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Abstract
Sufficient conditions in terms of growth restrictions are given for the solvability of the
Dirichlet boundary value problem to forced nonlinear differential equations involving
the combination of viscous and dry frictions. Explicit estimates of solutions and their
derivatives allow us to restrict ourselves to a sufficiently large neighbourhood of the
origin, when formulating these effective conditions. In this way, the behaviour of
nonlinearities outside of this neighbourhood can be quite arbitrary. In order to get
optimal solvability criteria, the problems with one-term and complete linear
differential operators will be treated separately by means of various Green’s functions.
The obtained results are compared with some of their analogies of the other authors.
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1 Introduction
The Dirichlet problem is one of the mostly studied boundary value problems for dif-
ferential equations. For ordinary differential equations, the first results due to Hamel,
Hammerstein and Lichtenstein were obtained by variational methods (see [], where also
more recent results established in this way are systematically described). After publish-
ing the Schauder fixed point theorem in , topological methods started to be alterna-
tively applied also for vector equations (see e.g. [–]). It is well known from the s
that, according to the Scorza Dragoni theorem for vector second-order ordinary differ-
ential equations with bounded continuous right-hand sides (r.h.s.), the Dirichlet problem
is always solvable (see [, ]). Thus, for instance as a very particular case, the Dirichlet
problem for a forced mathematical pendulum equation, i.e.

x′′(t) + b sin x(t) = p(t), x() = x, x(T) = xT ,

where b, x, xT and T >  are real constants, admits a solution, for any b and p ∈
C([, T],R). In fact, p : [, T] → R can be only Lebesgue integrable, i.e. measurable and
∫ T

 |p(t)|dt < ∞, and, for the same goal, the pendulum equation can involve the viscous
damping term, i.e.

x′′(t) + ax′(t) + b sin x(t) = p(t), a ∈R

(see e.g. []).
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On the other hand, the Dirichlet problem for a forced linear oscillator with a viscous
friction, i.e.

x′′(t) + ax′(t) + bx(t) = p(t), x() = x, x(T) = xT ,

has a unique solution, provided again
∫ T

 |p(t)|dt < ∞, but still the homogeneous problem,
namely

x′′(t) + ax′(t) + bx(t) = , x() = , x(T) = ,

should have only a trivial solution which is not always the case; otherwise, the problem is
in resonance.

In the presence of a dry friction, the notion of a Carathéodory solution, i.e. the one with
an absolutely continuous derivative, is insufficient. The appropriate notion is a Filippov
solution which is a Carathéodory solution, but of a differential inclusion with a Filippov
regularized right-hand side (see e.g. [, ]). For the history and phenomenology of dry
friction problems in general, see e.g. [–].

For the combination of viscous and dry frictions, it means to consider the problem

x′′(t) + ax′(t) + b sin x(t) + c sgn x′(t) = p(t), x() = x, x(T) = xT , ()

when dealing with a Filippov solution of a forced pendulum equation, resp. the problem

x′′(t) + ax′(t) + b sin x(t) ∈ p(t) – c Sgn x′(t), x() = x, x(T) = xT , ()

where

Sgn z =

⎧
⎪⎨

⎪⎩

–, for z ∈ (–∞, ),
[–, ], for z = ,
, for z ∈ (,∞),

()

when dealing with a Carathéodory solution of a forced pendulum inclusion.
In the case of a forced ‘linear’a oscillator, the related problems read as follows:

x′′(t) + ax′(t) + bx(t) + c sgn x′(t) = p(t), x() = x, x(T) = xT , ()

resp.

x′′(t) + ax′(t) + bx(t) ∈ p(t) – c Sgn x′(t), x() = x, x(T) = xT . ()

Applying the Kakutani-Ky Fan fixed point theorem (see e.g. Theorem II... on pp.-
 in []), Lasota and Opial (see Theorem  in []) formulated in  a theorem
for a first-order vector problem. This theorem solves problem () resp. (), for any a,
b, c, provided only

∫ T
 |p(t)|dt < ∞, as well as problem () resp. (), provided again

∫ T
 |p(t)|dt < ∞, and additionally requiring either |b|T to be sufficiently small or a triv-

ial solvability of a homogeneous problem

x′′(t) + ax′(t) + bx(t) = , x() = x, x(T) = xT .
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On the other hand, the estimates of solutions and derivatives are not indicated explicitly
in [].

There are also further related results concerning problems () and () obtained mainly
by means of degree arguments (see e.g. [–]), but none of them allows us to get such
simple criteria as those in [].

For instance, according to Theorem . in [] as well as Theorem  in [], where the
combination of sign and growth restriction was employed, both problems () and () are
solvable only in the lack of a viscous friction, i.e. only for a = , provided

∫ T
 |p(t)|dt <

∞ for (), and
∫ T

 |p(t)|dt < ∞ together with b ≤  for (). Moreover, the estimates of
solutions are again not indicated explicitly in [, ].

Similarly, in Theorem . in [], Theorem . in [] and Theorem . in [], the
viscous friction term ax′ cannot be involved in () and () but, under more restrictive
assumptions than those in [, ], the solution estimates are available there.

Using the Hartman-type conditions (called along the lines of the classical paper []), as
in Corollary . in [], the related sufficient conditions for the solvability of () are again
more restrictive than those in Theorem  in [], namely b < , p is continuous on [, T],
and

P + |c| + k

–b
≤ sin

(
π


– k

)

, k ≤ π


, ()

where

k := max
{|x|, |xT |}, k :=

|xT – x|
T

, P := max
t∈[,T]

∣
∣p(t)

∣
∣,

but a can be this time different from zero, i.e. a �= .
Those for the solvability of () hold, according to Corollary . in [], without (), i.e.

with b <  and p is continuous on [, T] (⇒ |p(t)| ≤ P, t ∈ [, T]), only.
In the absence of a viscous friction, i.e. when a = , the forcing term p can be, accord-

ing to Corollary . in [] and Theorem  in [], Lebesgue measurable and essentially
bounded, for both problems () and (). For b = , however, it should be c = , p(t) ≡ 
and k =  or a =  in order Corollaries . and . in [] and Theorem  in [] to be
applied to () and () which reduces to a trivial solvability of () and ().

On the other hand, under the above assumptions with b < , the solution x(·) estimates
for () and () can be this time expressed explicitly as

∣
∣x(t)

∣
∣ ≤ arcsin

(
P + |c| + k

–b

)

– k ≤ π


– k ()

and

∣
∣x(t)

∣
∣ ≤ P + |c| + k

–b
+ k, ()

respectively.
If further possibly discontinuous nonlinearities or multivalued maps are implemented

into the right-hand sides of given differential equations or inclusions whose growth has,
for instance, a superlinear character sufficiently far from the origin, then Theorem  in []
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does not any longer apply. Having, however, to our disposal explicit estimates of solutions
like () or () and their derivatives, we can formulate criteria such that the implemented
new terms can behave in an arbitrary way outside of the domains characterized by these
estimates. In this way, all the results under our consideration can be naturally extended.

This will be therefore our main aim of the present paper. Of course, for obtaining the
explicit estimates of solutions and their derivatives, we should study, unlike in [], exclu-
sively the second-order Dirichlet boundary value problems. For the sake of brevity we will
prove only one main theorem for the scalar problem. Nevertheless, since all the related
proofs of all the cases under our consideration are quite analogous and differ just by the
technical details, we can also present the related solvability criteria and some solutions
estimates.

On the other hand, we will discuss in detail the advantages and disadvantages of the us-
age of one-term vs. complete linear differential operator for the associated Green’s func-
tions.

Hence, our paper will be organized as follows. After the preliminaries, the scalar multi-
valued Dirichlet problem of the form

x′′(t) + ax′(t) + bx(t) ∈ P(t) + F(x(t)) + F(x′(t)) – c Sgn x′(t),
x() = x, x(T) = xT ,

}

()

will be considered. We will distinguish between the one-term linear differential operator
Lx := x′′ (then the remaining terms ax′ + bx will be considered in Section  as a part of
a multivalued perturbation of the r.h.s. of the inclusion in ()) and the complete linear
differential operator Lx := x′′ + ax′ + bx in Section , where particular vector analogies of
some obtained results are also indicated.

2 Preliminaries
Let X, Y be two metric spaces. We say that ϕ is a multivalued mapping from X to Y
(written ϕ : X � Y ) if, for every x ∈ X, a nonempty closed subset ϕ(x) of Y is given. We
can associate with ϕ its graph �ϕ , the subset of X × Y , defined by

�ϕ :=
{

(x, y) ∈ X × Y | y ∈ ϕ(x)
}

.

A multivalued mapping ϕ : X � Y is called upper semicontinuous (u.s.c.) if, for each
open U ⊂ Y , the set {x ∈ X | ϕ(x) ⊂ U} is open in X.

Lemma  (cf., e.g., Proposition I.. in []) If ϕ : X � Y is u.s.c., then the graph �ϕ is a
closed subset of X × Y .

Lemma  (cf., e.g., Proposition I.. in []) Assume that ϕ : X � Y is a multivalued
mapping such that ϕ(X) ⊂ K , where K ⊂ Y is a compact set, and the graph �ϕ of ϕ is
closed. Then ϕ is u.s.c.

Let Y be a separable metric space and (�,U ,μ) be a measurable space, i.e. a set �

equipped with a σ -algebra U of subsets and a countably additive measure μ on U . For
our needs here, � will be a bounded domain in R

k , equipped with the Lebesgue measure.
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A multivalued mapping ϕ : � � Y is called measurable if {ω ∈ � | ϕ(ω) ⊂ V } ∈ U , for
each open set V ⊂ Y .

A multivalued mapping F : J ×R
n �R

m with compact and convex values, where J ⊂R

is a compact interval, is an upper-Carathéodory (shortly, u-Carathéodory) mapping if it
satisfies

(i) t � F(t, x) is measurable, for every x ∈R
n,

(ii) x � F(t, x) is u.s.c., for almost all (a.a.) t ∈ J ,
(iii) |y| ≤ r(t)( + |x|), for every (t, x) ∈ J ×R

n, and every y ∈ F(t, x), where r : J → [,∞)
is a Lebesgue integrable function.

Let F : X � Y be a multivalued mapping and f : X → Y be a single-valued mapping. We
say that f is a selection of F (written f ⊂ F) if f (x) ∈ F(x), for every x ∈ X.

We will employ the following definitions and statements.

Proposition  (Castaing representation, cf. Theorem III. in []) Let X be a separable
metric space, (�,U ,μ) a measurable space, and ϕ a measurable multivalued mapping from
� to complete subsets of X. Then there exists a sequence {fn} of measurable selections of ϕ

such that, for every x,

ϕ(x) =
{

fn(x) | n ∈N
}

=
⋃

n∈N
fn(x),

where the bar denotes the closure in X.

Lemma  (cf., e.g., Lemma . in []) Let F : J ×R
n �R

n be a u-Carathéodory multival-
ued mapping. Then the composition F(t, q(t)) admits, for every q ∈ C(J ,Rn), a single-valued
measurable selection.

If X ⊂ Y and ϕ : X � Y , then a point x ∈ X is called a fixed point of ϕ if x ∈ ϕ(x). We set
Fix(ϕ) := {x ∈ X | x ∈ ϕ(x)}.

Definition  Let X and Y be subsets of normed linear spaces and ϕ : X � Y be a multi-
valued mapping. If Y is convex, then ϕ is called a Kakutani map, provided ϕ is u.s.c. with
(nonempty) compact, convex values.

Let X and Y be metric spaces. A multivalued mapping ϕ : X � Y is called compact if its
image ϕ(X) =

⋃{ϕ(x) | x ∈ X} is contained in a compact subset of Y .

The following statement, which we state in the form of proposition, is usually called the
Kakutani-Ky Fan-type fixed point theorem.

Proposition  (cf., e.g., Theorem II.. in []) Let C be a convex (not necessarily closed)
subset of a normed linear space, and let ϕ : C � C be a compact Kakutani map. Then ϕ

has a fixed point.

Definition  Let ϕ : J ×R
n �R

n be a convex-valued, bounded and measurable mapping.
Then the mapping

�(t, x) =
⋂

δ>

⋂

μ(N)=

convϕ
(
B
(
(t, x), δ

)\N
)
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is called the Filippov-like regularization of ϕ, where μ denotes Lebesgue measure on R
n,

N ⊂ R
n, and conv denotes the closed convex hull of a set. B((t, x), δ) is an open ball of

radius δ > , centered at a point (t, x).

Observe that � is a bounded u.s.c. mapping with (nonempty) compact and convex val-
ues.

Let P : J �R
n be a multivalued mapping having a nonempty set of Lebesgue integrable

selections. The Aumann integral of P is defined as follows (cf. []):

∫

J
P(t) dt :=

{∫

J
p(t) dt

∣
∣
∣ p ⊂ P is a Lebesgue integrable selection of P

}

.

Now, we shall consider the vector boundary value problem (BVP) in R
n:

Lu(t) = f (t), a ≤ t ≤ b, a, b ∈R, ()

where L is a linear ordinary differential operator of order  and f : [a, b] →R
n is a Lebesgue

measurable function in a ≤ t ≤ b, with homogeneous boundary conditions

u(a) = , u(b) = . ()

Proposition  (cf., e.g., Theorem .. in []) If the homogeneous BVP associated with
(), (), i.e. the one with f (t) ≡ , has only a trivial solution, then the BVP (), () has
exactly one solution which is given by

u(t) =
∫ b

a
G(t, s)f (s) ds,

where G : [a, b] × [a, b] → R is the Green’s function related to the homogeneous BVP asso-
ciated with (), ().

It will also be convenient to recall the following lemmas.

Lemma  (cf., e.g., Theorem .. in []) Assume that the sequence of absolutely contin-
uous functions xk : J → R

n, where J is a compact interval, satisfies the following conditions:
• the set {xk(t) | k ∈N} is bounded ∀t ∈ J ,
• there is a Lebesgue integrable function α : J →R such that

∣
∣x′

k(t)
∣
∣ ≤ α(t), for almost all t ∈ J ,∀k ∈N.

Then there exists a subsequence {xk} (denoted just the same) convergent to an absolutely
continuous function x : J →R

n in the following sense:
(i) {xk} uniformly converges to x,

(ii) {x′
k} weakly converges in L(J ,Rn) to x′.

Lemma  (cf. [], p.) Let J ⊂ R be a compact interval and F : J × R
n � R

n be a
u-Carathéodory mapping. Let NF : C(J ,Rn) � L(J ,Rn) be the Nemytskiı̌ operator defined
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as follows:

NF (x) :=
{

f ∈ L(J ,Rn) | f (t) ∈ F
(
t, x(t)

)
, for almost all t ∈ J

}
,

for every x ∈ C(J ,Rn). Then, if the sequences {xi} ⊂ C(J ,Rn) and {fi} ⊂ L(J ,Rn), fi ∈ NF (xi),
i ∈ N, are such that xi → x in C(J ,Rn) and fi → f weakly in L(J ,Rn), then f ∈ NF (x).

3 Main theorem
Let us consider at first the scalar Dirichlet problem for differential equations involving a
dry friction (), where a, b, c, x, xT and T >  are real constants and p : J →R, J = [, T],
is a Lebesgue integrable function.

Since the function sgn(·) is discontinuous in the spatial variable, problem () need not
have a Carathéodory solution, i.e. a function x : J → R with an absolutely continuous
derivative, satisfying (), for almost all t ∈ J . Therefore, we need another notion of an ap-
propriate solution, namely the one in the sense of Filippov. For this goal, we use the con-
cept of the Filippov-like regularization (see []) of spatially discontinuous maps. More
precisely, applying Definition  to the right-hand side involving spatial discontinuities, we
can speak about a solution in the sense of Filippov of the original problem, provided it is
a Carathéodory solution of a multivalued problem with a Filippov-like regularized right-
hand side.

In our situation, the discontinuous function to be regularized is the function signum. On
the basis of the Filippov-like regularization of sgn(·), we obtain the multivalued mapping
Signum defined in (), i.e. Sgn(·).

One can readily check that the Signum mapping is u.s.c. with compact and convex values.
Hence, after the described Filippov-like regularization, problem () with a discontinuous
function sgn(·) becomes multivalued, i.e. ().

By a Filippov solution of (), we understand a function x(·) : J →R with absolutely con-
tinuous derivative, satisfying problem (), almost everywhere on J .

For our needs, it will be convenient to consider still the problem involving more mul-
tivalued terms, namely (), where F : R� R, F : R� R are u.s.c. maps with compact,
convex values and P : J �R is an Aumann integrable mapping, J = [, T].

Making the change of variables y(t) = x(t) – v(t), where v(t) = xT –x
T t + x, we can imme-

diately see that x(t) is a Carathéodory solution of () if and only if y(t) satisfies

y′′(t) + a(y′(t) + v′(t)) + b(y(t) + v(t))
∈ P(t) + F(y(t) + v(t)) + F(y′(t) + v′(t)) – c Sgn(y′(t) + v′(t)), for a.a. t ∈ J ,

y() = , y(T) = .

⎫
⎪⎬

⎪⎭
()

One can also easily check that |v(t)| ≤ k := max{|x|, |xT |}, for all t ∈ J , and |v′(t)| = k :=
|xT –x|

T , for all t ∈ J .
Our aim at this moment is to prove the existence and localization theorems for prob-

lem (). Since the desired sufficient conditions will tendentiously take the form of growth
restrictions, let us start with the problem involving the truncated maps of F, F, i.e.

y′′(t) + ay′(t) + by(t)
∈ P(t) – av′(t) – bv(t) + F∗

 (y(t) + v(t))
+ F∗

 (y′(t) + v′(t)) – c Sgn(y′(t) + v′(t)), for a.a. t ∈ J ,
y() = , y(T) = ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

()
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where

F∗
 (z) :=

{
F(z), for |z| ≤ D,
F(D sgn(z)), for |z| ≥ D,

F∗
 (z) :=

{
F(z), for |z| ≤ D,
F(D sgn(z)), for |z| ≥ D.

Obviously, F|BD : BD �R and F|BD : BD �R are u.s.c. maps with compact and convex
values, where BD := {z ∈R | |z| ≤ D} is the closed ball, constant D is such that D = D + k +
k, where D >  is a suitable constant which will be specified later, and k, k are defined
above. Thus, the same is true for F∗

 , F∗
 : R�R defined as above.

Observe that, in this way, F∗
 (z + v(t)) = F(z + v(t)), for |z| ≤ D, and F∗

 (z + v′(t)) = F(z +
v′(t)), for |z| ≤ D.

Hence, let us find sufficient conditions for the solvability of (). We distinguish two
cases in order to separate formally a linear differential operator and a multivalued pertur-
bation.

In this section, we will deal with the problem formally written in the following way:

y′′(t) ∈ F(t, y(t), y′(t)), for a.a. t ∈ J ,
y() = , y(T) = ,

}

()

where F(t, y(t), y′(t)) := P(t) + F∗
 (y(t) + v(t)) + F∗

 (y′(t) + v′(t)) – a(y′(t) + v′(t)) – b(y(t) + v(t)) –
c Sgn(y′(t) + v′(t)), i.e. F : J × R × R� R is a u-Carathéodory multivalued mapping and
Ly(t) := y′′(t).

For a solvability of the multivalued nonlinear problem (), we use the Schauder lin-
earization device. Thus, we parametrize the right-hand side (r.h.s.) F in order to have a
one-parameter family of linear problems. Let

Q :=
{

u ∈ C(J ,R),‖u‖C ≤ D
}

be the set of candidate solutions, where ‖u‖C := sup{|u(t)| + |u′(t)|, t ∈ J} and D >  is a
suitable constant.

Then, for each q ∈ Q, we get a fully linearized problem

y′′(t) ∈ Fq(t), for a.a. t ∈ J ,
y() = , y(T) = ,

}

()

where Fq(t) = P(t) + F∗
 (q(t) + v(t)) + F∗

 (q′(t) + v′(t)) – aq′(t) – av′(t) – bq(t) – bv(t) –
c Sgn(q′(t) + v′(t)). Obviously, Fq : J � R is, for every q ∈ Q, an Aumann integrable func-
tion of t.

From Lemma , the existence follows of at least one measurable selection fq ⊂ Fq of the
multivalued composition Fq(t). Thus, we can consider the single-valued linear Dirichlet
problem

y′′(t) = fq(t), for a.a. t ∈ J ,
y() = , y(T) = .

}

()
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The homogeneous problem associated with the problem (), i.e.

y′′(t) = , for a.a. t ∈ J ,
y() = , y(T) = ,

}

()

has only a trivial solution. Hence, it follows from the Fredholm alternative (see Propo-
sition ) that problem () has a unique Carathéodory solution y(·), which takes the
form

y(t) =
∫ T


G(t, s)fq(s) ds,

where G is the Green’s function of problem (), i.e.

G(t, s) =

{
t(s–T)

T , for all  ≤ t ≤ s ≤ T ,
s(t–T)

T , for all  ≤ s ≤ t ≤ T .
()

One can easily check that |G(t, s)| ≤ T
 , for all t, s ∈ [, T].

In fact, since the multivalued composition Fq(t) is, for every q ∈ Q, obviously measur-
able, according to Proposition , we can even write

y(t) ∈
∫ T


G(t, s)

⋃

n∈N
fn,q(s) ds,

where {fn,q(t) ⊂ Fq(t)}n∈N is a sequence of measurable selections of Fq and the integral is
understood in the sense of Aumann.

Observe that because of

∂G

∂t
(t, s) =

{
(s–T)

T , for all  ≤ t ≤ s ≤ T ,
s
T , for all  ≤ s ≤ t ≤ T ,

()

we also have

y′(t) ∈
∫ T



∂G

∂t
(t, s)

⋃

n∈N
fn,q(s) ds,

where the integral is again understood in the sense of Aumann. Moreover, | ∂G
∂t (t, s)| ≤ ,

for all t, s ∈ [, T].
Hence, denoting by ϕ : Q � C(J ,R) the solution operator of (), where

ϕ :=
∫ T


G(t, s)Fq(s) ds =

∫ T


G(t, s)

⋃

n∈N
fn,q(s) ds,

instead of the existence of the solution of differential problem (), we can equivalently
investigate the existence of a fixed point of the multivalued operator ϕ. For this purpose,
we will apply the Kakutani-Ky Fan-type fixed point theorem (Proposition ). In this way,
we will prove the following theorem.
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Theorem  Let a, b, c, x, xT and T >  be real constants such that


T(T + )

> max
{|a|, |b|}. ()

Assume that P : J �R is an Aumann integrable multivalued mapping and F|BD : BD �R,
F|BD : BD � R are u.s.c. multivalued mappings with convex and compact values, where
D = D + k + k, D >  is still supposed to be a suitable constant such that

D ≥ �(D), ()

where

�(D) :=
[P + T(M(D) + M(D) + |a|k + |b|k + |c|)](T + )

 – kT(T + )
()

and

M(D) := max
|z|≤D+k+k

∣
∣F(z)

∣
∣, M(D) := max

|z|≤D+k+k

∣
∣F(z)

∣
∣,

k := max
{|a|, |b|}, k := max

{|x|, |xT |}, k :=
|xT – x|

T
,

P := sup
p⊂P

{∫ T



∣
∣p(t)

∣
∣dt

∣
∣
∣ p ⊂ P is a Lebesgue integrable selection of P

}

.

Then problem () admits a solution x(·) such that

max
t∈J

{∣
∣x(t)

∣
∣ +

∣
∣x′(t)

∣
∣
} ≤ D.

Proof In order to check all the assumptions of Proposition , we will proceed in four steps.
(i) Since problem () is uniquely solvable, the set ϕ(Q) is nonempty.
(ii) Let us prove that the set ϕ(Q), i.e. the set of solutions of (), is relatively compact.

According to the well known Arzelá-Ascoli lemma, the set of solutions is relatively com-
pact in C(J ,R) if and only if it is uniformly bounded and equi-continuous, both in the
C-norm.

(a) Let us show that the set of solutions of () is uniformly bounded in C(J ,R). Let u(·)
be a solution of () and fq ⊂ Fq be a measurable selection of Fq. We could see that such a
measurable selection exists and that u(·) takes the form

u(t) =
∫ T


G(t, s)fq(s) ds.

It is obvious that

max
|z|≤D

∣
∣F

(
z + v(t)

)∣∣ = max
|z|≤D

∣
∣F∗


(
z + v(t)

)∣∣ ≤ M(D),

max
|z|≤D

∣
∣F

(
z + v′(t)

)∣∣ = max
|z|≤D

∣
∣F∗


(
z + v′(t)

)∣∣ ≤ M(D),

where v(t) = xT –x
T t + x and v′(t) = xT –x

T .
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By means of Lemma  and in view of (), (), for any t ∈ J , we obtain the following
estimate:

∣
∣u(t)

∣
∣ +

∣
∣u′(t)

∣
∣ =

∣
∣
∣
∣

∫ T


G(t, s)fq(s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T



∂G

∂t
(t, s)fq(s) ds

∣
∣
∣
∣

≤
(

T


+ 
)∫ T



∣
∣fq(s)

∣
∣ds

≤
(

T


+ 
)∫ T



∣
∣p(s)

∣
∣

+
∣
∣f ∗


(
q(s) + v(s)

)∣∣ +
∣
∣f ∗


(
q′(s) + v′(s)

)∣∣ +
∣
∣a

(
q′(s) + v′(s)

)∣∣

+
∣
∣b

(
q(s) + v(s)

)∣
∣ +

∣
∣c SgnSel

(
q′(s) + v′(s)

)∣
∣ds

≤
(

T


+ 
)[

P + T
(
M(D) + M(D) + |a|k + |b|k + |c|)

+ k

∫ T



∣
∣q(s)

∣
∣ +

∣
∣q′(s)

∣
∣ds

]

,

≤
(

T


+ 
)

[
P + T

(
M(D) + M(D) + |a|k + |b|k + |c| + kD

)]
,

where f ∗
 ⊂ F∗

 , f ∗
 ⊂ F∗

 , p ⊂ P and SgnSel ⊂ Sgn are the related measurable selections.
Since this estimate holds in the same way for all q ∈ Q, this already means that the solu-

tions u(·) of (), i.e. the set ϕ(Q), are uniformly bounded in the C-norm.
Moreover, according to (), (), if there exists a positive constant D such that D ≥

�(D), then the set ϕ(Q) satisfies ϕ(Q) ⊂ Q.
(b) Now, let us show that the elements of the set ϕ(Q), i.e. the solutions u(·) of (),

are equi-continuous in the C-norm. For any t, t ∈ J with t < t, we have by means of
Lemma  and in view of ()

∣
∣u(t) – u(t)

∣
∣ =

∣
∣
∣
∣

∫ t

t

u′(t) dt
∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t

t

∫ T



∂G

∂t
(t, s)fq(s) ds dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

t

∫ T



∣
∣
∣
∣
∂G

∂t
(t, s)

∣
∣
∣
∣
∣
∣fq(s)

∣
∣ds dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ t

t

∫ T



∣
∣fq(s)

∣
∣ds dt

∣
∣
∣
∣

≤ (t – t)
[
P +

(
M(D) + M(D) + kD + |a|k + |b|k + |c|)T

]
.

Furthermore, we have still

∣
∣u′(t) – u′(t)

∣
∣ =

∣
∣
∣
∣

∫ t

t

u′′(t) dt
∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t

t

fq(t) dt
∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ t

t

∣
∣fq(t)

∣
∣dt

∣
∣
∣
∣

≤ (t – t)
[
M(D) + M(D) + kD + |a|k + |b|k + |c|]

+
∫ t

t

∣
∣p(t)

∣
∣dt.

Therefore, the solutions u(·) of () are equi-continuous in the C-norm. Summing up
(a) and (b), the elements of the set ϕ(Q) are relatively compact in the C-norm, as claimed.

(iii) We will show that the operator ϕ is u.s.c. In view of Lemma , and since ϕ was shown
to be compact, it is sufficient to show that the graph �ϕ is closed. Let {(qk , uk)} ⊂ �ϕ be a
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sequence such that {(qk , q′
k , uk)} → (q, q′, u), where q ∈ Q. For all k ∈ N and a.a. t ∈ J , the

sequence {u′
k} is bounded and |u′′

k (t)| ≤ |p(t)|+ M(D) + M(D) + kD + |c|+ |a|k + |b|k,
for a.a. t ∈ J . The sequence {wk := u′

k} satisfies all the assumptions of Lemma .
Thus, applying Lemma  to the sequence {wk := u′

k}, we find that there exists a subse-
quence of {u′

k}, for the sake of simplicity denoted in the same way as the sequence, which
converges uniformly to u′ on J and such that {u′′

k} converges weakly to u′′ in L(J ,R).
If we set zk := (uk , wk), then z′

k = (u′
k , w′

k) = (u′
k , u′′

k ) → (u′, u′′), weakly in L(J ,R). Let us
consider the system

z′
k(t) ∈ H

(
t, qk(t), q′

k(t)
)
, for a.a. t ∈ J ,

where z′
k(t) = (u′

k(t), w′
k(t)) and H(t, qk(t), q′

k(t)) = (wk , Fqk (t)).
Applying Lemma , for fi := z′

k , f := (u′, u′′), xi := (qk , q′
k), it follows that

(
u′(t), u′′(t)

) ∈ H
(
t, q(t), q′(t)

)
, for a.a. t ∈ J ,

i.e. u′′(t) ∈ Fq(t), for a.a. t ∈ J .
The set ϕ(Q) is relatively compact and graph �ϕ is closed. Therefore, the mapping ϕ is

u.s.c., compact and, in particular, with compact values.
(iv) Finally, we will show that the mapping ϕ has convex values.
Let u, u be two distinct solutions of problem () associated with measurable selections

f,q, f,q ⊂ Fq. Then, for all t ∈ J , we have

u(t) =
∫ T


G(t, s)f,q(s) ds,

u(t) =
∫ T


G(t, s)f,q(s) ds.

Let λ ∈ [, ] be arbitrary. Since F is convex-valued, the same is true for Fq, and subse-
quently

fq(t) = λf,q(t) + ( – λ)f,q(t)

must be a measurable selection of Fq, i.e. fq ⊂ Fq. We have

u(t) = λu(t) + ( – λ)u(t)

= λ

∫ T


G(t, s)f,q(s) ds + ( – λ)

∫ T


G(t, s)f,q(s) ds

=
∫ T


G(t, s)

[
λf,q(s) + ( – λ)f,q(s)

]
ds =

∫ T


G(t, s)fq(s) ds.

Thus, u(·) must also be a solution of (), by which the mapping ϕ has convex values.
After all, applying Proposition , we obtain the existence of a fixed point of the multi-

valued mapping ϕ which represents a solution of problem (). However, because of the
definitions of F∗

 , F∗
 , such a solution must be a solution of problem () as well as (). �
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Example  As an illustrative example of a Dirichlet problem satisfying rather implicit
conditions ()-(), we can consider (), where

|a| = |b| =



�⇒ k =



,

x = xT =



�⇒ k =



, k = ,

T = (
√

 – ) �⇒ 
T(T + )

=  >



= k (see ()).

In this way, conditions (), () take, for D = 
 , the form:

P
(

√
 – )

+
[

M

(



)

+ M

(



)

+ |c|
]

≤ 


.

Taking, furthermore, P ≤
√

–
 and |c| = 

 , we get for F(z) := fzm and F(z) := fzn the
inequality:

|f|
(




)m

+ |f|
(




)n

≤ 


.

Hence, if |f|, |f| ≤ 
 and m, n ≥ , then we arrive at (), (), because for |f| = |f| = 


and m = n, we have

(



)m–

≤ 

which holds for all m ≥ .
After all, under these assumptions, problem () admits a solution x(·) such that

max
t∈[,T]

{∣∣x(t)
∣
∣ +

∣
∣x′(t)

∣
∣} ≤ 


.

In fact, the same is true for (), where F, F are as above for z ∈ [– 
 , 

 ] and can be arbitrary
outside of the interval [– 

 , 
 ].

Remark  If, additionally, a multivalued mapping P is essentially bounded, then condition
() can be replaced, for the same conclusion for (), by


T(T + )

> max
{|a|, |b|},

and () with �(D) in () can be replaced by D̃ ≥ �′
(D̃), where

�′
(D̃) :=

[P + M(D̃) + M(D̃) + |a|k + |b|k + |c|]T(T + )
 – kT(T + )

,

P := ess supt∈J |P(t)|, because

∫ T



∣
∣G(t, s)

∣
∣ds ≤ T


and

∫ T



∣
∣
∣
∣
∂G

∂t
(t, s)

∣
∣
∣
∣ds ≤ T


.

Thus, the same conclusion holds for () with D replaced by D̃ = D̃ + k + k.
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Remark  If, additionally, a multivalued mapping F is bounded, i.e. M := maxz∈R |F(z)|,
and a = , we can still improve the estimate for a solution of (). Condition () can then
be replaced by 

T > |b|, provided there still exists a positive constant D such that

D ≥ T[P + (M(D) + M + |b|k + |c|)T]
 – T|b| .

Under these assumptions, problem () has a solution x(·) such that

max
t∈J

∣
∣x(t)

∣
∣ ≤ D + k,

max
t∈J

∣
∣x′(t)

∣
∣ ≤ D + k := P + T

[
M(D) + M + |b|(D + k) + |c|] + k,

where M(D) := max|z|≤D+k |F(z)|, k := max{|x|, |xT |}, k := |xT –x|
T .

Similarly if, additionally, a multivalued mapping F is bounded, i.e. M := maxz∈R |F(z)|,
and b = , then condition () can be replaced by 

T > |a|, provided there still exists a
positive constant D such that

D ≥ P + T(M + M(D) + |a|k + |c|)
 – T |a| ,

where M(D) := max|z|≤D+k |F(z)|. Here, problem () has a solution x(·) such that

max
t∈J

∣
∣x(t)

∣
∣ ≤ D + k :=

T


[
P + T

(
M + M(D) + |a|(D + k) + |c|)] + k,

max
t∈J

∣
∣x′(t)

∣
∣ ≤ D + k.

4 Discussion of further possibilities
Now, we will make comments on the existence of a solution of the problem (), but this
time considered in the following form:

x′′(t) + ax′(t) + bx(t) ∈ F(t, x(t), x′(t)), for a.a. t ∈ J ,
x() = x, x(T) = xT ,

}

where F(t, x(t), x′(t)) := P(t) + F(x(t)) + F(x′(t)) – c Sgn x′(t) is a u-Carathéodory multival-
ued mapping and Lx(t) := x′′(t) + ax′(t) + bx(t). This allows us to consider different Green’s
functions associated with the complete linear differential operator.

In this way, the related solvability criteria are as follows:
() For a – b > : D ≥ �(D), where

�(D) :=
e(λ–λ)T
√

a – b

[
 + |λ| + |λ|

]

× [
P + T

(
M(D) + M(D) + |c| + |a|k + |b|k

)]
,

λ = –a+
√

a–b
 , λ = –a–

√
a–b
 .

() For a – b = : D ≥ �(D), where

�(D) := e
|a|
 T

[

 +
T


(
 + |a|)

]

× [
P + T

(
M(D) + M(D) + |c| + |a|k + |b|k

)]
.
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() For a – b <  and T �= πk√
b–a , k ∈N: D ≥ �(D), where

�(D) :=
e

|a|
 T [ + |a| +

√
b – a]√

b – a| sin( T


√
b – a)|

× [
P + T

(
M(D) + M(D) + |c| + |a|k + |b|k

)]
.

In all the cases (), (), (), the problem () admits a solution x(·) such that maxt∈J{|x(t)| +
|x′(t)|} ≤ D + k + k, where k := max{|x|, |xT |}, k := |xT –x|

T .
In view of Remark  and the estimates above, we can immediately formulate the follow-

ing corollary for a Lebesgue integrable selection p ⊂ P and F(x) := d sin x.

Corollary  Let b, c, d, x, xT and T >  be real constants, and p : [, T] →R be a Lebesgue
integrable mapping, where P :=

∫ T
 |p(t)|dt < ∞. Then there exists a Filippov solution x(·)

of problem

x′′(t) + bx(t) + c sgn x′(t) + d sin x(t) = p(t), for almost all t ∈ [, T],
x() = x, x(T) = xT ,

}

()

such that, for  < b �= ( kπ
T ), k ∈N,

max
t∈[,T]

∣
∣x(t)

∣
∣ ≤ P + T[|b|k + |c| + |d|]√

b| sin(
√

bT)| + k,

max
t∈[,T]

∣
∣x′(t)

∣
∣ ≤ P + T[|b|k + |c| + |d|]

| sin(
√

bT)| +
|xT – x|

T
.

For b <  and b = , we obtain the respective estimates

max
t∈[,T]

∣
∣x(t)

∣
∣ ≤ e

√
–bT


√

–b
[
P + T

(|b|k + |c| + |d|)] + k,

max
t∈[,T]

∣
∣x′(t)

∣
∣ ≤ e

√
–bT[

P + T
(|b|k + |c| + |d|)] +

|xT – x|
T

and

max
t∈[,T]

∣
∣x(t)

∣
∣ ≤ T[P + T(|c| + |d|)]


+ k,

max
t∈[,T]

∣
∣x′(t)

∣
∣ ≤P + T

(|c| + |d|) +
|xT – x|

T
,

where k = max{|x|, |xT |}.

Remark  Observe that, for b = , the conclusion of Corollary  reduces to the Dirichlet
problem for a forced pendulum with a dry friction while, for d = , the result concerns the
Dirichlet problem for a forced ‘linear’ oscillator with a dry friction. Moreover, the non-
resonance condition b �= ( kπ

T ), k ∈ N, distinguished in Corollary  in three cases (b > ,
b < , b = ), is evidently optimal, when comparing it with all its analogies discussed above
(cf. (), Remark  and Remark ).
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Finally, we can also consider a particular case with c =  of the Dirichlet problem () in
a vector form in R

n, i.e. let a, b (c = ) and T >  remain real constants, but x, xT ∈ R
n,

F : Rn � R
n, F : Rn � R

n be u.s.c. with convex and compact values and P : J � R
n be

an Aumann (component-wise)-integrable mapping. In this way, dry friction terms can be
involved, after their Filippov’s regularization, in some components of F.

All the above statements can then be reformulated for the vector case in the appropriate
norm ‖ · ‖, when the truncated vector analogies of F∗

 , F∗
 in () are defined as follows

(i = , ):

F∗
i (z) :=

{
Fi(z), for ‖z‖ ≤ D,
Fi(r), where ‖r‖ = D, for z = rt, t ≥ .

Observe that in this way F∗
i is obviously u.s.c. with nonempty, compact, convex values,

provided Fi|BD is so, where BD := {z ∈R
n | ‖z‖ ≤ D}. Moreover, Mi(D) := maxz∈BD ‖Fi(z)‖ =

maxz∈Rn ‖F∗
i (z)‖, i = , .

Since BD is an absolute retract, there exists a continuous retraction r : Rn → BD such
that r|BD = id|BD (see e.g. Chapter I. in []). Therefore, we can alternatively replace F∗

i (z)
by Fi(r(z)), where (i = , )

Fi
(
r(z)

)
:=

{
Fi(z), for ‖z‖ ≤ D,
Fi(r(z)), for ‖z‖ ≥ D,

because the compositions Fi(r(z)), i = , , must also be u.s.c. maps with convex, compact
values with the same properties (see e.g. Chapter I.. in []).
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excitation. Sādhanā 20(2-4), 627-654 (1995)
19. Stewart, DE: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3-39 (2000)
20. Zhuravlev, VP: On the history of the dry friction law. Mech. Solids 48(4), 364-369 (2013)
21. Dugundji, J, Granas, A: Fixed Point Theory. Springer, Berlin (2003)
22. Lasota, A, Opial, Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations.

Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13(11-12), 781-786 (1965)
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