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Abstract
In this paper, we consider nonlinear parabolic equations involving a nonlocal
operator: the square root of the Laplacian in a bounded domain with zero Dirichlet
boundary condition. We use the method on harmonic extension to study the
existence and asymptotic estimates of global solutions, as well as the blowup of the
parabolic equation.
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1 Introduction
This paper is concerned with the study of global and blowup solutions of semilinear heat
equation involving a nonlocal positive operator: the square root of the Laplacian in a
bounded domain with zero Dirichlet boundary conditions. We consider the semilinear
heat equation of the following form:

⎧
⎪⎨

⎪⎩

ut + (–�)/u = up, (x, t) ∈ � × (, T);
u(x, t) = , (x, t) ∈ ∂� × (, T);
u(x, ) = u(x), u(x) ≥ , u(x) �≡ ,

(.)

where � is a smooth boundary domain of Rn (n ≥ ) and (–�)/ stands for the square
root of the Laplacian operator –� in � with zero Dirichlet boundary values on ∂�, and
p = # –  = n+

n– , # = n
n– is the critical Sobolev exponent.

Nonlinear evolution problems involving fractional Laplacian describing the anomalous
diffusion were extensively studied in the mathematical and physical literature (see [–]
for references). This equation is

ut + (–�)α/u = up, in Rn × (, T), (.)

where  < α < .
However, the parabolic equation in a bounded domain, i.e. the equation

{
ut + (–�)α/u = up, (x, t) ∈ � × (, T);
u(x, ) = u(x), u(x) ≥ , u(x) �≡ ,

(.)
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is seldom researched. The main difficulty is that the fractional operator, such as (–�)/, is
nonlocal and nonlinear so that this problem may not possess some geometry structures,
for example, the mountain pass structure, the Poincaré inequality structure, etc. In order
to overcome this difficulty, we turn to another method, which was introduced by Caffarelli
and Silvestre in [] and since then has been widely used in [–]. They used this idea to
consider the state equation of (.): elliptic problems involving a nonlocal operator. In this
paper, we shall employ a similar method to [] or [] to study the parabolic equation (.)
involving the square root of the Laplacian.

Firstly, we define lower (high)-energy initial value.
Associated to problem (.), the corresponding energy functional I : H/

 (�) →R is de-
fined as follows:

I(u) =



∫

�

∣
∣(–�)/u

∣
∣ dx –


#

∫

�

|u|#
dx.

Definition . We say that a function u(x) possesses lower-energy if u(x) satisfies
E(u(x)) < 

n Sn.

Otherwise, we say that u(x) possesses high-energy, where S denotes the best Sobolev
constant.

We shall see the existence of global solutions with lower-energy and the difference of
asymptotic behavior of blowing-up solutions with lower-energy and those with high-
energy in the following results.

Remark . Lions [] showed that

S = inf

{∫

Rn+
+

|∇w(x, y)| dx dy

(
∫

Rn |w(x, )|# dx)/#

∣
∣
∣w ∈ D,(Rn+

+
)
}

.

Escobar [] proved that the extremal functions all have the form

Uε(x, y) =
ε(n–)/

|(x – x, y + ε)|n– ,

where x ∈ Rn and ε >  are arbitrary. In addition, the best constant is

S =
(n – )σ /n

n


,

where σn denotes the volume of n-dimensional sphere Rn ⊂ Rn+.

In this paper, we consider the following weak solution.

Definition . We say that a function u is a solution of (.) in � × (, T) if

u ∈ L∞(
, T ; H/

 (�)
)
,

ut ∈ L(, T ; L(�)
)
,

and satisfies (.) in the distribution sense.
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Remark . The analogous problem to (.) for the Laplacian has been investigated widely
in the last decades. This is the problem

⎧
⎪⎨

⎪⎩

ut – �u = up, (x, t) ∈ � × (, T);
u(x, t) = , (x, t) ∈ ∂� × (, T);
u(x, ) = u(x), u(x) ≥ , u(x) �≡ ,

(.)

see [] and references therein. In [], Tan first introduced the energy method to study
the existence and asymptotic estimates of global solution of (.) in Rn (n ≥ ), and gave
the sufficient conditions of finite time blowup of local solution by the classical concave
method. Finally, he considered the asymptotic behavior of any global solution.

For the square root (–�)/ of the Laplacian, we derive the following results.

Theorem . Let u(x) be a lower-energy initial value and E(u(x)) ≤ . Then u(x, y, t; u)
blows up in finite time.

Theorem . Let u(x) ( �≡ ) be a lower-energy initial value with E(u(x)) > .

(◦) If
∫

�
|u|# dx < Sn, then (.) has a global solution u(x, t; u).

Moreover, there exist K >  and K >  such that

‖u‖H/


= O
(
e–Kt), t → ∞, (.)

‖u‖L = O
(
e–Kt), t → ∞. (.)

(◦) If
∫

�
|u|# dx > Sn, then the local solution blows up in finite time.

As (–�)/ is nonlocal and nonlinear, we realize problem (.) through a local problem
in one more dimension by a Dirichlet to Neumann map. Here the Sobolev trace embedding
comes into play, and its critical exponent # = n

n– , n ≥ , is the power in Theorem ..

2 Preliminaries
In this section we collect preliminary facts for future reference.

Let {λk ,ϕk}∞k= be the eigenvalues and corresponding eigenfunctions of the Laplacian
operator –� in � with zero Dirichlet boundary values on ∂�, such that ‖ϕk‖L(�) = .
Let

H/
 (�) =

{

u =
∞∑

k=

akϕk ∈ L : ‖u‖H/
 (�) =

( ∞∑

k=

a
kλ

/
k

)/

< ∞
}

.

Denote by H–/
 (�) the dual space of H/

 (�). (–�)/ is given by

(–�)/u =
∞∑

k=

αkλ
/
k ϕk (.)

for u =
∑∞

k= αkϕk ∈ L(�).
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Regarding (.) as elliptic with respect to x variables, we have, from [],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�v = , (x, y) ∈ C;
v = , (x, y) ∈ ∂LC;
∂v
∂n = –vt + vp, (x, y) ∈ � × {};
v(x, , ) = v(x, ) = u(x), u(x) ≥ , u(x) �≡ .

(.)

That is, we will study the following mixed boundary value problem in a half cylinder:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�v = , (x, y, t) ∈ C × (, T);
v = , (x, y, t) ∈ ∂LC × (, T);
vt + ∂v

∂n = vp, (x, y, t) ∈ � × {} × (, T);
v(x, , ) = v(x, ) = u(x), u(x) ≥ , u(x) �≡ ,

(.)

where n is the unit outer normal to �×{}×(, T), C = �×(,∞) and its lateral boundary
is denoted by

∂LC = ∂� × [,∞).

If v satisfies (.), then the trace u on �×{}× (, T) of the function v will be a solution of
problem (.). We consider the Sobolev space of a function in H(C) whose traces vanish
on ∂LC ,

H
,L(C) =

{
v ∈ H(C)|v =  a.e. on ∂LC

}
, (.)

equipped with the norm

‖v‖ =
(∫

C
|∇v| dx dy

)/

. (.)

Denote by V(�) the space of traces on � × {} of functions in H
,L(C):

V(�) =
{

u = tr� v|v ∈ H
,L(C)

}
.

It is easy to see that for every η ∈ C∞(C) ∩ H(C) and η ≡  on ∂LC ,

∫

C
∇v∇η dx dy =

∫

�

∂v
∂n

η dx.

Since the harmonic extension operator is bijective from V(�) to H
,L(C), by using the

trace theorem we can deduce the following definition.

Definition . Assume v is the harmonic extension of u (in the weak sense) to C and
vanishing on ∂LC . Let us define the operator (–�)/ : V(�) → V∗

 (�) by

(–�)/u =
∂v
∂n

∣
∣
∣
∣
�×{}

,

where V∗
 (�) is the dual space of V(�).
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Equation (.) corresponds formally to the L gradient flow associated to the energy
functional

E(v) =



∫

C
|∇v| dx dy –


#

∫

�×{}
|v|#

dx.

One formally sees at once that E(v) is decreasing in time along the trajectory for

d
dt

E
(
v(x, y, t)

)
= –

∫

�×{}
v

t (x, y, t) dx,

i.e. E(v) is a Lyapunov functional for this flow.
In the following, we give some properties of the space H

,L(C). Denote by D,(Rn+
+ ) the

closure of the set of smooth functions compactly supported in Rn+
+ with respect to the

norm of ‖w‖D,(Rn+
+ ) = (

∫

Rn+
+

|∇w| dx dy)/.
We recall the well-known Sobolev inequality. For w ∈ D,(Rn+

+ ), we have

(∫

Rn

∣
∣w(x, )

∣
∣n/(n–) dx

)(n–)/n

≤ C
(∫

Rn+
+

∣
∣∇w(x, y)

∣
∣ dx dy

)/

, (.)

where C depends only on n.
The Sobolev trace inequality leads directly to the next three lemmas. For v ∈ H

,L(C),
its extension by zero in Rn+

+ \C can be approximated by functions compactly supported in
Rn+

+ . Thus the Sobolev trace inequality (.) leads to the following.

Lemma . [] Let n ≥  and # = n
n– . Then there exists a constant C, depending only n,

such that, for all v ∈ H
,L(C),

(∫

�

∣
∣v(x, )

∣
∣#

dx
)/#

≤ C
(∫

C

∣
∣∇v(x, y)

∣
∣ dx dy

)/

. (.)

By Hölder’s inequality, since � is bounded, the above lemma leads to the following.

Lemma . []
(i) Let  ≤ q ≤ # for n ≥ . Then we have, for all v ∈ H

,L(C),

(∫

�

∣
∣v(x, )

∣
∣q dx

)/q

≤ C
(∫

C

∣
∣∇v(x, y)

∣
∣ dx dy

)/

, (.)

where C depends only on n, q, and the measure of �. Moreover, (.) also holds for
 ≤ q < ∞ if n = .

(ii) Let  ≤ q < # = n
n– for n ≥  and  ≤ q < ∞ for n = . Then tr�(H

,L(C)) is compactly
embedded in Lq(C).

Lemma . []

∥
∥(–�)/u

∥
∥

H–/
 (�) = ‖u‖H/

 (�) = ‖v‖H/
,L (C). (.)
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3 Proof of Theorem 1.1
In fact, we can prove a more general result. If there exists some t such that E(v(t)) ≤ ,
then v(x, y, t; u) blows up in finite time. We shall employ the classical concavity method
(see [, , ]). Suppose that tmax = ∞ and denote f (t) = 


∫ t

t

∫

�×{} |v| dx ds.
We perform standard manipulations:

∫ t

t

∫

�×{}
v

s dx ds +



∫

C
|∇v| dx dy –


#

∫

�×{}
|v|#

dx = E
(
v(t)

)
, (.)

f ′(t) =



∫

�×{}
|v| dx +

∫ t

t

[

–
∫

C
|∇v| dx dy +

∫

�×{}
|v|#

dx
]

ds, (.)

f ′′(t) = –
∫

C
|∇v| dx dy +

∫

�×{}
|v|#

dx. (.)

By (.), (.), we have

f ′′(t) =
(

#


– 

)∫

C
|∇v| dx dy – #E

(
v(t)

)
+ #

∫ t

t

∫

�×{}
v

s dx ds. (.)

From the assumption, E(v(t)) ≤  such that

(
#


– 

)∫

C
|∇v| dx dy – #E

(
v(t)

)
>  (.)

for all t ≥ t. If we had tmax = ∞, this inequality would yield

lim
t→∞ f ′(t) = ∞,

lim
t→∞ f (t) = lim

t→∞

(

f (t) +
∫ t

t

f ′(s) ds
)

= lim
t→∞

∫ t

t

f ′(s) ds = ∞,

f ′′(t) ≥ #
∫ t

t

∫

�×{}
v

s dx ds

and

f (t)f ′′(t) ≥ #



(∫ t

t

∫

�×{}

∣
∣v(s)

∣
∣ dx ds

)(∫ t

t

∫

�×{}

∣
∣vs(s)

∣
∣ dx ds

)

≥ #



(∫ t

t

∫

�×{}
vvs dx ds

)

=
#


(
f ′(t) – f ′()

),

and as t → ∞ we have, for some α >  and ∀t ≥ t,

f (t)f ′′(t) ≥ ( + α)
(
f ′(t)

).

Hence f –α(t) is concave on [t,∞], f –α(t) > , and limt→∞ f –α(t) = . This contradiction
proves that tmax < ∞, which completes the proof of Theorem ..

4 Proof of Theorem 1.2
We divide the proof into several steps.



Xu et al. Boundary Value Problems  (2015) 2015:121 Page 7 of 14

Step : Proof of existence.
(i) As regards a priori estimates and local existence, assume vn ∈ H

,L(C) such that

vn → v, strongly in H
,L(C)

and

E(vn ) <


n
Sn,

∫

�×{}
|vn |

#
dx < Sn.

On the other hand, multiplying (.) by vnt and integrating, we have
∫ t



∫

�×{}
v

ns dx ds +



∫

C
|∇vn| dx dy –


#

∫

�×{}
|vn|#

dx ≤ E(vn ). (.)

For the sake of convenience, define

� =
{

v
∣
∣
∣v ∈ H

,L(C), v ≥ , v �≡ , E(v) <


n
Sn,

∫

�×{}
|v|#

dx < Sn
}

.

Now, we show that vn(t) ∈ �, for any t ≥ . Suppose that it does not hold and let t∗ be
the smallest time for which vn(t∗) /∈ �. Then in virtue of the continuity of vn(t), we see that
vn(t∗) ∈ ∂�. Hence

E
(
vn

(
t∗)) =


n

Sn or
∫

C
|∇vn| dx dy =

∫

�×{}
|vn|#

dx,

which contradicts (.). Then from (.) and noting that if
∫

�×{}
|vn|#

dx < Sn,

then
∫

C
|∇vn| dx dy >

∫

�×{}
|vn|#

dx,

we have
∫ t



∫

�×{}

∣
∣v′

n(s)
∣
∣ dx ds +


n

∫

C
|∇vn| dx dy ≤ E(v) <


n

Sn. (.)

Thus, we obtain
∫ t



∫

�×{}
|vns| dx ds <


n

Sn, (.)

∫

C
|∇vn| dx dy < Sn. (.)

From (.), we have
∫ t



∫

C
|∇vn| dx dy ds ≤ C(T), (.)

where C(T) is the constant independent of n.
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Using the trace theorem, we see, from the prior estimates (.) and (.), that there exist
a subsequence (not relabeled) and a function v such that

vn → v, a.e. on C × (, T),

vn ⇀ v, weakly in H
,L(C),

vn(x, , t) → v(x, , t), strongly in Lq(� × (, T)
)
,  ≤ q < #,

vnt ⇀ vt , weakly in L(� × {} × (, T)
)
.

In particular, for every ϕ ∈ H
,L(C), we obtain, from Lemma ., that, as n → ∞,

∫

�×{}
vntϕ +

∫

C
∇vn∇ϕ –

∫

�×{}
|vn|#–vnϕ dx = 

⇒
∫

�×{}
vtϕ +

∫

C
∇v∇ϕ –

∫

�×{}
|v|#–vϕ dx = ,

which implies that the function v is a desired local solution of (.) and v ∈ H
,L(C).

(ii) As regards global existence, multiplying (.) by vt and integrating, we obtain

∫ t



∫

�×{}

∣
∣v′(s)

∣
∣ dx ds + E

(
v(x, , t)

)
= E(u) <


n

Sn.

Thus,

E
(
v(x, , t)

)
<


n

Sn (.)

for any t > .
Note if

∫

�×{}
|v|# dx < Sn,

then
∫

C
|∇v| dx dy >

∫

�×{}
|v|# dx.

Now we prove that v(x, , t) ∈ ∂� for any t > , then we have

E
(
v(x, , t)

) ≥ 
n

Sn,

which is a contradiction. Hence
∫

C
|∇v| dx dy >

∫

�×{}
|v|# dx

for any t > . Therefore,

∫ t



∫

�×{}

∣
∣v′(s)

∣
∣ dx ds +


n

∫

C
|∇v| dx dy ≤ E(u) <


n

Sn,
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which implies

∫

C
|∇v| dx dy < Sn, (.)

∥
∥v′(t)

∥
∥

L(,T ;L(C)) <


n
Sn (.)

for any T > . Thus, v(x, y, t) is a global solution of (.).
Step : Proof of (.).
We apply the same argument as in [], and for the sake of completeness, we give the

proof. Let

h
(
v(t)

)
=

∫

C
|∇v| dx dy –

∫

�×{}
|v|#

dx,

then by Step , we have h(v(t)) > , for all t ≥ .
As for the Sobolev trace inequality, we have

∫

�×{}

∣
∣v(x, , t)

∣
∣#

dx ≤ 

S #


(∫

C
|∇v| dx dy

) #


and the inequality

E(u) >


n

∫

C
|∇v| dx dy

implies

∫

�×{}

∣
∣v(x, , t)

∣
∣#

dx <


S #


(
nE(u)

) #
 –

∫

C
|∇v| dx dy. (.)

For simplicity, denote 

S
#


(nE(v)) #
 – by δ ( < δ < ). Letting γ =  – δ, we have

∫

�×{}

∣
∣v(x, , t)

∣
∣#

dx ≤ ( – γ )
∫

C
|∇v| dx dy. (.)

Let T > t be a fixed number, then




d
dt

∫

�×{}

∣
∣v(x, , t)

∣
∣ dx = –h

(
v(t)

)
.

Using Lemma ., there exists a positive constant C such that

∫ T

t
h
(
v(s)

)
ds =




∫

�×{}

∣
∣v(x, , t)

∣
∣ dx –

∫

�×{}

∣
∣v(x, , T)

∣
∣ dx

≤ 


∫

�×{}

∣
∣v(x, , t)

∣
∣ dx ≤ C

∫

C
|∇v| dx dy. (.)
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Furthermore, inequality (.) implies

E
(
v(t)

)
=




∫

C
|∇v| dx dy –


#

∫

�×{}

∣
∣v(x, , t)

∣
∣#

dx

=



∫

C
|∇v| dx dy +


#

[

h
(
v(t)

)
–

∫

C
|∇v| dx dy

]

=


n

∫

C
|∇v| dx dy +


#

h
(
v(t)

)

≥ 
n

∫

C
|∇v| dx dy, (.)

on [t,∞).
Therefore, by inequalities (.) and (.), we obtain

∫ T

t
h
(
v(s)

)
ds ≤ CE

(
v(t)

)
, (.)

on [t, T]. On the other hand, inequality (.) implies

γ

∫

C
|∇v| dx dy ≤ h

(
v(t)

)
, (.)

on [t,∞).
By inequalities (.) and (.), we have

E
(
v(t)

) ≤
(


nγ

+


#

)

h
(
v(t)

)
. (.)

Furthermore, (.) and (.) give

C

∫ T

t
E
(
v(s)

)
ds ≤ E

(
v(t)

)
,

on [t, T].
Then, from the arbitrariness of T > t, we have

C

∫ ∞

t
E
(
v(s)

)
ds ≤ E

(
v(t)

)
.

Let T > t be sufficiently large such that C–
 ≤ T, it follows that

∫ ∞

t
E
(
v(s)

)
ds ≤ TE

(
v(t)

)
, (.)

on [t,∞).
Setting y(t) =

∫ ∞
t E(v(s)) ds, it follows from (.) that

TE
(
v(T + t)

) ≤
∫ T+t

t
E
(
v(s)

)
ds ≤

∫ ∞

t
E
(
v(s)

)
ds ≤ Ce– t

T .
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By (.), we have


n

∫

C

∣
∣∇v(T + t)

∣
∣ dx dy ≤ Ce– t

T

for some constant C for large t > T. Hence

∫

C
|∇v| dx dy = O

(
e–Kt), as t → ∞.

From Lemma ., we have

‖u‖H/
 (�) =

∫

C
|∇v| dx dy = O

(
e–Kt), as t → ∞.

Step : Proof of (.).
Obviously

∫

�×{}

∣
∣∇v(x, , t; v)

∣
∣ dx < Sn

and

d
dt

∫

�×{}

∣
∣v(t)

∣
∣ dx +

∫

C
|∇v| dx dy ≤

∫

�×{}
|v|#

dx (.)

for all t > . By the same argument as Step , we have

d
dt

∫

�×{}

∣
∣v(t)

∣
∣ dx < –( – δ)

∫

C
|∇v| dx dy ≤ –C

∫

�×{}

∣
∣v(x, , t)

∣
∣ dx.

We see that the estimate
∫

�×{}

∣
∣v(x, , t)

∣
∣ dx = O

(
e–Kt), as t → ∞,

holds. That is,

‖u‖L(�) =
∫

�×{}

∣
∣v(x, , t)

∣
∣ dx = O

(
e–Kt), as t → ∞.

Step : Proof that if
∫

�
|u|# dx > Sn, then the local solution blows up in finite time.

We divide the proof into two steps.
(i) First of all, we define a set which consists of the functions that satisfy the following

conditions:

E
(
v(x, )

)
<


n

Sn, (.)
∫

�×{}

∣
∣v(x, )

∣
∣#

dx = Sn. (.)

We claim that the set is an empty set.
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Indeed, let v belong to the set. If v satisfies

∫

C

∣
∣∇v(x, y)

∣
∣ dx dy <

∫

�×{}

∣
∣v(x, )

∣
∣#

dx,

then

Sn ≥
∫

�×{}

∣
∣v(x, )

∣
∣#

dx ≥
∫

C

∣
∣∇v(x, y)

∣
∣ dx dy

≥ S
(∫

�×{}

∣
∣v(x, )

∣
∣#

dx
) 

#

= Sn,

and hence
∫

C

∣
∣∇v(x, y)

∣
∣ dx dy =

∫

�×{}

∣
∣v(x, )

∣
∣#

dx = Sn,

E
(
v(x, )

)
=




∫

C

∣
∣∇v(x, y)

∣
∣ dx dy –


#

∫

�×{}

∣
∣v(x, )

∣
∣#

dx =


n
Sn,

which is contradictory to condition (.).
If v satisfies

∫

C |∇v(x, y)| dx dy >
∫

�×{} |v(x, )|# dx, then from inequality (.), we
see that


n

Sn > E
(
v(x, )

)
=




∫

C

∣
∣∇v(x, y)

∣
∣ dx dy –


#

∫

�×{}

∣
∣v(x, )

∣
∣#

dx

>


n

∫

�×{}

∣
∣v(x, )

∣
∣#

dx.

It implies
∫

�×{} |v(x, )|# dx < Sn which is a contradiction because of condition (.).
Therefore, that set is an empty set.

(ii) Thus, we consider only the following case:

E
(
v(x, )

)
<


n

Sn,
∫

�×{}

∣
∣v(x, )

∣
∣#

dx > Sn. (.)

Obviously, in this case we have Sn <
∫

C |∇v(x, y)| dx dy <
∫

�×{} |v(x, )|# dx. If v(x, y, t)
is a global solution, then we can deduce that v(x, y, t) does not converge strongly to  in
H

,L(C). Otherwise, there will exist a t∗ (t∗ > ) such that

E
(
v
(
t∗)) <


n

Sn,
∫

�×{}

∣
∣v

(
x, , t∗)∣∣#

dx = Sn,

which contradicts part (i).
To complete the proof of Theorem .(◦), we first prove the following.

Claim v satisfies (.) and v(x, y, t; v) is a global solution. For ∀t ∈ [, T] the following
inequalities hold:

Sn <
∫

C

∣
∣∇v(x, y, t)

∣
∣ dx dy <

∫

�×{}

∣
∣v(x, , t)

∣
∣#

dx. (.)
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Indeed, if there exists a t∗ ∈ [, Tmax] such that
∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy =

∫

�×{}

∣
∣v

(
x, , t∗)∣∣#

dx,

then we have
∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy =

∫

�×{}

∣
∣v

(
x, , t∗)∣∣#

dx ≥ Sn.

But


n

Sn > E
(
v
(
t∗)) =


n

∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy,

which is a contradiction. Therefore there exists a constant η >  sufficiently small and
independent of t, rely on v such that

∫

�×{}

∣
∣v

(
x, , t∗)∣∣#

dx ≥ ( + η)
∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy (.)

for any t ∈ [,∞], which completes the proof of the claim.
Now we can complete the proof of Theorem .(◦). We shall employ the same argument

as the proof of Theorem .. Suppose that Tmax = ∞ and denote f (t) = 

∫ t

t

∫

�×{} |v| dx ds.
We obtain (.), (.), and from (.) and (.) we have

f ′′(t) = –
∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy + ( + η)

∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy

= η

∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy.

If we have Tmax = ∞, then this inequality would yield

lim
t→∞ f (t) = lim

t→∞ f ′(t) = ∞.

By (.) and (.) we have

f ′′(t) =
(

#


– 

)∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy – #E

(
v(t)

)
+ #

∫ t

t

∫

�×{}
v

s dx ds,

and by (.), we have

(
#


– 

)∫

C

∣
∣∇v

(
x, y, t∗)∣∣ dx dy – #E

(
v(t)

) ≥ ,

which implies

f ′′(t) ≥ #
∫ t

t

∫

�×{}
v

s dx ds

and

f (t)f ′′(t) ≥ ∗


(
f ′(t) – f ′()

).
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By the argument of the proof of Theorem ., we obtain a contradiction, which completes
the proof of Theorem .(◦).
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