∈ SN–, we set

H = W ,(R/Z, RN)
,

	r =
{

q ∈ H | q() = re–, q() = re+, q �=  for all t ∈ [, ]
}

,

with the norm

‖q‖ :=
(∫ 



∣
∣q̇(t)

∣
∣ dt

)/

+
∣
∣q()

∣
∣.

Here we use r to denote the Euclidean length of q() and q(). Furthermore, for con-
venience, we let r >  in the following proof. Let L∞([, ], RN ) be a space of measurable
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functions from [, ] into RN and essentially bounded with the following norm:

‖q‖L∞([,],RN ) := esssup
{∣∣q(t)

∣
∣ : t ∈ [, ]

}
.

Moreover, let f : 	r → R be the functional defined by

f (q) =



∫ 



∣∣q̇(t)
∣∣ dt

∫ 



(
H – V

(
q(t)

))
dt.

Then one can easily check that f ∈ C(	r , R) and

〈
f ′(q), p

〉
=

∫ 



〈
q̇(t), ṗ(t)

〉
dt

∫ 



(
H – V

(
q(t)

))
dt

–



∫ 



∣∣q̇(t)
∣∣ dt

∫ 



(∇V
(
q(t)

)
, p(t)

)
dt.

Our way to get the hyperbolic orbit is to approach it with a sequence of approximate
solutions. Firstly, we prove the existence of the approximate solutions, then we study the
limit procedure. We consider the following approximate problems:

ü(t) + ∇V
(
u(t)

)
= , ∀t ∈ (–Tr , Tr) (.)

with



∣∣u̇(t)

∣∣ + V
(
u(t)

)
= H , ∀t ∈ (–Tr , Tr), (.)

u(–Tr) = re–, u(Tr) = re+, (.)

where Tr is a suitable number depending on the critical points of f and r which will be
given in the following lemma.

3 Existence of approximate solutions
The approximate solutions are obtained by the minimax methods. It is known that the
critical points of f correspond to the approximate solutions after an appropriate scaling
of time. The following lemma shows this fact.

Lemma . (see []) Let f (q) = 

∫ 

 |q̇(t)| dt
∫ 

 (H – V (q(t))) dt and q̃ ∈ 	r be such that
f ′(q̃) = , f (q̃) > . Set

T =


∫ 

 | ˙̃q(t)| dt
∫ 

 (H – V (q̃(t))) dt
.

Then ũ(t) = q̃(t/T) is a non-constant T-periodic solution for problem (.)-(.).

In this paper, we need to let the time t tend to ±∞. So when we scale the time, we
translate t to a suitable interval so that the function is still a solution after the translation,
which can be guaranteed by the following lemma.
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Lemma . (Translation property []) Suppose that in the domain D ⊂ RN , we have a
solution φ(t) for the following differential equation:

x(n) + F
(
x(n–), . . . , x

)
= ,

where x(k) = dkx/dtk , k = , , . . . , n, x() = x. Then φ(t – t) with t being a constant is also a
solution.

Next, we introduce Gordon’s strong force condition.

Lemma . (Strong force condition []) V is said to satisfy Gordon’s strong force condi-
tion if there exist a neighborhood N of  and a function U ∈ C(RN \ {}, R) such that

(i) limx→ U(x) = –∞;
(ii) –V (x) ≥ |U ′(x)| for every x ∈N \ {}.

It has been shown that if V satisfies Gordon’s strong force condition, then

∫ 


V (xj) dt → –∞, ∀xj ⇀ x ∈ ∂	r . (.)

Lemma . Suppose (A), (V) and (V) hold, then V satisfies Gordon’s strong force con-
dition.

Proof Let φ(r) = –V (r̃e)r, where r = |x|, ẽ = x/|x|, then we have

φ′(r) = –r
(
V (r̃e) +

(∇V (r̃e), r̃e
))

.

It follows from (V) and (V) that there exists a constant δ >  such that

φ′(r) ≤  and min|x|=δ

(
–V (x)

)
>  for all  < r ≤ δ.

Then we get

–V (r̃e)r = φ(r) ≥ φ(δ) = –V (δẽ)δ ≥ δ min|x|=δ

(
–V (x)

)
.

It follows from the definition of φ and (V) that there exists a constant C >  such that

–V (x) ≥ C

|x| for all  < |x| ≤ δ.

We set U(x) =
√

C ln |x|, then by an easy calculation we obtain

lim
x→

U(x) = –∞ and – V (x) ≥ ∣
∣U ′(x)

∣
∣ for all  < r ≤ δ,

which proves this lemma. �

Subsequently, we look for the minimax type critical points of f .
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Lemma . Suppose that the conditions of Theorem  hold, then for any r >  there exists
at least one approximate solution on 	r for problem (.)-(.), where Tr is defined in the
proof.

Proof We set

�r =
{
γ ∈ C

(
SN–,	r

) | deg(γ̃ ) = 
}

,

where

γ̃ (ξ , t) =
γ (ξ )(t)
|γ (ξ )(t)| : SN– × (R/Z) � SN– × S → SN–,

and deg(γ̃ ) denotes the Brouwer degree of γ̃ . We show that f satisfies the (PS)+ condition
on 	r . Specifically, let c > , {qj} ⊂ 	r such that f (qj) → c and f ′(qj) → . By the definition
of f , H >  and V ≤ , we can deduce that ‖q̇j‖L is bounded. Then there exists a constant
C >  such that

∥
∥qj – [qj]

∥
∥

L∞ ≤ C‖q̇j‖L , (.)

where [qj] =
∫ 

 qj(t) dt. If [qj] is unbounded, we obtain that ‖qj‖L∞ is also unbounded. It
follows from (V) and (.) that

∫ 



(∇V
(
qj(t)

)
, qj(t) – [qj]

)
dt →  as j → +∞. (.)

Then it is easy to see that

f (qj) = f ′(qj)
(
qj(t) – [qj]

)
+



‖q̇j‖

L

∫ 



(∇V
(
qj(t)

)
, qj(t) – [qj]

)
dt →  (.)

as j → +∞, which is a contradiction. Then we can deduce that [qj] is bounded. Together
with the boundedness of ‖q̇j‖L , we obtain that qj is bounded in 	r , which implies that
there exists a subsequence of {qj}, still denoted by {qj}, such that qj ⇀ q. Moreover, qj → q
uniformly on [, ]. It follows from Lemmas . and . that q /∈ ∂�r = {q ∈ ER|∃t′ ∈
[, ] s.t. q(t′) = }. Otherwise, if q has collision, which means q ∈ ∂�r , we can prove that

f (qj) → +∞ as j → +∞. (.)

To prove this fact, there are two cases needed to be discussed.
Case . If q = constant, it follows from q ∈ ∂�r that q ≡ , which is a contradiction since

|q()| = |q()| = r.
Case . If q �= constant, we have

∫ 
 |q̇(t)| dt > . Then by the weakly-lower-semi-

continuity of norm, we have

lim inf
j→∞ ‖qj‖ = lim inf

j→∞

(∫ 



∣
∣q̇j(t)

∣
∣ dt

)/

+ r ≥ ‖q‖ =
(∫ 



∣
∣q̇(t)

∣
∣ dt

)/

+ r,
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which implies that

lim inf
n→∞

∫ 



∣
∣q̇j(t)

∣
∣ dt > .

By Lemmas ., . and (.), we can deduce that (.) holds, which is a contradiction.
Then we can see that q ∈ �r has no collision. By a standard argument, we can see qj → q
in �r , which proves the (PS)+ condition.

Then the minimax value is introduced by

br = inf
γ∈�r

max
ξ∈SN–

f
(
γ (ξ )

)
.

It follows from f (q) ≥  that br ≥ . But it follows from the definition of f that the nec-
essary condition for br =  is γ (ξ ) ≡ constant, which contradicts with the definition of �r .
Via the standard minimax argument (similar to []), we can see that br is a critical value
of f and there exists qr ∈ �r such that

f (qr) = br > , f ′(qr) = . (.)

Let

T
r =



∫ 

 |q̇r(t)| dt
∫ 

 (H – V (qr(t))) dt
.

Then, by Lemmas . and ., we obtain that ur(t) = qr( t+Tr
Tr

) : (–Tr , Tr) → H is a non-
trivial solution for problem (.)-(.). The lemma is proved. �

4 Blowing-up argument
In order to process the limit procedure, it is necessary to show that the minimum of |ur(t)|
has a uniform bound from above which guarantees that the asymptotic solutions cannot
diverge to infinity as r → +∞. Specifically, we obtain the following lemma.

Lemma . Suppose that ur(t) : (–Tr , Tr) → H is the solution obtained in Lemma .,
then mint∈(–Tr ,Tr) |ur(t)| is bounded from above uniformly. Specifically, there is a constant
M >  independent of r such that

min
t∈(–Tr ,Tr)

∣
∣ur(t)

∣
∣ ≤ M for all r > .

Proof Since f ′(qr) =  and qr �≡ , we can obtain that 〈f ′(qr), qr〉 = , which implies that

∫ 


H – V

(
qr(t)

)
–

(∇V
(
qr(t)

)
, qr(t)

)
dt = .

Then we obtain that

∫ Tr

–Tr

H – V
(
ur(t)

)
–

(∇V
(
ur(t)

)
, ur(t)

)
dt = .
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It can be convinced that there exists t̂ ∈ [–Tr , Tr] such that

H – V
(
ur(t̂)

)
–

(∇V
(
ur(t̂)

)
, ur(t̂)

) ≤ ,

which implies that

H ≤ V
(
ur(t̂)

)
+

(∇V
(
ur(t̂)

)
, ur(t̂)

)
.

It follows from (V) and (V) that there exists a constant M >  independent of r such
that

min
t∈(–Tr ,Tr)

∣
∣ur(t)

∣
∣ ≤ M.

Then we finish the proof of this lemma. �

5 Proof of Theorem 1
In this section, we prove the existence of hyperbolic orbits by some estimates of asymp-
totic solutions. Firstly, we prove that the asymptotic solutions are uniformly collision-free,
which can be shown by the strong force condition.

Lemma . Suppose that ur(t) is the solution for (.)-(.) obtained in Lemma .. Then
there exists a constant m >  independent of r such that

min
t∈(–Tr ,Tr)

∣
∣ur(t)

∣
∣ ≥ m.

Proof Since ur(t) is a solution for problem (.)-(.), then we can deduce that

d

dt


∣∣ur(t)

∣∣ =
d
dt

(
ur(t), u̇r(t)

)

=
∣
∣u̇r(t)

∣
∣ +

(
ur(t), ür(t)

)

= 
(
H – V

(
ur(t)

))
–

(∇V
(
ur(t)

)
, ur(t)

)
, t ∈ (–Tr , Tr).

By hypothesis (V), we can find m ∈ (, ) independent of r such that

H –
(
V

(
ur(t)

)
+

(∇V
(
ur(t)

)
, ur(t)

))
< 

for any t ∈ {t ∈ (–Tr , Tr) | maxt∈(–Tr ,Tr) |ur(t)| ≤ m}, which implies that |ur(t)| is concave
when |ur(t)| ≤ m and |ur(t)| cannot take a local minimum such that maxt∈(–Tr ,Tr) |ur(t)| ≤
m, which implies that

∣∣ur(t)
∣∣ ≥ m for all t ∈ (–Tr , Tr).

If not, we can assume that there exists t ∈ (–Tr , Tr) such that |ur(t)| < m, then we can easily
check that |ur(t)| takes a local minimum at some t̃ with |ur(t̃)| < m, which is a contradic-
tion. Then we obtain the conclusion. �
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The proofs of the following two lemmas are similar to those in [] and [], we sketch
the proofs for the reader’s convenience.

Lemma . Suppose that r > max{M,σ, }, where M is defined in Lemma . and ur(t) is
the solution for problem (.)-(.) obtained in Lemma .. Set

t+ = sup
{

t ∈ [–Tr , Tr] | ∣∣ur(t)
∣∣ ≤ L

}

and

t– = inf
{

t ∈ [–Tr , Tr] | ∣∣ur(t)
∣∣ ≤ L

}
,

where L is a constant independent of r such that M < L < r. Then we have that

Tr – t+ → +∞, t– + Tr → +∞ as r → +∞.

Proof By the definition of ur(t) we have

∣∣ur(–Tr)
∣∣ =

∣∣ur(Tr)
∣∣ = r.

Then, by (A) and the definitions of t+ and t–, we obtain

∫ Tr

t+

√
H – V

(
ur(t)

)∣∣u̇r(t)
∣∣dt ≥ √

H
∫ Tr

t+

∣∣u̇r(t)
∣∣dt

≥ √
H

∣
∣∣∣

∫ Tr

t+

u̇r(t) dt
∣
∣∣∣ ≥ √

H(r – L) (.)

and

∫ t–

–Tr

√
H – V

(
ur(t)

)∣∣u̇r(t)
∣∣dt ≥ √

H
∫ t–

–Tr

∣∣u̇r(t)
∣∣dt

≥ √
H

∣
∣∣∣

∫ t–

–Tr

u̇r(t) dt
∣
∣∣∣ ≥ √

H(r – L). (.)

Since V ∈ C(RN \ {}, R), it follows from Lemma . and (V) that there exists a constant
M >  independent of r such that

∣∣V
(
ur(t)

)∣∣ ≤ M for all t ∈ [–Tr , Tr], (.)

which implies that

∫ Tr

t+

√
H – V

(
ur(t)

)∣∣u̇r(t)
∣∣dt =

√

∫ Tr

t+

(
H – V

(
ur(t)

))
dt ≤ √

(H + M)(Tr – t+).

Combining (.) with the above inequality, we obtain that

√
H(r – L) ≤ √

(H + M)(Tr – t+).
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Then we have

Tr – t+ → +∞ as r → +∞.

The limit for t– + Tr can be obtained in a similar way. The proof is completed. �

Lemma . Suppose that ur(t) is the solution for problem (.)-(.) obtained in Lem-
ma .. Then there exists a constant M >  independent of r >  such that

∫ Tr

–Tr

√
H – V

(
ur(t)

)∣∣u̇r(t)
∣∣dt ≤ 

√
Hr + M.

Proof Firstly, we define the function ξ (t) on [, +∞) as a solution of

ξ̇ (t) =
√


(
H – V

(
ξ (t)e

))
,

ξ () = σ,

where σ is defined in (V) and e ∈ SN–. And τr >  is a real number such that ξ (τr) = r.
We can define ξ (t) in (–∞, ] and τ–r in a similar way. Then we can fix ϕ(t) ∈ � (defined
in Lemma .) such that γ̃r(t) ∈ �r , where

γ̃r(t) = γr
(
t(τr – τ–r) + τ–r

)
and γr(t) =

{
ξ (t)e for t ∈ [, τr] ∪ [τ–r , ],
ϕ(t) for t ∈ [, ].

Subsequently, we set ur(t) = γ̃r( t+a
a ) for any a > , then it is easy to see that ur(t) = γr(t) if

τ±r = ±a. Similar to [], we can deduce that for a > 

(
f (γ̃r)

) 
 = inf

a>

√


∫ a

–a



∣
∣u̇r(t)

∣
∣ + H – V

(
ur(t)

)
dt

≤ √


∫ τr

–τr



∣
∣γ̇r(t)

∣
∣ + H – V

(
γr(t)

)
dt

= I[–τr ,τr ]. (.)

We divide the interval [–τr , τr] into three parts [–τr , ]∪ [, ]∪ [, τr], then we can estimate
I[–τr ,τr ] by three integrals. Firstly, we estimate I[,τr]. By (V), we have

I[,τr] =
√


∫ τr





∣∣γ̇r(t)

∣∣ + H – V
(
γr(t)

)
dt

=
∫ τr



√
H – V

(
ξ (t)e

)
ξ̇ (t) dt

=
∫ r

σ

√
H – V (se) ds

≤
∫ r

σ

√
H +

√
–V (se) ds

=
√

H(r – σ) +
∫ r

σ

√
–V (se) ds
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≤ √
Hr +

√
M

∫ r

σ

s– β
 ds

≤ √
Hr +

√
M

∫ +∞

σ

s– β
 ds

≤ √
Hr + M

for some M >  independent of r. Similarly, we can get

I[–τr ,] ≤ √
Hr + M.

Since I[,] is independent of r, we obtain that

√


∫ τr

–τr



∣∣γ̇r(t)

∣∣ + H – V
(
γr(t)

)
dt ≤ 

√
Hr + M

for some M >  independent of r. Then by (.) and the definition of br , we have

∫ Tr

–Tr

√
H – V

(
ur(t)

)∣∣u̇r(t)
∣
∣dt ≤

(∫ Tr

–Tr

H – V
(
ur(t)

)
dt

) 

(∫ Tr

–Tr

∣
∣u̇r(t)

∣
∣ dt

) 


=
(
f (qr)

) 


≤ (
f (γ̃r)

) 


≤ √


∫ τr

–τr



∣
∣γ̇r(t)

∣
∣ + H – V

(
γr(t)

)
dt

≤ 
√

Hr + M.

Then we finish the proof of this lemma. �

By Lemma ., we can see that

M = sup
r>

min
t∈(–Tr ,Tr)

∣
∣ur(t)

∣
∣ ≤ M,

where M is defined in Lemma .. In the following proof, we set a translation as

t∗ = inf
{

t ∈ [–Tr , Tr] | ∣∣ur(t)
∣∣ = M

}
(.)

and

u∗
r (t) = ur

(
t∗ – t

)
. (.)

Remark  By Lemma ., u∗
r is also a solution for problem (.)-(.).

Lemma . Let ur ∈ 	r be the solution of problem (.)-(.) and u∗
r be defined as (.).

Then there exists a subsequence {u∗
rj
} of {u∗

r } convergent to u∞ in Cloc(R, RN ). Furthermore,
u∞ is a hyperbolic solution of problem (.)-(.).
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Proof Step : We will show that there exists a subsequence {u∗
rj
} of {u∗

r } convergent to u∞
in Cloc(R, RN ). By the definition of u∗

r , we can deduce that u∗
r is a solution of problem (.)-

(.). Since L > M, we can deduce that t+ ≥ t∗ ≥ t–. Then Lemma . shows that

–Tr + t∗ → –∞, Tr + t∗ → +∞ as r → +∞.

It follows from (.) that



∣
∣u̇∗

r (t)
∣
∣ + V

(
u∗

r (t)
)

= H , ∀t ∈ (
–Tr + t∗, Tr + t∗),

which implies that

∣∣u̇∗
r (t)

∣∣ = 
(
H – V

(
u∗

r (t)
))

, ∀t ∈ (
–Tr + t∗, Tr + t∗). (.)

Then by (.) we have

∣
∣u̇∗

r (t)
∣
∣ ≤ √

(H + M) for all t ∈ (
–Tr + t∗, Tr + t∗), (.)

which implies that

∣
∣u∗

r (t) – u∗
r (t)

∣
∣ ≤

∣∣
∣∣

∫ t

t

u̇∗
r (s) ds

∣∣
∣∣ ≤

∫ t

t

∣
∣u̇∗

r (s)
∣
∣ds ≤ √

(H + M)|t – t| (.)

for each r >  and t, t ∈ [–Tr + t∗, Tr + t∗], which shows that {u∗
r } is equicontinuous.

Subsequently, we show that u∗
r is uniformly bounded on any compact set of R. Take

a, b ∈ R such that a < b. When r is large enough, by Lemma ., we can see that [a, b] ⊆
[–Tr + t∗, Tr + t∗]. Then, for any t ∈ [a, b], it follows from (.) and (.) that

∣
∣u∗

r (t)
∣
∣ =

∣∣
∣∣

∫ t


u̇∗

r (t) dt + u∗
r ()

∣∣
∣∣

≤
∣
∣∣
∣

∫ t


u̇∗

r (t) dt
∣
∣∣
∣ +

∣∣u∗
r ()

∣∣

≤
∣∣
∣∣

∫ t



∣
∣u̇∗

r (t)
∣
∣dt

∣∣
∣∣ +

∣
∣ur

(
t∗)∣∣

≤ √
(H + M)|t| + M

≤ √
(H + M)

(|a| + |b|) + M,

which implies that

max
t∈[a,b]

∣∣u∗
r (t)

∣∣ ≤ √
(H + M)

(|a| + |b|) + M. (.)

Then we have shown that u∗
r is uniformly bounded on any compact set of R and uniformly

equi-continuous on R. By the Arzelà-Ascoli theorem, it follows from inequalities (.) and
(.) that there is a subsequence {u∗

rj
}j> converging to u∞ in Cloc(R, RN ).
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Step : We will show that u∞ is a solution of problem (.)-(.). By Lemma . and the
definition of u∗

rj
, we have

ü∗
rj

(t) + ∇V
(
u∗

rj
(t)

)
= 

with



∣∣u̇∗

rj
(t)

∣∣ + V
(
u∗

rj
(t)

)
= H

for each j >  and t ∈ (–Tr + t∗, Tr + t∗). Take a, b ∈ R such that a < b. By Lemma ., u∗
rj

has
no collision uniformly on [a, b]. So ürj (t) is continuous on [a, b] and ürj (t) → –∇V (t, u∞(t))
uniformly on [a, b]. It follows that ürj is a classical derivative of u̇rj in (a, b) for each j > .
Moreover, since u̇rj → u̇∞ uniformly on [a, b], we get

ü∞(t) + ∇V
(
u∞(t)

)
= 

with



∣∣u̇∞(t)

∣∣ + V
(
u∞(t)

)
= H

for all t ∈ [a, b]. Since a and b are arbitrary, we conclude that u∞ satisfies (.)-(.).
Step : We need to show the hyperbolicity of u∞(t). We prove this conclusion in an

indirect way. First, we show that |u∞(t)| → +∞ as t → +∞. Otherwise, there exists a
sequence denoted by tn such that tn → +∞ as n → +∞ and

∣∣u∞(tn)
∣∣ ≤ M∞ for all n ∈ N+ (.)

for some M∞ > . By (.) and (.), we obtain that

∫ Tr+t∗

–Tr+t∗

√
H – V

(
u∗

r (t)
)∣∣u̇∗

r (t)
∣
∣dt ≥

∫ t∗+t+

t∗+t–

√
H – V

(
u∗

r (t)
)∣∣u̇∗

r (t)
∣
∣dt + 

√
H(r – L).

Lemma . shows that


√

Hr + M ≥
∫ t∗+t+

t∗+t–

√
H – V

(
u∗

r (t)
)∣∣u̇∗

r (t)
∣∣dt + 

√
H(r – L).

Together with (.), we have


√

HL + M ≥
∫ t∗+t+

t∗+t–

√
H – V

(
u∗

r (t)
)∣∣u̇∗

r (t)
∣∣dt

=
√


∫ t∗+t+

t∗+t–

(
H – V

(
u∗

r (t)
))

dt

≥ √
H(t+ – t–). (.)

Subsequently, let L > max{M, M∞,σ} be a constant independent of r in the proof of
Lemma .. It follows from (.) that t– < +∞. But

t+ → +∞ as r → +∞,
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which implies that

t+ – t– → +∞ as r → +∞.

This contradicts (.). Then we obtain that |u∞(t)| → +∞ as t → +∞. The proof for
t → –∞ is similar. Then we finish the proof of Theorem . �

6 Proof of Theorem 2
Since condition (V) is stronger than (V), we can obtain the existence of hyperbolic orbits
similar to the proof of Theorem . Subsequently, we give the estimate of the asymptotic
directions of hyperbolic orbits at infinity. Similar to Felmer and Tanaka [], we set

A(t) =
√∣

∣ur(t)
∣
∣∣∣u̇r(t)

∣
∣ –

(
ur(t), u̇r(t)

) and ω(t) =
A(t)

|ur(t)||u̇r(t)| .

Using the motion and energy equations, we have

∣∣Ȧ(t)
∣∣ ≤ ∣∣ur(t)

∣∣∣∣∇V
(
ur(t)

)∣∣

and

dω

dt
=


|ur(t)||u̇r(t)|

(
–ω

√
 – ω sign

(
ur(t), u̇r(t)

)(
H – V

(
ur(t)

))
+

∣
∣ur(t)

∣
∣
∣
∣∇V

(
ur(t)

)∣∣).

Lemma . (see[]) Assume that ur is a solution for problem (.)-(.) obtained in
Lemma .. For any η ∈ (, ), there exists Lη ≥ m such that if

∣
∣ur(t)

∣
∣ ≥ Lη,

(
ur(t), u̇r(t)

)
>  and ω(t) < η (.)

for some t ∈ (–Tr , Tr), then we have for t ∈ [t, Tr]
(i) ω(t) < η,

(ii) d
dt |ur(t)| ≥ √

 – η|u̇r(t)|,
(iii) d

dt |ur(t)| ≥ √
( – η)H ,

(iv) |ur(t)| ≥ |ur(t)| +
√

( – η)H(t – t).

Lemma . Let ur be a solution for problem (.)-(.) obtained in Lemma . satisfying
(.) and |ur(t)| ≥ σ with t ≥ t for certain t ∈ (–Tr , Tr) with η ∈ (, 

 ) and Lη be as in
Lemma .. Then, for t ≥ t, there exist M, M >  independent of η, ur(t) and t such that

∣
∣∣
∣

ur(t)
|ur(t)| –

ur(t)
|ur(t)|

∣
∣∣
∣ ≤ Mη +

M

|ur(t)|β .

Proof By Lemma ., (iii) of Lemma . and (V), we can estimate A(t) as follows.

A(t) ≤ A(t) +
∫ t

t

∣∣ur(s)
∣∣∣∣∇V

(
ur(s)

)∣∣ds

≤ A(t) +
M√

( – η)H

∫ t

t

∣
∣ur(s)

∣
∣
∣
∣∇V

(
ur(s)

)∣∣ d
ds

∣
∣ur(s)

∣
∣ds
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≤ A(t) +
M√

( – η)H

∫ |ur(t)|

|ur(t)|
ϕ

∣
∣∣
∣∇V

(
ϕ

ur(s)
|ur(s)|

)∣
∣∣
∣dϕ

≤ A(t) +
Mρ√

( – η)H

∫ |ur(t)|

|ur(t)|


ϕκ– dϕ

≤ A(t) +
Mρ√

( – η)H(β – )


|ur(t)|κ–

≤ A(t) +
M

|ur(t)|κ– (.)

for some M >  independent of r. Since we have

∣∣∣
∣

d
dt

ur(t)
|ur(t)|

∣∣∣
∣ =

A(t)
|ur(t)| , (.)

then it follows from (iii) of Lemma ., (.) and (.) that

∣∣
∣∣

ur(t)
|ur(t)| –

ur(t)
|ur(t)|

∣∣
∣∣ ≤

∫ t

t

A(s)
|ur(s)| ds

≤
(

A(t) +
M

|ur(t)|κ–

)∫ t

t


|ur(s)| ds

≤
(

A(t) +
M

|ur(t)|κ–

)


√
( – η)H

∫ t

t


|ur(s)|

d
ds

∣∣ur(s)
∣∣ds

≤
(

A(t) +
M

|ur(t)|κ–

)


√
( – η)H


|ur(t)| .

By energy equation and the definition of t, we have

A(t) = ω(t)
∣∣ur(t)

∣∣∣∣u̇r(t)
∣∣ ≤ η

∣∣ur(t)
∣∣
√


(
H – V

(
ur(t)

))
,

which implies that for some M, M >  independent of r

∣
∣∣
∣

ur(t)
|ur(t)| –

ur(t)
|ur(t)|

∣
∣∣
∣ ≤ Mη +

M

|ur(t)|κ ,

which proves this lemma. �

By Lemmas ., . and ., similar to [], we have the following lemma.

Lemma . (see []) For any ε > , there exists M >  such that for r > M

ur
([

t∗, Tr
])⋂{|x| ≥ M

} ⊂
{

y ∈ RN :
∣∣
∣∣

y
|y| – e+

∣∣
∣∣ < ε

}
,

where e+ is the given direction defined in 	r and t∗ is defined as (.).

Let t ≥ t∗ such that |ur(t)| = Lη . Then, for any ε > , we get

∣∣
∣∣

ur(t)
|ur(t)| – e+

∣∣
∣∣ < ε (.)
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for all t ≥ t, which implies that

u∞(t)
|u∞(t)| → e+ as t → +∞.

Similarly, we can get

u∞(t)
|u∞(t)| → e– as t → –∞.

From the above discussion, we can see that there exists at least one hyperbolic solution
for (.)-(.) with H >  which has the given asymptotic direction at infinity. Then we
finish the proof of Theorem .
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