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1 Introduction
Consider the following Navier boundary value problem:

⎧
⎨

⎩

�u + c�u = f (x, u), in �;

u = �u = , in ∂�,
()

where � is the biharmonic operator and � is a bounded smooth domain in R
N (N ≥ ).

In problem (), let f (x, u) = b[(u + )+ – ], then we get the following Dirichlet problem:

⎧
⎨

⎩

�u + c�u = b[(u + )+ – ], in �;

u = �u = , in ∂�,
()

where u+ = max{u, } and b ∈ R. We let λk (k = , , . . .) denote the eigenvalues of –� in
H

(�).
Fourth-order problems of this class with N >  have been studied by many authors. In

[], Lazer and Mckenna pointed out that this type of nonlinearity provides a model to study
traveling waves in suspension bridges. Since then, more general nonlinear fourth-order el-
liptic boundary value problems have been studied. For problem (), Lazer and Mckenna
[] proved the existence of k –  solutions when N = , and b > λk(λk – c) by the global
bifurcation method. In [], Tarantello found a negative solution when b ≥ λ(λ – c) by a
degree argument. For problem () when f (x, u) = bg(x, u), Micheletti and Pistoia [] proved
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that there exist two or three solutions for a more general nonlinearity g by the variational
method. Xu and Zhang [] discussed the problem when f satisfies the local superlinearity
and sublinearity. Zhang [] proved the existence of solutions for a more general nonlin-
earity f (x, u) under some weaker assumptions. Zhang and Li [] proved the existence of
multiple nontrivial solutions by means of Morse theory and local linking. An and Liu []
and Liu and Wang [] also obtained the existence result for nontrivial solutions when f
is asymptotically linear at positive infinity. In [], Zhang and Wei obtained the existence
of infinitely many solutions when the nonlinearity involves a combination of superlinear
and asymptotically linear terms. As far as the problem () is concerned, existence results
of sign-changing solutions were also obtained (see, e.g., [, ]).

We notice that almost all the works (see [–]) mentioned above involve the nonlinear
term f (x, u) of a subcritical (polynomial) growth, say,

(SCP): there exist positive constants c and c and q ∈ (, p∗ – ) such that

∣
∣f (x, t)

∣
∣ ≤ c + c|t|q for all t ∈R and x ∈ �,

where p∗ = N/(N – ) denotes the critical Sobolev exponent. One of the main reasons to
assume this condition (SCP) is to use the Sobolev compact embedding H(�) ∩ H

(�) ↪→
Lq(�) ( ≤ q < p∗). In that case, it is easy to see that seeking weak solutions of problem () is
equivalent to finding nonzero critical points of the following functional on H(�)∩H

(�):

I(u) =



∫

�

(|�u| – c|∇u|)dx –
∫

�

F(x, u) dx, ()

where F(x, u) =
∫ u

 f (x, t) dt. In this paper, inspired by Lam and Lu [], our first main result
will be to study problem () in the improved subcritical polynomial growth

(SCPI): lim
t→∞

f (x, t)
|t|p∗– =  uniformly on x ∈ �,

which is weaker than (SCP). Note that, in this case, we do not have the Sobolev compact
embedding anymore. Our work is to study problem () when nonlinearity f does not satisfy
the Ambrosetti-Rabinowitz condition, i.e., for some θ >  and γ > ,

 < θF(x, t) ≤ f (x, t)t for all |t| ≥ γ and x ∈ �. (AR)

In fact, this condition was studied by Liu and Wang in [] in the case of Laplacian by the
Nehari manifold approach. However, we will use a suitable version of the mountain pass
theorem and Morse theory to get three nontrivial solutions for problem () in the general
case N > . Indeed, in this case, we have obtained two nontrivial solutions for problem ()
in [] via the mountain pass theorem and a truncated technique.

Let us now state our results. In this paper, we always assume that f (x, t) ∈ C(�̄ × R).
The conditions imposed on f (x, t) are as follows:

(H) f (x, t)t ≥  for all x ∈ �, t ∈R;
(H) lim|t|→

f (x,t)
t = f uniformly for x ∈ �, where f is a constant;

(H) lim|t|→∞ f (x,t)
t = +∞ uniformly for x ∈ �;

(H) f (x,t)
|t| is nondecreasing in t ∈R for any x ∈ �.



Pei and Zhang Boundary Value Problems  (2015) 2015:115 Page 3 of 11

Let  < μ be the first eigenvalue of (� –c�, H(�)∩H
(�)) (c < λ) and ϕ(x) >  be the

eigenfunction corresponding to μ. Throughout this paper, we denote by | · |p the Lp(�)
norm and the norm of u in H(�) ∩ H

(�) will be defined by

‖u‖ :=
(∫

�

(|�u| – c|∇u|)dx
) 


.

We also define E = H(�) ∩ H
(�). In fact, the norm ‖ · ‖ is equivalent to another norm

‖ · ‖E defined by

‖u‖E :=
(∫

�

|�u| dx
) 



on E, i.e., there exist two positive constants C∗, C∗∗ such that

C∗∗‖u‖ ≤ ‖u‖E ≤ C∗‖u‖.

Theorem . Let N >  and assume that f has the improved subcritical polynomial growth
on � (condition (SCPI)) and satisfies (H)-(H). If f < μ, then problem () has at least three
nontrivial solutions.

In the case of N = , we have p∗ = +∞. So it is necessary to introduce the definition of
the subcritical (exponential) growth in this case. By the improved Adams inequality (see
[]) for the fourth-order derivative, we have

sup
u∈E,‖u‖E≤

∫

�

eπu
dx ≤ C|�|,

where C is a positive constant (see Lemma .). So, we now define the subcritical (expo-
nential) growth in this case as follows:

(SCE): f has subcritical (exponential) growth on �, i.e., limt→∞ |f (x,t)|
exp(αt) =  uniformly

on x ∈ � for all α > .
When N =  and f has the subcritical (exponential) growth (SCE), our work is still to

study problem () without the (AR) condition. Our result is as follows.

Theorem . Let N =  and assume that f has the subcritical exponential growth on �

(condition (SCE)) and satisfies (H)-(H). If f < μ, then problem () has at least three
nontrivial solutions.

Remark . Indeed, in this case we have already obtained two nontrivial solutions for
problem () in [] via the mountain pass theorem and a truncated technique. So, this
paper is a completion for our previous work (see []).

2 Preliminaries and auxiliary lemmas
Definition . Let (E,‖ · ‖E) be a real Banach space with its dual space (E∗,‖ · ‖E∗ ) and
I ∈ C(E,R). For c ∈ R, we say that I satisfies the (C)c condition (Cerami condition) if for
any sequence {xn} ⊂ E with

I(xn) → c,
∥
∥DI(xn)

∥
∥

E∗
(
 + ‖xn‖E

) → ,

there is a subsequence {xnk } such that {xnk } converges strongly in E.
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We have the following version of the mountain pass theorem (see []).

Proposition . Let E be a real Banach space and suppose that I ∈ C(E, R) satisfies the
condition

max
{

I(), I(u)
} ≤ α < β ≤ inf‖u‖=ρ

I(u)

for some α < β , ρ >  and u ∈ E with ‖u‖ > ρ . Let c ≥ β be characterized by

c = inf
γ∈�

max
≤t≤

I
(
γ (t)

)
,

where � = {γ ∈ C([, ], E),γ () = ,γ () = u} is the set of continuous paths joining 
and u. Then there exists a sequence {un} ⊂ E such that

I(un) → c ≥ β and
(
 + ‖un‖

)∥
∥I ′(un)

∥
∥

E∗ →  as n → ∞.

Consider the following problem:

⎧
⎨

⎩

�u + c�u = f+(x, u), x ∈ �,

u|∂� = �u|∂� = ,

where

f+(x, t) =

⎧
⎨

⎩

f (x, t), if t > ,

, if t ≤ .

Define a functional I+ : E →R by

I+(u) =



∫

�

(|�u| – c|∇u|)dx –
∫

�

F+(x, u) dx,

where F+(x, t) =
∫ t

 f+(x, s) ds; then I+ ∈ C(E,R).

Lemma . Let N >  and ϕ >  be a μ-eigenfunction with ‖ϕ‖ =  and assume that
(H), (H) and (SCPI) hold. If f < μ, then

(i) there exist ρ,α >  such that I+(u) ≥ α for all u ∈ E with ‖u‖ = ρ ,
(ii) I+(tϕ) → –∞ as t → +∞.

Proof By (SCPI), (H) and (H), for any ε > , there exist A = A(ε), B = B(ε) and l > μ

such that for all (x, s) ∈ � ×R,

F+(x, s) ≤ 


(f + ε)s + Asp∗
, ()

F+(x, s) ≥ 


ls – B. ()
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Choose ε >  such that (f + ε) < μ. By (), the Poincaré inequality and the Sobolev in-
equality |u|p∗

p∗ ≤ K‖u‖p∗ , we get

I+(u) ≥ 

‖u‖ –

f + ε


|u| – A|u|p∗

p∗

≥ 


(

 –
f + ε

μ

)

‖u‖ – AK‖u‖p∗ .

So, part (i) is proved if we choose ‖u‖ = ρ >  small enough.
On the other hand, from () we have

I+(tϕ) ≤ 


(

 –
l

μ

)

t + B|�| → –∞ as t → +∞.

Thus part (ii) is proved. �

Lemma . (see []) Let � ⊂R
 be a bounded domain. Then there exists a constant C > 

such that

sup
u∈E,‖u‖E≤

∫

�

eπu
dx ≤ C|�|,

where ‖u‖E = (
∫

�
|�u| dx) 

 . This inequality is sharp.

Lemma . Let N =  and ϕ >  be a μ-eigenfunction with ‖ϕ‖ =  and assume that
(H), (H) and (SCE) hold. If f < μ, then

(i) there exist ρ,α >  such that I+(u) ≥ α for all u ∈ E with ‖u‖ = ρ ,
(ii) I+(tϕ) → –∞ as t → +∞.

Proof By (SCE), (H) and (H), for any ε > , there exist A = A(ε), B = B(ε), κ > , q > 
and l > μ such that for all (x, s) ∈ � ×R,

F+(x, s) ≤ 


(f + ε)s + A exp
(
κ|s|)sq, ()

F+(x, s) ≥ 


ls – B. ()

Choose ε >  such that (f + ε) < μ. By (), the Hölder inequality and Lemma ., we get

I+(u) ≥ 

‖u‖ –

f + ε


|u| – A

∫

�

exp
(
κ|u|)|u|q dx

≥ 


(

 –
f + ε

μ

)

‖u‖ – A

(∫

�

exp

(

κr‖u‖
E

( |u|
‖u‖E

))

dx
) 

r
(∫

�

|u|r′q dx
) 

r′

≥ 


(

 –
f + ε

μ

)

‖u‖ – C‖u‖q,

where r >  is sufficiently close to , ‖u‖E ≤ σ and κrσ  < π. So, part (i) is proved if we
choose ‖u‖ = ρ >  small enough since ‖u‖E ≤ C∗‖u‖.
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On the other hand, from () we have

I+(tϕ) ≤ 


(

 –
l

μ

)

|t| + B|�| → –∞ as t → +∞.

Thus part (ii) is proved. �

Lemma . For the functional I+, if condition (H) holds, and for any {un} ∈ E with

〈
I ′

+(un), un
〉 →  as n → ∞,

then there is a subsequence, still denoted by {un}, such that

I+(tun) ≤  + t

n
+ I+(un) for all t ∈R and n ∈ N .

Proof This lemma is essentially due to []. We omit the proof. �

Lemma . Under the assumptions of Theorem ., then I+ and I satisfy the (C)c condition.

Proof We first do the proof for I+. Let {un} ⊂ E be a (C)c (c ∈ R) sequence such that for
every n ∈N,

I+(un) =


‖un‖ –

∫

�

F+(x, un) dx = c + o(), ()

(
 + ‖un‖

)∥
∥I ′

+(un)
∥
∥

E →  as n → ∞. ()

Clearly, () implies that

〈
I ′

+(un), un
〉

= ‖un‖ –
∫

�

f+
(
x, un(x)

)
un dx = o(). ()

To complete our proof, we first need to verify that {un} is bounded in E. Assume ‖un‖ →
+∞ as n → ∞. Let

sn =

√|c| + 
‖un‖ , wn = snun =


√|c| + un

‖un‖ . ()

Since {wn} is bounded in E, it is possible to extract a subsequence (denoted also by {wn})
such that

wn ⇀ w in E,

w+
n → w+

 in L(�),

w+
n(x) → w+

(x) a.e. x ∈ �,
∣
∣w+

n(x)
∣
∣ ≤ h(x) a.e. x ∈ �,

where w+
n = max{wn, }, w ∈ E and h ∈ L(�).

We claim that if ‖un‖ → +∞ as n → +∞, then w+(x) ≡ . In fact, we set � = {x ∈ � :
w+ = }, � = {x ∈ � : w+ > }. Obviously, by (), u+

n → +∞ a.e. in �; noticing condition



Pei and Zhang Boundary Value Problems  (2015) 2015:115 Page 7 of 11

(H), then, for any given K > , we have

lim
n→+∞

f (x, u+
n)

u+
n

(
w+

n(x)
) ≥ Kw+(x) for a.e. x ∈ �. ()

From (), (), and (), we obtain


(|c| + 

)
= lim

n→+∞‖wn‖ = lim
n→+∞

∫

�

f (x, u+
n)

u+
n

(
w+

n
) dx

≥
∫

�

lim
n→+∞

f (x, u+
n)

u+
n

(
w+

n
) dx ≥ K

∫

�

(
w+) dx.

Noticing that w+ >  in � and K >  can be chosen large enough, so |�| =  and w+ ≡ 
in �. However, if w+ ≡ , then limn→+∞

∫

�
F+(x, w+

n) dx =  and consequently

I+(wn) =


‖wn‖ + o() = 

(|c| + 
)

+ o(). ()

By ‖un‖ → +∞ as n → +∞ and in view of (), we observe that sn → , then it follows
from Lemma . and () that

I+(wn) = I+(snun) ≤  + s
n

n
+ I+(un) → c as n → +∞. ()

Clearly, () and () are contradictory. So {un} is bounded in E.
Next, we prove that {un} has a convergent subsequence. In fact, we can suppose that

un ⇀ u in E,

un → u in Lq(�),∀ ≤ q < p∗,

un(x) → u(x) a.e. x ∈ �.

Now, since f has the improved subcritical growth on �, for every ε > , we can find a
constant C(ε) >  such that

f+(x, s) ≤ C(ε) + ε|s|p∗–, ∀(x, s) ∈ � ×R,

then
∣
∣
∣
∣

∫

�

f+(x, un)(un – u) dx
∣
∣
∣
∣

≤ C(ε)
∫

�

|un – u|dx + ε

∫

�

|un – u||un|p∗– dx

≤ C(ε)
∫

�

|un – u|dx + ε

(∫

�

(|un|p∗–)
p∗

p∗– dx
) p∗–

p∗ (∫

�

|un – u|p∗
dx

) 
p∗

≤ C(ε)
∫

�

|un – u|dx + εC(�).

Similarly, since un ⇀ u in E,
∫

�
|un – u|dx → . Since ε >  is arbitrary, we can conclude

that
∫

�

(
f+(x, un) – f+(x, u)

)
(un – u) dx →  as n → ∞. ()
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By (), we have

〈
I ′

+(un) – I ′
+(u), (un – u)

〉 →  as n → ∞. ()

From () and (), we obtain
∫

�

[∣
∣�(un – u)

∣
∣ – c

∣
∣∇(un – u)

∣
∣]dx →  as n → ∞.

So we have un → u in E, which means that I+ satisfies (C)c.
Next we prove that I satisfies (C)c. In fact, by (H), we have

f (x, t)t – F(x, t) ≥ f (x, st)st – F(x, st)

for (x, t) ∈ � ×R and s ∈ [, ]. By the proof of Lemma . in [], we can similarly prove
that (C)c sequence {un} is bounded. The other part of the proof is similar to the case already
proved and is omitted. �

Lemma . Under the assumptions of Theorem ., I+ and I satisfy the (C)c condition.

Proof We only do the proof for I+. Similar to the first part in the proof of Lemma .,
we easily know that (C)c sequence {un} is bounded in E. Next, we prove that {un} has a
convergent subsequence. Without loss of generality, suppose that

‖un‖ ≤ β,

un ⇀ u in E,

un → u in Lq(�),∀q ≥ ,

un(x) → u(x) a.e. x ∈ �.

By the equivalence of the norm on E, we have

‖un‖E ≤ C∗‖un‖.

Let β = C∗β. Now, since f+ has the subcritical exponential growth (SCE) on �, we can
find a constant Cβ >  such that

∣
∣f+(x, t)

∣
∣ ≤ Cβ exp

(
π

β |t|
)

, ∀(x, t) ∈ � ×R.

Thus, by the Adams-type inequality (see Lemma .),
∣
∣
∣
∣

∫

�

f+(x, un)(un – u) dx
∣
∣
∣
∣

≤ C
(∫

�

exp

(
π

β |un|
)

dx
) 

 |un – u|

≤ C
(∫

�

exp

(
π

β ‖un‖
E

∣
∣
∣
∣

un

‖un‖E

∣
∣
∣
∣

)

dx
) 

 |un – u|

≤ C|un – u| → .
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Similar to the last part in the proof of Lemma ., we have un → u in E, which means that
I+ satisfies (C)c. �

3 Computation of the critical groups
It is well known that critical groups and Morse theory are the main tools in solving elliptic
partial differential equations. Let us recall some results which will be used later. We refer
the readers to the book [] for more information on Morse theory.

Let H be a Hilbert space and I ∈ C(H ,R) be a functional satisfying the (PS) condition
(or (C)c condition), and Hq(X, Y ) be the qth singular relative homology group with integer
coefficients. Let u be an isolated critical point of I with I(u) = c, c ∈ R, and let U be a
neighborhood of u. The group

Cq(I, u) := Hq
(
Ic ∩ U , Ic ∩ U\{u}

)
, q ∈ Z,

is said to be the qth critical group of I at u, where Ic = {u ∈ H : I(u) ≤ c}.
Let K := {u ∈ H : I ′(u) = } be the set of critical points of I and a < inf I(K), the critical

groups of I at infinity are formally defined by (see [])

Cq(I,∞) := Hq
(
H , Ia), q ∈ Z.

For the convenience of our proof, we firstly prove two important propositions.

Proposition . If the assumptions of Theorem . (or Theorem .) hold, then

Cq(I,∞) =  for all integers q ≥ .

Proof Let S∞ = {u ∈ E : ‖u‖ = } be the unit sphere in E and B∞ = {u ∈ E : ‖u‖ ≤ }. By
(H), for any M >  there exists c > , such that F(x, t) ≥ Mt – c, for (x, t) ∈ � ×R, which
implies

I(tu) → –∞ as t → +∞

for any u ∈ S∞. Using (H), we have

f (x, t)t – F(x, t) ≥  for (x, t) ∈ � ×R. ()

Choose

a < min
{

inf
u∈B∞ I(u), 

}
.

Then, for any u ∈ S∞, there exists t >  such that I(tu) ≤ a, that is,

I(tu) =
t


–

∫

�

F(x, tu) dx ≤ a,
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which implies

d
dt

I(tu) = t –
∫

�

f (x, tu)u dx

≤ 
t

(a) <  by ().

The rest of the proof is similar to the proof of Lemma . in []. �

Proposition . If the assumptions of Theorem . (or Theorem .) hold, then

Cq(I, ) = δq,Z for all integers q ≥ .

Proof By Lemma . (Lemma .), u =  is a local minimizer of I . So we have

Cq(I, ) = δq,Z for all integers q ≥ . �

4 Proof of the main results

Proofs of Theorem . and Theorem . By Lemma . (Lemma .), Lemma . (Lem-
ma .), and Proposition ., the functional I+ has a critical point u satisfying I+(u) ≥ β .
Since I+() = , u �=  and by the maximum principle, we get u > . Hence u is a positive
solution of the problem () and satisfies

C(I+, u) �= , u > . ()

Using Lemma . in [], we obtain

Cq(I, u) = Cq(IC
(�), u) = Cq(I+|C

(�), u) = Cq(I+, u) = δqZ. ()

Similarly, we can obtain another negative critical point u of I satisfying

Cq(I, u) = δq,Z. ()

Now, from Proposition ., we have

Cq(I, ) = δq,Z. ()

On the other hand, from Proposition ., we have

Cq(I,∞) = . ()

Then from (), (), (), (), and the Morse relation, we have

 + t = ( + t)Q(t)

with Q(t) =
∑

q≥ dqtq where dq ∈ N = {, , , . . . , n, . . .} for all q ≥ . Then d = d =  and
so the right-hand side has a term t, a contradiction. This means that there is one more
critical point of I , u /∈ {, u, u}. Then u ∈ E is a nontrivial solution of problem (). �
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