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Abstract
Consider an evolutionary equation related to the p(x)-Laplacian:
ut = div(ρα|∇u|p(x)–2∇u) + ∂bi(u,x,t)

∂xi
, (x, t) ∈ QT =� × (0, T ), which arises from

electrorheological fluid mechanics. Since ρ(x) = dist(x,∂�), the equation is
degenerate on the boundary, one may expect that there is not flux across the
boundary. The paper shows that the facts may be unexpected. The paper reviews
Fichera-Oleinik theory, then uses the theory to discuss the boundary value condition
related to the equation. If p– > 2, the existence and the uniqueness of the solutions
are researched. Finally, if bi ≡ 0, the behavior of the solutions near the boundary is
studied by the comparison theorem.
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1 Introduction
Consider the equation

ut = div
(
ρα|∇u|p(x)–∇u

)
+

N∑

i=

∂bi(u, x, t)
∂xi

, (x, t) ∈ QT = � × (, T), (.)

where � ⊂ RN is a bounded domain with suitably smooth boundary ∂�, ρ(x) = dist(x, ∂�)
is the distance function from the boundary, p(x) is a measurable function.

If α = , bi(s, x, t) ≡ , (.) becomes the evolutionary p(x)-Laplacian equation

ut = div
(|∇u|p(x)–∇u

)
, (x, t) ∈ QT = � × (, T), (.)

which has been researched widely in recent years. The equation emerges in the so-called
electrorheological fluid theory, in which p(x) is as a function of the external electromag-
netic field (see [, ] and the references therein). Certainly, if p(x) ≡ p is a constant in (.),
it is called the evolutionary p-Laplacian equation and emerges in the non-Newtonian fluid
theory. It has been studied by very many papers, we only quote some basic references [–]
here. By the way, the author also has researched (.) for a long time, cf. [–].

Throughout the paper we denote

p+ = ess sup
�

p(x), p– = ess inf
�

p(x).
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To consider the posedness of the solutions to (.) and (.), a nature basic functional
space is W ,p(x)

 (�). Let us introduce some basic definitions and properties of the function
spaces with variable exponents; for more details, see [–].

. Lp(x)(�) space,

Lp(x)(�) =
{

u : u is a measurable real-valued function,
∫

�

∣
∣u(x)

∣
∣p(x) dx < ∞

}

is equipped with the following Luxemburg norm:

|u|Lp(x) (�) = inf

{
λ >  :

∫

�

∣∣
∣∣
u(x)
λ

∣∣
∣∣

p(x)

dx ≤ 
}

.

The space (Lp(x)(�), | · |Lp(x)(�)) is a separable, uniformly convex Banach space.
. W ,p(x)(�) space,

W ,p(x)(�) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

is endowed with the following norm:

|u|W ,p(x) = |u|Lp(x)(�) + |∇u|Lp(x)(�), ∀u ∈ W ,p(x)(�). (.)

We use W ,p(x)
 (�) to denote the closure of C∞

 (�) in W ,p(x).
A very important property of the function spaces with variable exponents was found by

Zhikov in []. He showed that

W ,p(x)
 (�) 	= {

v ∈ W ,p(x)
 (�) : v|∂� = 

}
= W̊ ,p(x)(�).

Hence, the property of the space W ,p(x)
 (�) is different from that of the case when p is a

constant. The following lemma gives some basic properties of W ,p(x)(�).

Lemma .
(i) The spaces (Lp(x)(�), | · |Lp(x)(�)), (W ,p(x)(�), | · |W ,p(x)(�)) and W ,p(x)

 (�) are reflexive
Banach spaces.

(ii) We have p(x)-Hölder’s inequality. Let q(x) and q(x) be real functions with


q(x) + 
q(x) =  and q(x) > . Then the conjugate space of Lq(x)(�) is Lq(x)(�). For

any u ∈ Lq(x)(�) and v ∈ Lq(x)(�), we have

∣∣
∣∣

∫

�

uv dx
∣∣
∣∣ ≤ |u|Lq(x)(�)|v|Lq(x)(�).

(iii) If |u|Lp(x)(�) = , then
∫
�

|u|p(x) dx = .
If |u|Lp(x)(�) > , then |u|p–

Lp(x) ≤ ∫
�

|u|p(x) dx ≤ |u|p+

Lp(x) .
If |u|Lp(x)(�) < , then |u|p+

Lp(x) ≤ ∫
�

|u|p(x) dx ≤ |u|p–

Lp(x) .
(iv) If p(x) ≤ p(x), then

Lp(x)(�) ⊃ Lp(x)(�).
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(v) If p(x) ≤ p(x), then

W ,p(x)(�) ↪→ W ,p(x)(�).

(vi) We have the p(x)-Poincaré’s inequality. If p(x) ∈ C(�), then there is a constant
C > , such that

|u|Lp(x) (�) ≤ C|∇u|Lp(x)(�), ∀u ∈ W ,p(x)
 (�). (.)

This implies that |∇u|Lp(x) (�) and |u|W ,p(x)(�) are equivalent norms of W ,p(x)
 .

However, if the exponent p(x) is required to satisfy a logarithmic Hölder continuity con-
dition

∣
∣p(x) – p(y)

∣
∣ ≤ ω

(|x – y|), (.)

∀x, y ∈ QT , |x – y| < 
 with

lim
s→+

ω(s) ln

(

s

)
= C < ∞,

then (see [])

W ,p(x)
 (�) = W̊ ,p(x)(�). (.)

By (.) and (.), Antontsev-Shmarev [] established the existence and uniqueness re-
sults of (.). Since then, using the logarithmic Hölder continuity condition, there were
many papers in studying the solvability and the regularity of the equation related to (.);
for examples, see [, ] etc. When p– > , Peng [] had studied the existence of the
solutions of the equation

div
(|∇u|p(x)–∇u

)
+ f (x, u) = , x ∈ �, (.)

without the condition (.). By adopting a time difference method, Lian et al. [] gener-
alized the method of [] to study

ut = div
(|∇u|p(x)–∇u

)
+ f (x, t, u), (x, t) ∈ QT = � × (, T), (.)

provided that f satisfied some restrictions.
In our paper, we want to consider the initial boundary value problem of (.). By the

paper of Yin and Wang [], which studied the diffusion equation

ut = div
(
ρα|∇u|p–∇u

)
, (x, t) ∈ QT = � × (, T), (.)

we know that the initial value condition

u|t= = u(x), x ∈ �, (.)
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is always required. But due to the degeneracy of the diffusion ρα on the boundary, whether
we can require the usual boundary value condition

u(x, t) = , (x, t) ∈ ∂� × (, T), (.)

is uncertain. From the point of physics, if we regard (.) as a heat transfer equation, since
the diffusion coefficient vanishes on the boundary, it seems that there is not heat flux
across the boundary. However, Yin and Wang [] proved that, if α ≥ p – , the existence
and uniqueness of solutions can be obtained without any boundary value condition. In
other words, the solution of the equation is completely controlled by the initial value con-
dition. Thus, whether there is heat flux across the boundary is unknown actually.

The first aim of our paper is to probe how to give a suitable boundary value condition
of (.). We first review Fichera-Oleinik theory, and then we use it to discuss the suitable
boundary value condition related to (.). The main point is that, to assure the posedness of
the solutions to (.), instead of the whole boundary value condition (.), we can require
only a partial boundary value condition,

u(x, t) = , (x, t) ∈ 	p × (, T), (.)

where 	p is a subset of ∂�. In some cases, 	p can be expressed clearly, whereas in some
other cases, it is difficult to write out its explicit formulas.

We assume the following.
(A) We call a bounded domain � has the integral non-singularity, if there are constants

α > , p– > , such that

∫

�

ρ
– α

p–– dx ≤ c. (.)

(B) For any i ∈ {, , . . . , N}, bi(s, x, t) is a C function on R× � × [, T], and there are
constants β , c such that

∣
∣bi(s, x, t)

∣
∣ ≤ c|s|+β ,

∣
∣bis(s, x, t)

∣
∣ ≤ c|s|β ,

∣
∣bixi (s, x, t)

∣
∣ ≤ c, (.)

where bis = ∂bi
∂s , bixi = ∂bi

∂xi
as usual.

The main results in our paper are the following theorems.

Theorem . If p– >  and α < p––
 , the bounded domain � is with the integral non-

singularity (A), bi(s, x, t) and its partial derivatives satisfy the condition (B), and u satis-
fies

u ∈ L∞(�), ρα|∇u|p+ ∈ L(�), (.)

then (.) with initial boundary values (.)-(.) has a solution. In particular, when
	p = ∂�, then the solution is unique.

Remark . The explicit formula of 	p of (.) used in the theorem is listed in Sec-
tion .
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Theorem . If p– >  and α > , let u be a viscous solution of (.), then there are constants
c, c such that

cρ(x) ≤ u(x, t) ≤ cρ(x), (.)

when x is near the boundary.

2 The stage of formal operation
Consider the second order equation with the form

L(u) = ars(x)uxrxs + br(x)uxr + c(x)u = f (x). (.)

If for any real vector ξ = (ξ, ξ, . . . , ξm) and any point x ∈ �,

arsξrξs ≥  (.)

is true, then it is called the second order equation with nonnegative characteristic form
in �. Obviously, it entails an elliptic equation, a parabolic equation, a first-order equation
(the case arsξrξs ≡ ), ultra parabolic equation, Brown motion equation, Tricomi equation
on the half-plane and so on.

Consider the first boundary value problem of (.) in �, Fichera [] first made thorough
research in this problem. In what follows, we use the notations in [, ], especially, the
pairs of the indices imply summation. Suppose on � = �∪	, all the points x and all ξ ∈ Rn

satisfy the condition (.), � is appropriately smooth, ars ∈ C(�), br ∈ C(�), c ∈ C(�).
Let {ns} be the unit inner normal vector of ∂�̃ and denote that

	 =
{

x ∈ 	 : arsnrns = 
}

.

In 	, let us consider the Fichera function

b(x) ≡ (
br – ars

xs

)
nr . (.)

We denote

	 =
{

x ∈ 	 :
(
br – ars

xs

)
nr > 

}
,

	 =
{

x ∈ 	 :
(
br – ars

xs

)
nr < 

}

and

	 =
{

x ∈ 	 :
(
br – ars

xs

)
nr = 

}
,

	 \ 	 is denoted as 	.
The first boundary value problem of (.) is quoted as follows: in � = � ∪ 	, to find a

function u such that

L(u) = f (x), x ∈ �, (.)

u = g, x ∈ 	 ∪ 	, (.)
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where f is a given function, and g is a given function on 	 ∪	. Clearly, if (.) is an elliptic
equation, then (.)-(.) is the usual Dirichlet problem. For the cylindrical region, (.)-
(.) consists of the mixed problem, also known as parabolic equations with the initial
boundary values.

Now, if we consider (.) in our paper,

ut = div
(
ρα|∇u|p(x)–∇u

)
+

∂bi(u, x, t)
∂xi

, (x, t) ∈ QT , (.)

then we can rewrite it as

ut = aij(x, t)
∂u

∂xi∂xj
+ βi(x, t)

∂u
∂xi

+ γ (u, x, t), (.)

where

aij(x, t) = ρα|∇u|p(x)–[δij +
(
p(x) – 

)|∇u|–uxi uxj

]
,

βi = αρα–|∇u|p(x)–ρxi + ρα|∇u|p(x)– log |∇u|pxi + biu(u, x, t),

γ (u, x, t) = bixi (u, x, t).

If comparing (.) with (.), on the lateral boundary, when t = , the initial value con-
dition (.) is required, and as we know when t = T , no boundary value is necessary. The
more interesting phases appear on the bottom boundary. Generally, only a portion of the
bottom boundary can be required as the boundary value. Let us explain what happens as
follows.

By

aij
xj

= αρα–ρxj |∇u|p(x)–[δij|∇u| +
(
p(x) – 

)
uxi uxj

]

+ ρα|∇u|p(x)–[pxj |∇u| log |∇u| +
(
p(x) – 

)
uxk uxk xj + pxj uxj uxi

]

+
(
p(x) – 

)
ρα|∇u|p(x)–uxj uxi

[
pxj |∇u| log |∇u| +

(
p(x) – 

)
uxk uxk xj

]

+
(
p(x) – 

)
ρα|∇u|p(x)–(uxixj uxj + uxi uxjxj ),

if we notice that near the boundary 	 = ∂�, ρα(x) = o(ρα–), then

(
β i – αij

xj

)
ni = αρα–|∇u|p(x)–[ρxi |∇u| – ρxj

(
δij|∇u| +

(
p(x) – 

)
uxi uxj

)]
ni

+ biu(u, x, t)ni + o
(
ρα–)

= –
(
p(x) – 

)
αρα–(|∇u|p(x)–uxi uxj

)
ninj + biu(u)ni(x) + o

(
ρα–). (.)

Because the determinant of Ux = (uxi uxj )N×N ,

|uxi uxj |N×N =
N∏

i=

uxi |uxj |N×N = , x ∈ �,

and ith order principal minor determinants are all equal to , except that i = . Then ac-
cording to the characteristic value theory, due to the symmetry of N × N matrix Ux, there
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exists an orthogonal matrix P such that (uxi uxj )N×N = PAN×N P–, where A is a diagonal
matrix which is just the characteristic matrix of Ux. Let λi ≥  be the characteristic values
of Ux. By a direct calculation, we get

λ = |∇u|, λi = , i = , , . . . , N . (.)

We have

(
β i – αij

xj

)
ni = –

(
p(x) – 

)
αρα–|∇u|p(x)–�nPAN×N (�nP)T + biu(u, x, t)ni + o

(
ρα–)

= –
(
p(x) – 

)
αρα–|∇u|p(x)–m



+ biu(u, x, t)ni + o
(
ρα–), x ∈ ∂�, (.)

where �m = �nP.
Then it can be divided into the following cases.
. α > , then ρα|∂� = ρα–|∂� = .
.. bi ≡ . Then 	p = ∅, no boundary value is required.
.. bi is not identical to ,

	p =
{

x ∈ ∂� : biu(, x, t)ni < 
}

. (.)

It shows that (.) still needs the partial boundary condition when α > , this is different
from the case of bi ≡ , in which no boundary is required even when α > . For example,
considering the case of a one-dimensional space variable, and p = , x ∈ (, ), b(u, x, t) =
b(u), (.) becomes

ut =
(
ραux

)
x + b′(u)ux, (.)

	p in (.) means that (.) needs to give the boundary condition at x =  when b′() < 
and needs to give the boundary condition at x =  when b′() > .

In this case, certainly, when biu(, x, t)ni(x) ≥  is true for all x ∈ ∂�, 	p is an empty set,
then (.) does not require any boundary condition now.

. α = , then

I =
(
β i – αij

xj

)
ni = –

(
p(x) – 

)|∇u|p(x)–m
 + biu(, x, t)ni + o(ρ).

.. bi ≡ ,

I =
(
β i – αij

xj

)
ni = –

(
p(x) – 

)|∇u|p(x)–m
 + o(ρ).

If N = , then

	p =
{

x ∈ ∂� : p(x) > 
}

.

If N ≥ , then

	p =
{

x ∈ ∂� : p(x) > , m(x) 	= 
}

.
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.. bi is not identical to ,

I =
(
β i – αij

xj

)
ni = –

(
p(x) – 

)|∇u|p(x)–m
 + biu(, x, t)ni + o(ρ).

If N = , when for all x ∈ ∂�,

p(x) > , biu(, x, t)ni(x) ≤ ,

then 	p = ∂�. Generally, it is only a subset of ∂� and it is difficult to write out the explicit
formula.

If N ≥ , when for all x ∈ ∂�,

p(x) > , biu(, x, t)ni(x) ≤ , m(x) 	= ,

then 	p = ∂�.
If N ≥ , when for all x ∈ ∂�,

biu(, x, t)ni(x) ≥ , m(x) = ,

then 	p = ∅. Generally, it is only a subset of ∂� and it is difficult to write out the explicit
formula.

. α < .
.. bi ≡ .
When N = , (.) becomes

I = –α
(
p(x) – 

)
ρα–∣∣u′(x)

∣
∣p(x)–m

 + O
(
ρα

)
.

If p(x) ≡ p, when p > , I < , then 	p = ∂�. When p ≤ , I ≥ , then 	p = ∅.
If p(x) is just a continuous function, then

	p =
{

x ∈ ∂� : p(x) > 
}

.

When N ≥ , if p(x) ≡ p > , then

	p =
{

x ∈ ∂� : m(x) 	= 
}

.

If p(x) ≡ p ≤ , then 	p = ∅.
If p(x) is just a function, then

	p =
{

x ∈ ∂� : p(x) > , m(x) 	= 
}

.

.. bi is not identical to .
When N = , (.) becomes

I = –α
(
p(x) – 

)
ρα–∣∣u′(x)

∣∣p(x)–m
 + bu(, x, t)n + O

(
ρα

)
.
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If p(x) ≡ p, when p > , I < , then 	p = ∂�. When p = ,

	p =
{

x ∈ ∂� : b(u)(, x, t)n < 
}

.

When p < , I > , then 	p = ∅.
If p(x) is just a function, then

	p =
{

x ∈ ∂� : p(x) > 
} ∪ {

x ∈ ∂� : p(x) = , biu(, x, t)ni < 
}

.

Let N ≥ , if p(x) ≡ p, when p > , then

	p =
{

x ∈ ∂� : m(x) 	= 
}

,

when p = ,

	p =
{

x ∈ ∂� : biu(, x, t)ni(x) < 
}

,

when p < , when for all x ∈ ∂�, m(x) 	= , then I > , 	p = ∅. In general, it is just a subset
of ∂�, and it is difficult to write out the explicit formula.

If p(x) is just a continuous function, then

	p =
{

x ∈ ∂� : p(x) > 
} ∪ {

x ∈ ∂� : p(x) = , biu(, x, t)ni < 
}

∪ {
x ∈ ∂� : p(x) < , m(x) 	= , biu(, x, t)ni < 

}
.

In other words, the boundary value condition of (.) is so complicated; it may depend
on whether α > , = , or < , whether N = , or N ≥ , whether p(x) >  or not, whether
bi ≡  or not. In Sections  and , we only consider the existence and the uniqueness of
the solutions when p– > . In last section, we only consider the behavior of the solutions
near the boundary when α ≥  and bi ≡ .

Certainly, as we already know that a degenerate parabolic equation generally only has a
weak solution, the above linearization is only formal. We only give some ideas of how to
give the partial boundary value condition to assure the posedness of the weak solutions.

3 The existence of the solution related to the initial value
Let

u ∈ L∞(�), ρα|∇u|p+ ∈ L(�). (.)

Definition . A function u(x, t) is said to be a solution of (.) with the initial value con-
dition (.), if the initial condition is satisfied, in the sense of a trace, and u satisfies

u ∈ L∞(QT ), ρα|∇u|p(x) ∈ L(QT ), ut ∈ L(QT ), (.)

and for any function ϕ ∈ C∞
 (QT ), the following integral equivalence holds:

∫∫

QT

(
–uϕt + ρα|∇u|p(x)–∇u · ∇ϕ + bi(u, x, t)ϕxi

)
dx dt = . (.)
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We consider the following regularized problem:

uεt – div
(
ρα

ε

(|∇uε| + ε
) p(x)–

 ∇uε

)
–

∂bi(u, x, t)
∂xi

= , (x, t) ∈ QT , (.)

uε(x, t) = , (x, t) ∈ ∂� × (, T), (.)

uε(x, ) = uε,(x), x ∈ �, (.)

where ρε = ρ ∗ δε + ε, ε > , δε is the usual mollifier. For all ε > , selecting uε, such
that ‖uε,‖L∞(�) and ‖ρα

ε |∇uε,|p+‖L(�) are uniformly bounded, and uε, converges to u

in W ,p+

loc (�). For any uε, ∈ C∞
 (�), ρα

ε |∇uε,|p+ ∈ L(�), it is well known that the above
problem has a unique classical solution []. Hence for any ϕ ∈ C∞

 (QT ), uε satisfies the
following integral equivalence:

∫∫

QT

(
uεtϕ + ρα

ε |∇uε|p(x)–∇uε · ∇ϕ + bi(uε , x, t)ϕxi

)
dx dt = . (.)

Lemma . If p– > , � is a suitably smooth bounded domain, the assumptions (A) and
(B) are true, then the solution uε of the initial boundary value problem (.)-(.) is weakly
star convergent to u and strongly convergent to u ∈ L

loc(QT ), and its limit function u satisfies
(.) and is the solution of (.) with the initial value condition (.).

Proof By the maximum principle, there is a constant c, only dependent on ‖u‖L∞(�) but
independent of ε, such that

‖uε‖L∞(QT ) ≤ c. (.)

Multiplying (.) by uε and integrating over QT , we get




∫

�

u
ε dx +

∫∫

QT

ρα
ε

(|∇uε| + ε
) p(x)–

 |∇uε| dx dt

=
∫∫

QT

uε

∂bi(uεx, t)
∂xi

dx dt +



∫

�

u
ε, dx.

By the fact

∫∫

QT

uε

∂bi(uεx, t)
∂xi

dx dt

= –
∫∫

QT

∂uε

∂xi
bi(uε , x, t) dx dt

= –
∫∫

QT

∂

∂xi

∫ uε


bi(s, x, t) ds dx +

∫∫

QT

∫ uε


bixi (s, x, t) ds dx

=
∫∫

QT

∫ uε


bixi (s, x, t) ds dx, (.)

and by (B),




∫

�

u
ε dx +

∫∫

QT

ρα
ε

(|∇uε| + ε
) p(x)–

 |∇uε| dx dt ≤ c.
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Let �λ = {x ∈ � : dist(x, ∂�) > λ}. Since p+ ≥ p– > , we have

∫ T



∫

�λ

|∇uε| dx dt ≤ c
(∫ T



∫

�λ

|∇uε|p–
dx dt

) 
p–

≤ c(λ). (.)

Multiplying (.) by uεt , integrating over QT ,

∫∫

QT

(uεt) dx dt

=
∫∫

QT

div
(
ρα

ε |∇uε|p(x)–∇uε

) · uεt dx dt +
∫∫

QT

uεt
∂bi(uε , x, t)

∂xi
dx dt. (.)

We notice that

(|∇uε| + ε
) p(x)–

 ∇uε · ∇uεt =



d
dt

∫ |∇uε(x,t)|+ε


s

p(x)–
 ds.

Thus,

∫∫

QT

div
(
ρα

ε

(|∇uε| + ε
) p(x)–

 ∇uε

) · uεt dx dt

= –
∫∫

QT

ρα
ε

(|∇uε| + ε
) p(x)–

 ∇uε∇uεt dx dt

= –



∫∫

QT

ρα
ε

d
dt

∫ |∇uε(x,t)|+ε


s

p(x)–
 ds dx dt. (.)

By condition (B),

∫∫

QT

uεt
∂bi(uε , x, t)

∂xi
dx dt

≤
∫∫

QT

∣∣biu(uε , x, t)
∣∣|uεxi ||uεt|dx dt +

∫∫

QT

∣∣bixi (uε , x, t)
∣∣|uεt|dx dt

≤ 


∫∫

QT

(uεt) dx dt + c
∫∫

QT

|uε|β |∇uε| dx dt

+



∫∫

QT

(uεt) dx dt + c. (.)

Here, we have used the fact that |uε| is bounded, bi(s, x, t) ∈ C(R× � × [, T]).
By Hölder’s inequality and α ≤ p––

 ,

∫∫

QT

|uε|β |∇uε| dx dt

≤ c
∫∫

QT

|∇uε| dx dt = c
∫∫

QT

ρε
– α

p– · ρε

α
p– |∇uε| dx dt

≤ c
(∫∫

QT

ρ
– α

p––
ε dx dt

) p––
p–

·
(∫∫

QT

ρa
ε |∇uε|p–

dx dt
) 

p–

≤ c. (.)
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Combining (.)-(.), we have

∫∫

QT

(uεt) dx dt +
∫∫

QT

ρα
ε

d
dt

∫ |∇uε(x,t)|


s

p–
 ds dx dt ≤ c,

by the inequality, we have

∫∫

QT

(uεt) dx dt ≤ c + c
∫

�

ρα
ε |∇uε,|p(x) dx ≤ c. (.)

By (.), (.), we know that

∫ T



∫

�λ

|∇uε| dx dt ≤ c,
∫ T



∫

�

|uεt| dx dt ≤ c. (.)

By (.), (.), and (.), we know that there exists a subsequence (still denoted uε) of
uε , which is weakly star convergent to u, and strongly convergent to u ∈ L

loc(QT ), and it
satisfies (.). In particular, uε → u a.e. in QT , and there exists an n-dimensional vector
function �ζ = (ζ, . . . , ζn),

|�ζ | ∈ L
p(x)

p(x)– (QT ),

such that

uε ⇀∗ u in L∞(QT ), uε → u in L
loc(QT ),

∇uε ⇀ ∇u in Lp(x)
loc (QT ),

ρα
ε |∇uε|p(x)–∇uε ⇀ �ζ in L

p(x)
p(x)– (QT ).

So u satisfies (.) in the sense of a trace. In order to prove that u satisfies equivalence
(.), we notice that, for any function ϕ ∈ C∞

 (QT ),

∫∫

QT

(
–uεϕt + ρα

ε

(|∇uε| + ε
) p(x)–

 ∇uε · ∇ϕ + bi(uε , x, t)ϕxi

)
dx dt = . (.)

By uε → u a.e. in QT , then bi(uε , x, t) → bi(u, x, t), and so

∫∫

QT

(
∂u
∂t

ϕ + �ς · ∇ϕ + bi(u, x, t)ϕxi

)
dx dt = . (.)

Now, it is not difficult to prove that (cf. [, ])

∫∫

QT

ρα|∇u|p(x)–∇u · ∇ϕ dx dt =
∫∫

QT

�ζ · ∇ϕ dx dt, (.)

for any function ϕ ∈ C∞
 (QT ), then u satisfies (.) and it is the solution of (.) with the

initial value (.). Thus, we have proved Lemma .. �
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4 The existence and the uniqueness of solutions
Definition . Let α < p– – , p– > . The function u(x, t) is said to be the weak solution
of (.) with the initial value (.) and with the boundary value condition

u|	p×(,T) = , (.)

if u satisfies Definition ., and for any function

φ(x, t) ∈ C(QT ), suppφ(x, t) ⊂ � × (, T),

φ =  near 	′
p = ∂� \ 	p, and the following integral equivalence holds:

∫∫

QT

utφ dx dt +
∫∫

QT

ρα|∇u|p(x)–∇u · ∇φ dx dt

+
∫∫

QT

bi(u, x, t)φxi dx dt

= –
∫ T



∫

	p

bi(, x, t)niφ dσ dt, (.)

where 	p is defined in Section  in detail. We quote it as follows.
(i) If α > , then for any given t ∈ (, T),

	p =
{

x ∈ ∂� : biu(, x, t)ni(x) < 
}

.

(ii) If α ≤ , then for any given t ∈ (, T),

	p = ∂�.

(iii) If α = , then for any given t ∈ (, T), 	p is just a subset of ∂�, and it is difficult to
write out its explicit formula, except some special cases.

For examples, we have the following special cases.

Case . When N = , for any given t ∈ (, T), if for all x ∈ ∂�, we have

biu(, x, t)ni ≤ ,

then

	p = ∂�.

Case . When N ≥ , for any given t ∈ (, T), if for all x ∈ ∂�, we have

biu(, x, t)ni ≤ , m(x) 	= ,

then

	p = ∂�.
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Theorem . Let α < p––
 , conditions (A) and (B) be true. Suppose

u ∈ L∞(�), ρα|∇u|p+ ∈ L(�),

then there is a solution of (.) with the initial value condition (.) and with the partial
boundary value condition (.).

Proof For all ε > , selecting uε, such that ‖uε,‖L∞(�) and ‖ρα
ε |∇uε,|p+‖L(�) are uni-

formly bounded, and uε, converges to u in W ,p+

loc (�). Let uε be the solution of the initial
boundary value problem (.)-(.). By the condition α < p––

 , we have Lemma ., and
uε converges to u in L

loc(QT ), and the limit function u is a weak solution of (.) with the
initial condition (.). Now, just as in [], we can prove that there is γ ∈ (, p– – α

β
) such

that
∫∫

QT

|∇uε|γ dx dt ≤ c.

Here c is independent of ε. So ∇uε is uniformly bounded in Lγ (QT ), and u has a trace
on the boundary.

Let φ(x, t) ∈ C(QT ), suppφ(x, t) ⊂ �× (, T), ϕ =  near 	′
p. Equation (.) is multiplied

by ϕ(x, t) on both sides, integrated over QT , then

∫∫

QT

utφ dx dt +
∫∫

QT

ρα|∇u|p(x)–∇u · ∇φ dx dt

+
∫∫

QT

bi(u, x, t)φxi dx dt

= –
∫ T



∫

	p

bi(, x, t)niφ dσ dt

That means (.) is true. �

Theorem . Let conditions (A) and (B) be true and α < p– – ,

u ∈ L∞(�), ρα|∇u|p+ ∈ L(�).

If 	p = ∂�, the solution of the problem (.)-(.)-(.) is unique.

Proof Let u and v be two weak solutions, u(x, ) = v(x, ). We have ρα|∇u|p(x),ρα|∇v|p(x) ∈
L(Q), and for all ϕ ∈ C∞

 (QT ),

∫∫

QT

ϕ
∂(u – v)

∂t
dx dt = –

∫∫

QT

ρα
(|∇u|p(x)–∇u – |∇v|p(x)–∇v

) · ∇ϕ dx dt

–
∫∫

QT

bi(u, x, t) · ϕxi dx dt.

For any given positive integer n, let gn(s) be an odd function. When s >  it is defined as

gn(s) =

{
, s > 

n ,
nse–ns , s ≤ 

n .



Zhan Boundary Value Problems  (2015) 2015:112 Page 15 of 24

Choosing gn(u – v) as the test function, then

∫∫

QT

gn(u – v)
∂(u – v)

∂t
dx dt

+
∫∫

QT

ρα
(|∇u|p(x)–∇u – |∇v|p(x)–∇v

) · ∇(u – v)g ′
n dx dt

+
∫∫

QT

(
bi(u, x, t) – bi(v, x, t)

) · (u – v)xi g
′
n dx dt = . (.)

Since for any given s > , gn(s) is a monotone increasing sequence of n, and clearly

lim
n→∞ gn(s) = , s > 

and

lim
n→∞ gn(s) = sgn(x), s ∈R,

where sgn(x) is the sign function. Thus, we have

lim
n→∞

∫

�

gn(u – v)
∂(u – v)

∂t
dx =

d
dt

‖u – v‖. (.)

At the same time, it is clear that

∫∫

QT

ρα
(|∇u|p(x)–∇u – |∇v|p(x)–∇v

) · ∇(u – v)g ′
n dx dt ≥ . (.)

Now, according to the definition of gn(s),

∣∣g ′
n(s)

∣∣ ≤ c
s

, |s| ≤ 
n

.

We use the following facts:

∣∣∣
∣

∫∫

QT ∩{|u–v|< 
n }

[
bi(u, x, t) – bi(v, x, t)

]
gn(u – v)xi dx dt

∣∣∣
∣

=
∣
∣∣∣

∫∫

Q∩{|u–v|< 
n }

[
bi(u, x, t) – bi(v, x, t)

]
g ′

n(u – v)(u – v)xi dx dt
∣
∣∣∣

≤ c
∫∫

Q∩{|u–v|< 
n }

∣∣
∣∣
bi(u, x, t) – bi(v, x, t)

u – v

∣∣
∣∣
∣
∣(u – v)xi

∣
∣dx dt

= c
∫∫

Q∩{|u–v|< 
n }

∣
∣∣
∣ρ

– α
p– bi(u, x, t) – bi(v, x, t)

u – v

∣
∣∣
∣
∣∣ρ

α
p– (u – v)xi

∣∣dx dt

≤ c
[∫∫

Q∩{|u–v|< 
n }

(∣∣
∣∣ρ

– α
p– bi(u, x, t) – bi(v, x, t)

u – v

∣∣
∣∣

) p–
p––

dx dt
] p––

p–

·
(∫∫

Q∩{|u–v|< 
n }

∣
∣ρα∇(u – v)

∣
∣p–

dx dt
) 

p–

. (.)
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Since α < p– – ,

∫∫

Q∩{|u–v|< 
n }

(∣
∣∣
∣ρ

– α
p– bi(u, x, t) – bi(v, x, t)

u – v

∣
∣∣
∣

) p
p––

dx dt

≤
∫∫

Q
ρ

– α
p––

∣
∣b′

i(ξ , x, t)
∣
∣

p
p–– dx dt ≤ c

∫∫

Q
ρ

– α
p–– dx dt ≤ c, (.)

where b′
i(ξ , x, t) = ∂bi(s,x,t)

∂s |s=ξ , which is bounded by the assumption (B).
In (.), let n → ∞. If {x ∈ � : |u – v| = } is a set with  measure, then

lim
n→∞

∫∫

Q∩{|u–v|< 
n }

∣
∣ρ

α
p–– b′

i(ξ , x, t)
∣
∣dx dt

=
∫∫

Q∩{|u–v|=}

∣∣ρ
α

p–– b′
i(ξ , x, t)

∣∣dx dt = . (.)

If the set {x ∈ � : |u – v| = } has a positive measure, then

lim
n→∞

∫∫

Q∩{|u–v|< 
n }

ρα
∣
∣∇(u – v)

∣
∣p–

dx dt

=
∫∫

Q∩{|u–v|=}
ρα

∣∣∇(u – v)
∣∣p–

dx dt = . (.)

Therefore, in both cases, (.) tends to  as n → ∞.
Thus we have

lim
n→∞

∫∫

QT

(
bi(u, x, t) – bi(v, x, t)

)
g ′

n(u – v)(u – v)xi dx dt = . (.)

Now, let n → ∞ in (.). Then, by (.)-(.), we have

d
dt

‖u – v‖ ≤ .

It implies that

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

|u – v|dx = , ∀t ∈ [, T).

By the arbitrariness of t,

u(x, t) = v(x, t) a.e. (x, t) ∈ QT .

Theorem . is proved. �

5 The behavior of solutions near the boundary
Without loss the generality, we also assume that the boundary ∂� is of class C. That is,
there exists a number ρ ∈ (, ) such that for all x ∈ ∂� the portion of ∂� within the ball
Bρ (x) can be represented, in a local system of coordinates, as the graph of a C function
ϕ(x) such that ϕ(x)(x) = , and for x ∈ Bρ (x)∩� = {x = (x, x, . . . , xN–, xN ) : xN > }, x ∈
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Bρ (x) ∩ ∂� = {x = (x, x, . . . , xN–, xN ) : xN = }. We call this local coordinate transform
a planarization technique. In this section, we use some ideas of [, ].

Definition . If u(x) satisfies (.), u is the limit of the solutions {un} of the following
equations:

∂u
∂t

= div

[(
ρα +


n

)(
|∇u| +


n

) p(x)–
 ∇u

]
, (x, t) ∈ QT , (.)

u(x, ) = u,n(x), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × (, T), (.)

where u,n(x) is the smoothly mollified functions of u(x). Then we say u is a viscous so-
lution of (.).

We shall get estimates above and near ∂�.

Theorem . Let u,  ≤ u ≤ M, be a nonnegative bounded viscous solution of (.) in the
sense of Definition .. If α ≥ , then for any given s ∈ (, T), we have

u(x, t) ≤ kCρ(x), (x, t) ∈ � × (s, T), (.)

where the constant C depending upon M, N , p, s, and the constant k is a constant indepen-
dent of s, M.

Proof Fix (x, t) ∈ ∂� × (s, T). By the planarization technique, we may assume that
(x, t) ≡ (, ) and in the vicinity of (, ), after flattening of ∂� near x, without loss
of generality, let us assume that ∂� coincides with the portion of hyperplane {xN = },
and the inclusion � ∩ {|x| < ρ} ⊂ {xN > } is true. Let y = (, . . . , , –), and define the set

ℵk =
{

(x, t) : xN > ,  < |x – y| <  +

k

, –sn ≤ t ≤ 
}

. (.)

We assume k is so large that ℵk ⊂ B+
ρ × (s, ]. Consider the following problem:

∂v
∂t

= div

[(
ρα +


n

)(
|∇v| +


n

) p(x)–
 ∇v

]
, (x, t) ∈ ℵk , (.)

v(x, –sn) = un(x, –sn), x ∈ B+
k , (.)

v(x, t) = un(x, t) –

n

, (x, t) ∈ ∂B+
k × [–sn, ], (.)

where un is the solution of the problem (.)-(.),  < sn < s < T , snn is small enough, and

B+
k =

{
x : xN > ,  < |x – y| <  +


k

}
∩ B+

ρ .

By the comparison theorem ([], p.), we have

v ≤ un. (.)
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Let us construct a barrier for u in ℵk . Consider the function

ηk(x, t) = e–k(|x–y|–)et ,

and the barrier is given by

�k = CM
(
 – ηk(x, t)

)
+ γ t, (x, t) ∈ ℵk ,

where the constants γ , C are to be chosen later so large that v ≤ �k on the parabolic
boundary of ℵk . This holds true on the portion of such a boundary lying on the hyperplane
xN = ,

�k = CM
(
 – ηk(x, t)

)
+ γ t ≥ CM

(
 – e–k(|x–y|–)) – γ sn ≥ –


n

provided that γ ≤ 
nsn

. On the portion {|x – y| =  + 
k } ∩ {xN ≥ }, we have

�k ≥ CM
(
 – e–+t) – γ sn ≥ M ≥ v,

if C ≥ ( – e–)–. On the bottom of ℵk we have

�k ≥ CM
(
 – e–s) – γ sn ≥ M ≥ v,

provided that

C ≥ M + γ s
M( – e–s)

.

By direct calculation,

�k,xj = kCMηk
xj – yj

|x – y| ,

�k,xlxj = –kCMηk
(xj – yj)(xl – yl)

|x – y| + kCMηk


|x – y|
[
δjl|x – y| –

(xj – yj)(xl – yl)
|x – y|

]
,

�k,xixi = –kCMηk + kCMηk


|x – y|
(
N |x – y| – |x – y|)

= kCMηk

(
–k +

N – 
|x – y|

)
,

[(
|∇�k| +


n

) p(x)–


�k,xi

]

xi

=
p(x) – 



(
|∇�k| +


n

) p(x)–


�k,xl�k,xlxi�k,xi

+
(

|∇�k| +

n

) p(x)–


�k,xixi + ln

(
|∇�k| +


n

)
pxi (x) · xi – yi

|x – y|KCMηk

=
(
p(x) – 

)[
(kCMηk) +


n

] p(x)–


(kCMηk) (xj – yj)(xl – yl)
|x – y|
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·
{

–kCMηk
(xj – yj)(xl – yl)

|x – y| +
kCMηk

|x – y|
[
δjl|x – y| –

(xj – yj)(xl – yl)
|x – y|

]}

+
[

(kCMηk) +

n

] p(x)–


kCMηk

(
–k +

N – 
|x – y|

)

+ ln

[
(KCMηk) +


n

]
pxi (x) · xi – yi

|x – y|KCMηk

= Gn(x)kCMηk

[
–k +


|x – y|

(|x – y| – |x – y|)
]

+
[

(kCMηk) +

n

] p(x)–


kCMηk

(
–k +

N – 
|x – y|

)

+ ln

[
(KCMηk) +


n

]
pxi (x) · xi – yi

|x – y|KCMηk

= –Gn(x)kCMηk +
[

(kCMηk) +

n

] p(x)–


kCMηk

(
–k +

N – 
|x – y|

)

+ ln

[
(KCMηk) +


n

]
pxi (x) · xi – yi

|x – y|KCMηk ,

where Gn(x) = (p(x) – )[(kCMηk) + 
n ]

p(x)–
 (kCMηk),

�k,t – div

[(
ρα +


n

)(
|∇�k| +


n

) p(x)–
 ∇�k

]

= –CMe–k(|x–y|–)et + γ – αρα–ρxi

[(
|∇�k| +


n

) p(x)–


�k,xi

]

–
(

ρα +

n

)[(
|∇�k| +


n

) p(x)–


�k,xi

]

xi

= –CMe–k(|x–y|–)et + γ – αρα–ρxi

[(
|kCMηk| +


n

) p(x)–


kCMηk
xi – yi

|x – y|
]

–
(

ρα +

n

){
–Gn(x)kCMηk +

[
(kCMηk) +


n

] p(x)–


kCMηk

(
–k +

N – 
|x – y|

)}

– ln

[
(KCMηk) +


n

]
pxi (x) · xi – yi

|x – y|KCMηk

≥ –CMe–k(|x–y|–)et + γ – αρα–
(

|kCMηk| +

n

) p(x)


+
(

ρα +

n

)
GnkCMηk + k

(
ρα +


n

)(
|kCMηk| +


n

) p(x)–


kCMηk

– (N – )
(

ρα +

n

)(
|kCMηk| +


n

) p(x)–


– ln

[
(KCMηk) +


n

]
pxi (x) · xi – yi

|x – y|KCMηk ,

where we have used the facts that |ρxi | = , α ≥ .
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Clearly, if we choose k large enough, then we have

�k,t – div

[(
ρα +


n

)(
|∇�k| +


n

) p(x)–
 ∇�k

]
≥ .

It follows by the comparison theorem that the solution of the problem (.)-(.) v, v ≤
�k in ℵk . In particular, ∀ < xN < 

k , we have

u(, , . . . , N–, xN , ) = lim
n→∞ v(, , . . . , N–, xN , )

≤ �k(, , . . . , N–, xN , )

= CM
(
 – e–kxN

) ≤ kCMxN .

Therefore there exists a constant k depending only upon N , such that

u(x, t) ≤ kM dist(x, ∂�),

for all x ∈ � such that ρ(x) ≤ 
k . On the other hand, if ρ(x) > 

k , we have

u(x, t) ≤ M ≤ kCMρ(x).

Thus (.) holds in both cases. �

Estimates below and near ∂�: Let u be a nonnegative bounded viscous solution of (.)
in the sense of Definition .,

u ≤ M,

for some M > . For r >  let

�r ≡ {
x ∈ � | d(x, ∂�) ≥ r

}
,

�r,t ≡ �r × [s, t], ∀s < t ≤ T

and

μ(r) ≡ inf
(x,τ )∈�r,t

u(x, τ ).

For  < s < t < T , let

r(M, s, t) = ρ min{,
√

t – s},

where the constant ρ makes the inclusion � ∩ {|x| < ρ} ⊂ {xN > } true as before.
Now, we estimate u below, near the boundary ∂�.

Theorem . If the hypothesis of Theorem . is true, then ∀ < s < t < T , ∀x ∈ �, ρ(x) ≤
r(M, s, t), the inequality

u(x, t) ≥ μ
(
r(M, s, t)

)
ρ(x) (.)

holds.
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Proof Fix (x, t) ∈ ∂� × (s, T) and let μ ≡ μ(r(M, s, t)). After flattening of ∂� near x,
we may assume that (x, t) ≡ (, ) as before. Introduce the point

y ≡
(

, , . . . , N–,  +

k

)
,

and the domain

ℵkn =
{

(x, t) :  < xN <

k

,  < |x – y| <  +

k

, –sn ≤ t ≤ 
}

⊂ B+
ρ × [–s, ],

where


k

= r(M, s, t) = ρ min{,
√

s}.

Consider –s < –sn < t ≤ ,

∂v
∂t

= div

[(
ρα +


n

)(
|∇v| +


n

) p(x)–
 ∇v

]
, (x, t) ∈ ℵkn, (.)

vn(x, –sn) = un(x, –sn), (x, sn) ∈ ℵkn, (.)

v(x, t) =

n

+ un(x, t), (x, t) ∈ ∂Bk × [–sn, ], (.)

where un is the nonnegative solution of the problem (.)-(.), snn is small enough, and
Bk = {x :  < xN < 

k ,  < |x – y| <  + 
k }. Also by the comparison theorem ([], p.), we

have

v ≥ un. (.)

Consider the function

ηk(x, t) = e–k(|x–y|–)e
t
s

and construct the barrier

�k(x, t) = μ
(
ηk(x, t) – e–)

+ – γ t,

where γ = γ (s,μ, k) is a large enough constant to be chosen later. Let us show that v ≥
�k on the parabolic boundary of ℵk . On the portion {|x – y| =  + 

k } × [–sn, ] we have
�k = –γ t ≤ γ sn ≤ 

n ≤ v. On the portion lying on the hyperplane {xN = 
k } one checks that

�k ≤ μ ≤ u ≤ v. On the bottom of ℵk , we have

�k|t=–sn ≤ μ
(
e–k(|x–y|–) – 

)
+ + γ sn ≤ .

By direct calculation

�k,xj = –kμηk
xj – yj

|x – y| ,
∂�

∂t
= μηk


sn

– γ
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and

�k,xlxj = kμηk
(xj – yj)(xl – yl)

|x – y| – kμηk


|x – y|
[
δjl|x – y| –

(xj – yj)(xl – yl)
|x – y|

]
,

�k,xixi = kμηk – kμηk


|x – y|
[
N |x – y| – |x – y|]

= kμηk

(
k –

N – 
|x – y|

)
,

[(
|∇�k| +


n

) p(x)–


�k,xi

]

xi

=
p(x) – 



(
|∇�k| +


n

) p(x)–


�k,xl�k,xlxi�k,xi

+
(

|∇�k| +

n

) p(x)–


�k,xixi – ln

(
|∇�k| +


n

)
∇p(x) · ∇�k

=
(
p(x) – 

)
[

(kμηk) +

n

] p(x)–


(kμηk) (xi – yi)(xl – yl)
|x – y|

·
{

kμηk
(xi – yi)(xl – yl)

|x – y| +
kμηk

|x – y|
[
δil|x – y| –

(xj – yj)(xl – yl)
|x – y|

]}

+
[

(kμηk) +

n

] p(x)–


kμηk

(
k –

N – 
|x – y|

)

– ln

[
(kμηk) +


n

]
pxi (x)

xi – yi

|x – y|kμηk

= Gn(x)kμηk

[
k –


|x – y|

(|x – y| – |x – y|)
]

+
[

(kμηk) +

n

] p(x)–


kμηk

(
k –

N – 
|x – y|

)

– ln

[
(kμηk) +


n

]
pxi (x)

xi – yi

|x – y|kμηk

= Gn(x)kμηk +
[

(kμηk) +

n

] p(x)–


kμηk

(
k –

N – 
|x – y|

)

– ln

[
(kμηk) +


n

]
pxi (x)

xi – yi

|x – y|kμηk ,

where Gn(x) = (p(x) – )[(kμηk) + 
n ]

p(x)–
 (kμηk),

�k,t – div

[(
ρα +


n

)(
|∇�k| +


n

) p(x)–
 ∇�k

]

= μe–k(|x–y|–)e
t

sn

sn

– γ – αρα–ρxi

[(
|∇�k| +


n

) p–


�k,xi

]

–
(

ρα +

n

)[(
|∇�k| +


n

) p–


�k,xi

]

xi
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= μe–k(|x–y|–)e
t

sn

sn

– γ – αρα–ρxi

[(
|kμηk| +


n

) p(x)–


kμηk
xi – yi
|x – y|

]

–
(

ρα +

n

){
Gn(x)kμηk +

[
(kμηk) +


n

] p(x)–


kμηk

(
k –

N – 
|x – y|

)}

– ln

[
(kμηk) +


n

]
pxi (x)

xi – yi

|x – y|kμηk

≤ μe–k(|x–y|–)e
t

sn

sn

– γ + αρα–
(

|kμηk| +

n

) p(x)


–
(

ρα +

n

)
Gnkμηk – k

(
ρα +


n

)
|kμηk|p(x)–

+ (N – )
(

ρα +

n

)(
|kμηk| +


n

) p(x)–


– ln

[
(kμηk) +


n

]
pxi (x)

xi – yi

|x – y|kμηk ,

where we have used the fact that |ρxi | =  too.
Clearly, if we choose γ large enough, then we have

�k,t – div

[(
ρα +


n

)(
|∇�k| +


n

) p(x)–
 ∇�k

]
≤ .

It follows from the comparison theorem that v ≥ �k in ℵk . In particular, ∀ < xN < 
k ,

v(, , . . . , N–, xN , ) ≥ μ

e
(
ekxN – 

) ≥ μk
e

xN .

Let n → ∞. We have

u(x, t) ≥ k
e
μ

(
r(M, s, t)

)
ρ(x) ≥ μ

(
r(M, s, t)

)
ρ(x).

Theorem . is proved. �
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