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Abstract
We prove the global existence of a unique strong solution to the initial boundary
value problem for the 3-D chemotaxis model on a bounded domain with slip
boundary condition when the initial perturbation is small in H2. Moreover, based on
energy methods, we also prove that the strong solution converges to a steady state
exponentially fast in time.
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1 Introduction
In this paper, we investigate global existence and exponential stability of strong solutions
to the following -D chemotaxis model:

{
vt – ∇f (u) = ,
ut – ∇ · (uv) = D�u,

(.)

which is one of the models describing the chemotaxis phenomenon in biology and is
closely related to the following system:

{
∂p
∂t = D∇ · (p∇(ln p

�(w) )),
∂w
∂t = �(p, w),

(.)

which is motivated by biological considerations and numerical computations carried out
by Othmer and Stevens in [] and Levine and Sleeman in []. Here p(x, t) denotes the
particle density and w(x, t) is the concentration of chemicals. D >  is the diffusion rate
of particles. The function � is commonly referred to as the chemotactic potential and �

denotes the chemical kinetics. Depending on the specific modeling goals, the kinetic func-
tion �(p, w) has a wide variability. In this paper, we consider a class of nonlinear kinetic
functions �(p, w)

�(p, w) = βf (p)w, (.)
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where β is a positive constant and f is a smooth function satisfying

f ′(u) >  (.)

for all u > .
Direct applications of (.) include two aspects: () the modeling of haptotaxis, where

cells move toward an increasing concentration of immobilized signals such as surface or
matrix-bound adhesive molecules; () the initiation of angiogenesis, which is a vital pro-
cess in the growth and development of granulation tissue and wound healing and is a
fundamental step in the transition of tumors from a dormant to a malignant state. A com-
prehensive qualitative and numerical analysis of (.) was provided in []. In particular,
explicit solutions describing and predicting aggregation, blowup, and collapse were con-
structed in one-dimensional space, based on special choices of initial data and the method
of matched asymptotic expansion. The results were generalized by Yang et al. []. More
discussions on model (.) can be found in [, ].

In fact, as in [, ], let �(w) = w–α with α being a positive constant and let �(p, w) be
defined in (.). System (.) can be rewritten as the following form:

{
pt = D�p + Dα∇ · (p ∇w

w ),
wt = βf (p)w.

(.)

Furthermore, by setting

q = ∇(ln w) =
∇w
w

,

we can rewrite system (.) as

{
pt = D�p + Dα∇ · (pq),
qt = β∇f (p).

(.)

Finally, for positive constants A, B, and c to be determined below, if taking τ = At, ξ = Bx,
u = p, v = cq, then system (.) becomes

{
vτ = βBc

A ∇ξ f (u),
uτ = DB

A �ξ u + DαB
Ac

∇ξ · (uv).
(.)

If we choose

⎧⎪⎨
⎪⎩

βBc
A = ,

B

A = ,
DαB
Ac

= ,
(.)

i.e.,

A = Dαβ > , B =
√

Dαβ > , c =

√
Dα

β
> ,
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then it is easy to see that u and v satisfy

{
vτ – ∇ξ f (u) = ,
uτ – ∇ξ · (uv) = D�ξ u.

(.)

If we replace the variables (τ , ξ ) by (x, t), (.) is exactly (.).
In this paper, we are concerned with the initial boundary value problem to system (.).

The system is supplemented by the following initial and boundary conditions:

⎧⎪⎨
⎪⎩

(v, u)(x, ) = (v, u)(x), x ∈ 
,
v · n|∂
 = ∂u

∂n |∂
 = , t ≥ ,


|
|
∫



u(x) dx = ū > ,
(.)

where 
 ⊂ R
 is a bounded domain with smooth boundary ∂
, n is the unit outward

normal vector on the boundary of 
, and the last condition is imposed to avoid the trivial
case, u ≡ .

To go directly to the theme of this paper, we now only review some former results closely
related. For the one-dimensional version of the chemotaxis model (.), the existence and
asymptotic behavior of smooth solutions have been studied by several authors. When the
function f is linear, i.e., f (u) = λu – μ with λ (> ) and μ (≥ ) being given constants, the
corresponding system reads as follows:

{
vt – ux = ,
ut – (uv)x = uxx.

(.)

The initial boundary value problem and the Cauchy problem for system (.) was consid-
ered by [] and [], respectively. In [], they considered the initial boundary value problem
for system (.). When ‖u – ‖

H + ‖v‖
H is sufficiently small, they proved the global

existence of smooth solutions to system (.). In [], the authors obtained the global exis-
tence of smooth solutions to the Cauchy problem for system (.) with large initial data.
Recently, the authors in [–] extended the results of [, ] to the case that f is a nonlin-
ear function of u, respectively. For high dimensions, the global well-posedness of a smooth
small solution to (.) with f (u) = u was investigated in [, ] for the Cauchy problem and
the initial-boundary value problem, respectively. In [], they obtained global existence
and optimal decay rates of strong solutions when the H-norm of the initial perturbation
is sufficiently small and the L-norm of the initial perturbation is bounded. In [], they
obtained global existence and exponential decay rates of strong solutions when the initial
perturbation is small in H. Recently, the authors in [] considered the Cauchy problem to
system (.) and proved global existence and optimal decay rates of strong solutions when
the H-norm of the initial perturbation is sufficiently small and the L-norm of the initial
perturbation is bounded. For other related results, such as nonlinear stability of waves in
one dimension and so on, please refer to [–, –] and the references therein.

However, to our knowledge, so far there has been no result on global existence and
asymptotic behavior of the strong solutions to the initial boundary value problem (.),
(.). The main motivation of this paper is to give a positive answer to this question. In
particular, we prove the global existence and exponential stability of a strong solution when
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the initial perturbation is small in H. The proofs are based on energy methods which have
been developed in [–] and the references therein.

Before stating our main results, we explain the notations and conventions used through-
out this paper. We denote positive constants by C. Moreover, the character ‘C’ may differ
in different places. Lp = Lp(
) ( ≤ p ≤ ∞) denotes the usual Lebesgue space with the
norm

‖g‖Lp =
(∫




∣∣g(x)
∣∣p dx

) 
p

,  ≤ p < ∞,

‖g‖L∞ = sup



∣∣g(x)
∣∣.

Hl(
) (l ≥ ) denotes the usual lth-order Sobolev space with the norm

‖g‖l =

( l∑
j=

∥∥∇ jg
∥∥

) 


,

where ‖ · ‖ = ‖ · ‖ = ‖ · ‖L . 〈·, ·〉 denotes the inner-product in L(
).
Now, we are in a position to state the main results.

Theorem . Assume ∇ × v =  and ‖(v, u – ū)‖ is sufficiently small. Then the initial
boundary value problem (.), (.) admits a unique strong solution (v, u) globally in time,
satisfying

v ∈ C(,∞; H(
)
) ∩ C(,∞; H(
)

)
,

u – ū ∈ C(,∞; H(
)
) ∩ C(,∞; L(
)

) (.)

and

∥∥(v, u – ū)(t)
∥∥

 +
∫ t



(∥∥∇ · v(τ )
∥∥

 +
∥∥∇u(τ )

∥∥


)
dτ ≤ C

∥∥(v, u – ū)
∥∥

,

∀t ∈ [, +∞], (.)

where C is a positive constant independent of t. Moreover, there exist positive constants C,
ϑ independent of t such that for any t ≥ , the solution (v, u) has the following exponential
decay bound:

∥∥(v, u – ū)(·, t)
∥∥

 ≤ Ce–ϑt . (.)

Remark . As compared to the classic results in [, , , ], where smallness con-
ditions on the H-norm of the initial data were proposed, we are able to prove the global
existence and exponential stability for the strong solutions to the initial boundary problem
under only the H-norm of the initial data is sufficiently small.

Finally, let us explain on some of the main difficulties and techniques involved in the pro-
cess. First, by noting that we consider the H case, it is nontrivial to follow the framework
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of [] directly, where the global existence and exponential decay rates of strong solutions
in H for system (.) with f (u) = u are obtained. In fact, the main idea in [] is to reduce
the total energy of the solution to those of the lower order spatial derivatives and temporal
derivatives of u, together with the div and curl of v. However, this method does not work
in our H case. One main observation in this paper is that the total energy of the solu-
tion is equivalent to the sum of H-norm of ∇ · v and L-norm of �u. With this in hand,
we can make full use of the dissipation structure of the system and deal with nonlinear
terms and boundary terms carefully to close the energy estimates of solutions. Second,
compared to [], we need to make careful energy estimates on nonlinear terms arising
from the nonlinearity of f (u) (see (.), (.), (.), (.), and (.)).

The rest of this paper is devoted to proving Theorem .. In Section , we reformulate
the problem. In Section , we deduce the a priori estimate of the solutions and complete
the proof of Theorem ..

2 Reformulated system
In this section, we will first reformulate the problem. Set

λ =
√

f ′(ū)
ū

, λ =
√

ūf ′(ū), λ =

√
ū

f ′(ū)
.

Taking change of variables (v, u) → (λv, u + ū) and linearizing the system around (, ū), we
can reformulate the initial boundary value problem (.), (.) as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vt – λ∇u = F,
ut – λ∇ · v – D�u = F,
(v, u)(x, ) = (v, u)(x), x ∈ 
,
v · n|∂
 = ∂u

∂n |∂
 = , t ≥ ,


|
|
∫



u(x) dx = ,

(.)

where

F = λ
(
f ′(u + ū) – f ′(ū)

)∇u,

F = λ∇ · (uv).
(.)

Here and in the sequel, for the notational simplicity, we still denote the reformulated vari-
ables by (v, u).

To prove the global existence of a solution to (.), we will combine the local existence re-
sult together with a priori estimates. To begin with, we state the following local existence,
the proof of which can be found in [].

Proposition . (Local existence) Assume that (v, u) ∈ H(
). Then there exists a suffi-
ciently small positive constant t depending only on ‖(v, u)‖ such that the initial bound-
ary value problem (.) admits a unique solution (v, u)(x, t) ∈ C([, t], H(
)) satisfying

sup
t∈[,t]

∥∥(v, u)(·, t)
∥∥

 ≤ 
∥∥(v, u)

∥∥
.
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Proposition . (A priori estimate) Let ∇ × v =  and (v, u) ∈ H(
). Assume that the
initial boundary value problem (.) has a solution (v, u)(x, t) on 
 × [, T] for some T > 
in the same function class as in Proposition .. Then there exist a small constant δ >  and
a constant C, which are independent of T , such that if

sup
≤t≤T

∥∥(v, u)(t)
∥∥

 ≤ δ,

then for any t ∈ [, T], it holds that

∥∥(v, u)(t)
∥∥

 +
∫ t



(∥∥∇ · v(τ )
∥∥

 +
∥∥∇u(τ )

∥∥


)
dτ ≤ C

∥∥(v, u – ū)
∥∥

. (.)

Moreover, there exist positive constants C, ϑ independent of t such that for any t ∈ [, T],
the solution (v, u) has the following exponential decay bound:

∥∥(v, u)(t)
∥∥

 ≤ Ce–ϑt . (.)

Theorem . follows from Propositions .-. and standard continuity arguments. The
proof of Proposition . will be given in Section .

3 Proof of Proposition 2.2
Throughout this section and the next section, we assume that all conditions of Proposi-
tion . are satisfied. Moreover, we make the a priori assumption

sup
≤t≤T

∥∥(v, u)(t)
∥∥

 ≤ δ, (.)

where δ is a sufficiently small positive constant.
The proof of Proposition . is based on several steps of careful energy estimates which

are stated as a sequence of lemmas. First we recall some inequalities of Sobolev type (see
[]).

Lemma . Let 
 be any bounded domain in R
 with smooth boundary. Then it holds

(i) ‖f ‖L∞(
) ≤ C‖f ‖H(
),

(ii) ‖f ‖Lq(
) ≤ C‖f ‖H(
),  ≤ q ≤ ,

for some constant C >  depending only on 
.

As in [], the following lemma (see []) plays an important role in our proofs, which
gives the estimate of ∇v by ∇ · v and ∇ × v.

Lemma . Let V ∈ Hk(
) be a vector-valued function satisfying V · n|
 = , where n is
the unit outer normal vector of ∂
. Then

‖V‖k ≤ C
(‖∇ · V‖k– + ‖∇ × V‖k– + ‖V‖k–

)
(.)

for k ≥ , and the constant C depends only on k and 
.
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The next lemma is an application of Lemma ., which is crucial to complete the proof of
Proposition .. Indeed, the lemma states that the total energy of the solution is equivalent
to the sum of H-norm of ∇ · v and L-norm of �u. Define

E(t) =
∥∥(v, u)

∥∥
, and G(t) = ‖∇ · v‖

 + ‖�u‖. (.)

Lemma . Under the assumptions of Proposition ., there exist positive constants C,
C which are independent of δ and t such that

CG(t) ≤ E(t) ≤ CG(t). (.)

Proof First, by virtue of (.), (.)-(.), and (.), we have
∫




u(x, t) dx = , (.)

which together with the Poincaré inequality gives

‖u‖ ≤ C‖∇u‖. (.)

Due to the boundary condition ∂u
∂n |∂
 = , we can use integration by parts, the Hölder

inequality, and (.) to get

‖∇u‖ ≤ C‖�u‖. (.)

Applying Lemma . with k =  and using (.), we have

‖∇u‖ ≤ C
(∥∥∇ · (∇u)

∥∥ +
∥∥∇ × (∇u)

∥∥ + ‖∇u‖)
≤ C

(‖�u‖ + ‖∇u‖)
≤ C‖�u‖. (.)

Combining (.)-(.) yields

‖u‖ ≤ C‖�u‖. (.)

Next, we deal with the case for v. Taking the curl for (.) and noting that ∇ × v = , we
have

∇ × v ≡ . (.)

Since �v = ∇(∇ · v) – ∇ × (∇ × v), we have from (.) and (.) that

‖∇v‖ ≤ ‖∇ · v‖, (.)

which together with the Poincaré inequality implies

‖v‖ ≤ C‖∇v‖ ≤ C‖∇ · v‖, (.)

where we have used the boundary condition v · n|∂
 = .
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Applying Lemma . with k = , , and using (.) and (.), we conclude that

‖v‖ ≤ C
(‖∇ · v‖ + ‖∇ × v‖ + ‖v‖

) ≤ C
(‖∇ · v‖ + ‖v‖) ≤ C‖∇ · v‖. (.)

Therefore, (.) and (.) yield

E(t) ≤ CG(t). (.)

The proof of the first inequality in (.) is trivial. Therefore, we have completed the proof
of Lemma .. �

Lemma . reduced the estimates of E(t) to those for G(t). Our next goal is to deduce
the estimates of G(t).

Lemma . Under the assumptions of Proposition ., there exists a positive constant C

which is independent of δ and t such that

E(t) +
∫ t



(∥∥∇ · v(τ )
∥∥

 +
∥∥�u(τ )

∥∥


) ≤ CE() for any t ≥ . (.)

Proof We will prove Lemma . in five steps.
Step  (Zero order estimate): Multiplying (.)-(.) by v, u respectively, then summing

up and integrating, we have




d
dt

∥∥(v, u)
∥∥ + D‖∇u‖ = 〈v, F〉 + 〈u, F〉, (.)

where we have used the boundary condition (.).
Applying the mean value theorem, the Hölder inequality, Lemma ., and (.), it is

clear that the two terms on the right-hand side of (.) can be estimated as follows:

∣∣〈v, F〉
∣∣ +

∣∣〈u, F〉
∣∣ ≤ C

∫



|vu∇u|dx

≤ C‖v‖L‖u‖L‖∇u‖
≤ C‖v‖‖∇u‖

≤ Cδ‖∇u‖. (.)

Combining (.) with (.) and using the fact that δ is sufficiently small, we have

d
dt

∥∥(v, u)
∥∥ + C‖∇u‖ ≤ . (.)

Step  (First order estimate): Applying ∇· and ∇ to (.) and (.), respectively, and
multiplying them by ∇ · v, ∇u, respectively, and then integrating them over 
, we obtain




d
dt

(‖∇ · v‖ + ‖∇u‖) + D‖�u‖

= 〈∇ · v,∇ · F〉 – 〈�u, F〉 +
∫




∇ · {[λ∇ · v + D�u + λ∇ · (uv)
]∇u

}
dx

:= J + J + J. (.)
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Next, we estimate the terms J-J one by one. To begin with, by using (.), the Hölder
inequality, the Cauchy inequality, and Lemma ., we can estimate the term J as follows:

J ≤ C
∫




(|u�u∇ · v| + |∇u∇u∇ · v|)dx

≤ C
(‖u‖L∞‖�u‖‖∇ · v‖ + ‖∇u‖L‖∇u‖L‖∇ · v‖)

≤ Cδ
(‖∇ · v‖ + ‖�u‖). (.)

Using similar arguments, we also have the following estimate for the term J:

J ≤ Cδ
(‖∇ · v‖ + ‖�u‖). (.)

Noting the boundary condition (.), it is clear that

J = . (.)

Substituting (.)-(.) into (.) and noting that δ is sufficiently small, we have

d
dt

(‖∇ · v‖ + ‖∇u‖) + C‖�u‖ ≤ Cδ‖∇ · v‖. (.)

Step  (Second order estimate): Applying ∇∇· and � to (.) and (.), respectively,
and multiplying them by ∇∇ · v, �u, respectively, and then integrating them over 
, we
obtain




d
dt

(‖∇∇ · v‖ + ‖�u‖) + D‖∇�u‖

= 〈∇∇ · v,∇∇ · F〉 – 〈∇�u,∇F〉

+
∫




∇ · {[λ∇∇ · v + D∇�u + λ∇∇ · (uv)
]
�u

}
dx

:= K + K + K. (.)

Next, we estimate the terms K-K respectively. Applying (.), (.), the Hölder inequality,
the Cauchy inequality, and Lemma ., the term K can be estimated as follows:

K ≤ C
∫




(|u∇�u| + |�u∇u| + |∇u∇u| + |∇u|)|∇∇ · v|dx

≤ C
(‖u‖L∞‖∇�u‖ + ‖�u‖L‖∇u‖L + ‖∇u‖L‖∇u‖L + ‖∇u‖

L
)‖∇∇ · v‖

≤ Cδ
(‖∇∇ · v‖ + ‖�u‖


)
. (.)

Using similar arguments, we also have the following estimate for the term K:

K ≤ Cδ
(‖∇∇ · v‖ + ‖�u‖


)
. (.)

Noting the boundary condition (.) and equation (.), we have

[
λ∇∇ · v + D∇�u + λ∇∇ · (uv)

] · n|∂
 = (∇u)t · n|∂
 = , (.)



Zhang and Xie Boundary Value Problems  (2015) 2015:116 Page 10 of 13

which implies

K = . (.)

Combining (.)-(.) and (.) gives

d
dt

(‖∇∇ · v‖ + ‖�u‖) + C‖∇�u‖ ≤ Cδ
(‖∇∇ · v‖ + ‖�u‖


)
. (.)

Step  (Estimate for ‖∇ · v‖): To begin with, multiplying (.) by ∇ · v and integrating
the resulting equation over 
, we have

λ‖∇ · v‖ = 〈ut ,∇ · v〉 + 〈–D�u,∇ · v〉 + 〈–F,∇ · v〉, (.)

where from (.) and (.) the first term on the right-hand side can be written as

〈ut ,∇ · v〉 =
d
dt

〈u,∇ · v〉 – 〈u,∇ · vt〉

= –
d
dt

〈∇u, v〉 + 〈∇u, vt〉

= –
d
dt

〈∇u, v〉 + 〈∇u,λ∇u + F〉. (.)

Then it follows from (.)-(.), (.), the Hölder inequality, and the Young inequality
that

λ‖∇ · v‖ +
d
dt

〈∇u, v〉

= 〈∇u,λ∇u + F〉 + 〈–D�u,∇ · v〉 + 〈F,∇ · v〉

≤ C‖�u‖ +
λ


‖∇ · v‖ + Cδ‖∇ · v‖ + C‖∇u‖. (.)

This together with the fact that δ is sufficiently small implies

d
dt

〈∇u, v〉 +
λ


‖∇ · v‖ ≤ C

(‖∇u‖ + ‖�u‖). (.)

Next, we deal with the estimate of ‖∇∇ · v‖. Applying ∇ to (.) and then multiplying
by ∇(∇ · v), we have from the Cauchy inequality that

λ


‖∇∇ · v‖ ≤ 〈∇ut ,∇∇ · v〉 + C‖∇�u‖ + C‖∇F‖. (.)

By integrating by parts several times, we estimate the first term on the right-hand side of
(.) as follows:

〈∇ut ,∇∇ · v〉 = –
d
dt

〈�u,∇ · v〉 + 〈�u,∇ · vt〉

= –
d
dt

〈�u,∇ · v〉 + 〈�u,λ�u + ∇ · F〉

≤ –
d
dt

〈�u,∇ · v〉 + C‖�u‖. (.)
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From (.), (.), (.), the Hölder inequality, the Cauchy inequality, and Lemma ., we
have

‖∇F‖ ≤ C
{‖∇v‖L‖∇u‖L + ‖v‖L∞

∥∥∇u
∥∥ + ‖u‖L∞‖∇∇ · v‖}

≤ Cδ
(‖∇∇ · v‖ + ‖�u‖). (.)

Substituting (.)-(.) into (.) and using the fact that δ is sufficiently small, we have

d
dt

〈�u,∇ · v〉(t) +
λ


‖∇∇ · v‖ ≤ C‖�u‖

 . (.)

Combining (.) and (.) gives

d
dt

(〈∇u, v〉 + 〈�u,∇ · v〉)(t) +
λ


‖∇ · v‖

 ≤ C
(‖∇u‖ + ‖�u‖


)
. (.)

Step  (Closure the energy estimate): Since δ is sufficiently small, multiplying ((.) +
(.) + (.)) by a suitably large positive constant D and adding it to (.) give

d
dt

H(t) + G(t) ≤ , (.)

where

H(t) = D
(∥∥(v, u)

∥∥ + ‖∇u‖ + G(t)
)

+ 〈∇u, v〉 + 〈�u,∇ · v〉. (.)

Applying Lemma . and noting that D is sufficiently large, it is clear that H(t) is equiva-
lent to G(t). This implies

d
dt

H(t) + H(t) ≤ . (.)

Integrating the above equation over [, t]×
 gives (.), and thus we complete the proof
of Lemma .. �

Proof of Proposition . First, by virtue of Lemma . and the Poincaré inequality, we can
obtain (.). Applying (.) and Lemma ., we can use the Gronwall inequality to get the
exponential decay rate (.). Therefore, we have completed the proof of Proposition ..
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