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Abstract
This paper is concerned with a degenerate p(x)-Laplacian equation with a nonsmooth
potential. We establish a compact embeddingW1,p(x)(ω,�) ↪→ Lq(x)(α(x),�) under
suitable conditions and obtain the existence and multiplicity of solutions to the
degenerate p(x)-Laplacian equation by the theories of nonsmooth critical point and
the variable exponent Lebesgue-Sobolev spaces. Some recent results in the literature
are generalized and improved.
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1 Introduction
In this paper, we discuss the existence and multiplicity of solutions for the following degen-
erate p(x)-Laplacian equation with a nonsmooth potential (hemivariational inequality):

{
– div(ω(x)|∇u|p(x)–∇u) ∈ λα(x)∂j(x, u) + μα(x)∂j(x, u) for a.a. x ∈ �,
u|∂� = ,

(.)

where � ⊂R
N is a bounded domain with a C boundary ∂�, j, j : �×R →R are jointly

measurable potential functions, which are locally Lipschitz and in general nonsmooth in
u ∈R, and the following conditions are satisfied:

(P) p(x) ∈ C(�̄),  < p– = inf� p(x) ≤ p+ = sup� p(x) < +∞;
(W) ω is a measurable positive and a.a. finite function in �. ω ∈ L

loc(�) and
ω–s(·) ∈ L(�) for some s ∈ C(�̄) such that s(x) ∈ ( N

p(x) ,∞) ∩ [ 
p(x)– ,∞) for all x ∈ �̄.

As is well known, the p(x)-Laplacian possesses more complicated nonlinearities than
the p-Laplacian (a constant), for example, it is inhomogeneous and, in general, it does not
have the first eigenvalue. In other words, the infimum equals  (see []). p(x)-Laplacian
can be found in the areas, the thermistor problem [], electro-rheological fluids [], or the
problem of image recovery []. When ω is not bounded (or not separated from zero) ω(x)
is called degenerate (or singular). A degenerate second order linear differential operator
was basically due to Murthy and Stampacchia [], and higher order linear degenerate el-
liptic operators were extended in the s, and quasilinear elliptic equations including
p-Laplacian were developed in the s (see []). Degenerate phenomena appear in the
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area of oceanography, turbulent fluid flows, electrochemical problems and induction heat-
ing. These problems are interesting in applications and raise many difficult mathematical
problems. The results can be found in [–] and the references therein.

If ω(x) =  and μ = , then problem (.) becomes

{
– div(|∇u|p(x)–∇u) ∈ λ∂j(x, u), x ∈ �,
u|∂� = .

(.)

There exist several existence results for problem (.). For example, Dai and Liu [] ob-
tained the existence of three solutions for problem (.) by a version of the nonsmooth
three critical points theorem. Qian and Shen [], using the theory of nonsmooth critical
point theory, derived the existence and multiplicity of solutions for problem (.), where
λ = . Ge et al. [], employing a variational method combined with suitable truncation
techniques based on nonsmooth critical point theory for locally Lipschitz function, proved
the existence of at least five solutions under suitable conditions. It is well known that when
p(x) = p (a constant), p-Laplacian differential inclusion has been studied sufficiently (see,
e.g., [–] and the references therein).

Being influenced by the above results, we want to discuss problem (.). To the best of
our knowledge, there exist few papers to study problem (.). Compared with the previous
works, our framework presents new nontrivial difficulties. In particular, there is no com-
pact embedding W ,p(x)(ω,�) ↪→ Lq(x)(α(x),�). To deal with the difficulty, we borrow an
idea from the compact embedding theorem W ,p(x)(�) ↪→ Lq(x)(�) (see []) to prove the
compactness W ,p(x)(ω,�) ↪→ Lq(x)(α(x),�) under suitable assumptions.

This paper is organized as follows. In Section , we present some necessary preliminary
knowledge on the weighted variable exponent Sobolev space and nonsmooth critical point
theory. In Section , in order to discuss problem (.), we firstly prove a compact embed-
ding theorem for the weighted variable exponent Sobolev space, which plays an impor-
tant role in this section. Then, based on this theorem, combining the nonsmooth fountain
theorem, nonsmooth dual fountain theorem, Weierstrass theorem and nonsmooth pass
mountain theorem, we obtain the existence and multiplicity results for problem (.).

2 Preliminaries
In this section we state some definitions and lemmas, which will be used throughout this
paper. First of all, we give some definitions: (X,‖ · ‖) will denote a (real) Banach space
and (X∗,‖ · ‖∗) its topological dual. While un → u (respectively, un ⇀ u) in X means that
the sequence {un} converges strongly (respectively, weakly) in X. h– = infx∈� h(x) and h+ =
infx∈� h(x).

We define the weighted variable exponent Lebesgue-Sobolev spaces and list some prop-
erties of these spaces. Since the variable exponent Lebesgue-Sobolev spaces Lp(x)(�) and
W ,p(x)(�) were thoroughly studied in [–], we only introduce the weighted variable
exponent Lebesgue-Sobolev spaces Lp(x)(α(x),�) and W ,p(x)(ω,�).

Set

C+(�̄) =
{

h ∈ C(�̄) : min
x∈�̄

h(x) > 
}

.
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Denote by S(�) the set of all measurable real functions defined on �. For any p ∈ C+(�̄)
and α(x) ∈ S(�), we define the variable weighted exponent Lebesgue space by

Lp(x)(α,�) =
{

u ∈ S(�) :
∫

�

α(x)
∣∣u(x)

∣∣p(x) dx < ∞
}

with the norm

|u|Lp(x)(α,�) = inf

{
λ >  :

∫
�

α(x)
∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx ≤ 
}

,

then Lp(x)(α,�) is a Banach space. When α(x) ≡ , we have Lp(x)(α,�) ≡ Lp(x)(�). The
weighted variable exponent Sobolev space W ,p(x)(ω,�) is defined by

W ,p(x)(ω,�) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(ω,�)
}

with the norm

‖u‖W ,p(x)(ω,�) = |u|Lp(x)(�) + |∇u|Lp(x)(ω,�)

or equivalently

‖u‖W ,p(x)(ω,�) = inf

{
λ >  :

∫
�

(∣∣∣∣u(x)
λ

∣∣∣∣
p(x)

+ ω(x)
∣∣∣∣∇u(x)

λ

∣∣∣∣
p(x))

dx ≤ 
}

for all u ∈ W ,p(x)(ω,�). W ,p(x)
 (ω,�) is defined as the completion of C∞

 (�) with respect to
the norm ‖u‖W ,p(x)(ω,�). The following Hölder type inequality is useful for the next section.

Proposition . ([, ]) The space Lp(x)(�) is a separable, uniform Banach space, and its
conjugate space is Lp′(x)(�), where /p(x)+/p′(x) = . For any u ∈ Lp(x)(�) and v ∈ Lp′(x)(�),
we have

∣∣∣∣
∫

�

uv dx
∣∣∣∣ ≤

(


p– +


(p′)–

)
|u|Lp(x)(�)|v|Lp′(x)(�) ≤ |u|Lp(x)(�)|v|Lp′(x)(�).

Proposition . ([, ]) Set ρ(u) =
∫
�

α(x)|u(x)|p(x) dx. For u, uk ∈ Lp(x)(α(x),�), we
have

(i) For u = , |u|Lp(x)(α(x),�) = λ ⇔ ρ( u
λ

) = ;
(ii) |u|Lp(x)(α(x),�) < (= , > ) ⇔ ρ(u) < (= , > );

(iii) If |u|Lp(x)(α(x),�) > , then |u|p–

Lp(x)(α(x),�) ≤ ρ(u) ≤ |u|p+

Lp(x)(α(x),�);

(iv) If |u|Lp(x)(α(x),�) < , then |u|p+

Lp(x)(α(x),�) ≤ ρ(u) ≤ |u|p–

Lp(x)(α(x),�);
(v) limk→∞ |uk|Lp(x)(α(x),�) =  ⇔ limk→∞ ρ(uk) = ;

(vi) |uk|Lp(x)(α(x),�) → ∞ ⇔ ρ(uk) → ∞.

If (P) and (W) hold, from [], we have the following propositions.

Proposition . Assume that (P) and (W) hold, then W ,p(x)(ω,�) and W ,p(x)
 (ω,�) are

reflexive Banach spaces.
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To obtain a crucial embedding result which will be used in the later section, let us denote

ps =
p(x)s(x)
 + s(x)

< p(x),

where s(x) is given in hypothesis (W) and

p∗
s =

⎧⎨
⎩

p(x)s(x)N
(s(x)+)N–p(x)s(x) if ps(x) < N ,

+∞ if ps(x) ≥ N ,

for all x ∈ �̄.
The following compact embedding theorem is very important in this paper.

Proposition . ([]) Assume that hypotheses (P) and (W) hold, q ∈ C+(�̄) and  ≤ q(x) <
p∗

s (x) for all x ∈ �̄, then we have the continuous compact embedding

W ,p(x)(ω,�) ↪→ Lq(x)(�).

Furthermore, we also have the following Poincaré inequality type.

Proposition . ([]) If (P) and (W) hold, then the estimate

|u|Lp(x)(�) ≤ C|∇u|Lp(x)(ω,�)

holds for all u ∈ C∞
 (�) with a positive constant C independent of u.

Let X = W ,p(x)
 (�). We say that u is a weak solution of problem (.) if u ∈ X and

∫
�

ω(x)|∇u|p(x)–∇u · ∇v dx – λ

∫
�

α(x)ξv dx – μ

∫
�

α(x)ξv dx = 

for all v ∈ X, ξ ∈ ∂j(x, u) and ξ ∈ ∂j(x, u) a.a. on �. We write A : X → X∗

〈
A(u), v

〉
=

∫
�

ω(x)|∇u|p(x)–∇u∇v dx, ∀u, v ∈ X.

Lemma .
(i) A : X → X∗ is a continuous, bounded and strict monotone operator.

(ii) A is a mapping of type (S+), i.e., if un ⇀ u in X and
limn→∞〈A(un) – A(u), un – u〉 ≤ , then un → u in X .

Remark . The proof is similar to that in [] (see Theorem .). Here we omit its proof.

Seeking a weak solution of problem (.) is equivalent to finding a critical point of the
energy function I : X →R for problem (.) defined by

I(u) =
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)j(x, u) dx – μ

∫
�

α(x)j(x, u) dx, ∀u ∈ X. (.)

Since I is Lipschitz continuous on bounded sets, hence it is locally Lipschitz (see [],
p.).
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Definition . A function I : X → R is locally Lipschitz if for every u ∈ X there exist a
neighborhood U of u and L >  such that for every ν,η ∈ U ,

∣∣I(ν) – I(η)
∣∣ ≤ L‖ν – η‖.

Definition . Let I : X → R be a locally Lipschitz functional, u,ν ∈ X: the generalized
derivative of I in u along the direction ν ,

I(u;ν) = lim sup
η→u,τ→+

I(η + τν) – I(η)
τ

.

It is easy to see that the function ν �→ I(u;ν) is sublinear, continuous and so is the
support function of a nonempty, convex and ω∗-compact set ∂I(u) ⊂ X∗ defined by

∂I(u) =
{

u∗ ∈ X∗ :
〈
u∗,ν

〉
X ≤ I(u;ν) for all v ∈ X

}
.

If I ∈ C(X), then

∂I(u) =
{

I ′(u)
}

.

Clearly, these definitions extend those of the Gâteaux directional derivative and gradient.

A point u ∈ X is a critical point of I if  ∈ ∂I(u). It is easy to see that if u ∈ X is a local
minimum of I , then  ∈ ∂I(u). For more on locally Lipschitz functionals and their subdif-
ferential calculus, we refer the reader to Clarke [].

Lemma . ([])
(i) (–h)◦(u; z) = h◦(u; –z) for all u, z ∈ X ;

(ii) h◦(u; z) = max{〈u∗, z〉X : u∗ ∈ ∂h(u)} for all u, z ∈ X ;
(iii) Let j : X →R be a continuously differentiable function. Then ∂j(u) = {j′(u)}, j◦(u; z)

coincides with 〈j′(u), z〉X and (h + j)◦(u; z) = h◦(u; z) + 〈j′(u), z〉X for all u, z ∈ X ;
(iv) (Lebourg’s mean value theorem) Let u and v be two points in X . Then there exists a

point ξ in the open segment between u and v, and u∗
ξ ∈ ∂h(ω) such that

h(u) – h(v) =
〈
u∗

ξ , u – v
〉
X ;

(v) (Second chain rule) Let Y be a Banach space and j : Y → X be a continuously
differentiable function. Then h ◦ j is locally Lipschitz and

∂(h ◦ j)(y) ⊆ ∂h
(
j(y)

) ◦ j′(y) for all y ∈ Y ;

(vi) mI(u) = infu∗∈∂I(u) ‖u∗‖X∗ is lower semicontinuous.

In the following, we introduce a nonsmooth version of the fountain theorem which was
proved by Dai in [].
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Definition . Assume that the compact group G acts diagonally on V k

g(v, . . . , vk) = (gv, . . . , gvk),

where V is a finite dimensional space. The action of G is admissible if every continuous
equivariant map ∂U → V k–, where U is an open bounded invariant neighborhood of 
in V k , k ≥ , has a zero.

Example . The antipodal action G = Z on V = R is admissible.

We consider the following situation:

(A) The compact group G acts isometrically on the Banach space X =
⊕

m∈N Xm, the space
Xm is invariant and there exists a finite dimensional space V such that, for every m ∈N,
Xm � V and the action of G on V is admissible.

In this paper, we will use the following notations:

Yk =
k⊕

m=

Xm, Zk =
∞⊕

m=k

Xm,

Bk =
{

u ∈ Yk : ‖u‖ ≤ ρk
}

, Nk =
{

u ∈ Zk : ‖u‖ = rk
}

,

where ρk > rk > .

Definition . (i) We say that I satisfies the nonsmooth (PS)c if any sequence {un} ⊂ X,
such that

I(un) → c and mI(un) →  as n → +∞,

has a strongly convergent subsequence, where mI(un) = infu∗
n∈∂I(un) ‖u∗

n‖X∗ .
(ii) We say that I satisfies the nonsmooth C-condition if any sequence {un} ⊂ X, such

that

I(un) → c and
(
 + ‖un‖X

)
mI(un) → ,

has a strongly convergent subsequence.
(iii) We say that I satisfies the nonsmooth (PS)∗c means that any sequence {unj} ⊂ X, such

that

nj → ∞, unj ∈ Ynj , I(unj ) → c and mI|Ynj (unj ) → ,

has a strongly convergent subsequence converging to a critical point of I .

Remark . (i) The nonsmooth C-condition is slightly weaker than the nonsmooth (PS)c,
while it retains the most important implications of the nonsmooth (PS)c.

(ii) The (PS)∗c means the (PS)c. Assume that {uj} ⊂ X such that

I(uj) → c, mI(uj) → .



Yuan and Huang Boundary Value Problems  (2015) 2015:120 Page 7 of 16

Then there exist sequences {vnj}, {nj} such that

nj → ∞, vnj ∈ Ynj , vnj – uj → ,

I(vnj ) – I(uj) → , mI(vnj ) – mI(uj) → .

From (PS)∗c , the sequence {vnj} contains a convergent subsequence and hence {uj} includes
also a convergent subsequence.

Theorem . Under hypothesis (A), let I : X → R be an invariant locally Lipschitz func-
tional. If for every k ∈N there exists ρk > rk >  such that

(A) ak = maxu∈Yk ,‖u‖=ρk I(u) ≤ ;
(A) bk = infu∈Zk ,‖u‖=rk I(u) → ∞, k → ∞;
(A) I satisfies the nonsmooth (PS)c for every c > ,

then I has an unbounded sequence of critical values.

Now we will give the nonsmooth dual fountain theorem, which was firstly proved by Dai
et al. in [].

Theorem . Under hypothesis (A), let I : X →R be an invariant locally Lipschitz func-
tional. If, for every k ≥ k, there exist ρk > rk >  such that

(A′
) ak = infu∈Zk ,‖u‖=ρk I(u) ≥ ,

(A′
) bk = maxu∈Yk ,‖u‖=rk I(u) < ,

(A′
) dk = infu∈Zk ,‖u‖≤ρk I(u) → , k → ∞,

(A) I satisfies the nonsmooth (PS)∗c for every c ∈ [dk , ),

then I has a sequence of negative critical values converging to .

The next theorem is the nonsmooth version of the classical mountain pass theorem.

Theorem . ([]) If there exist u ∈ X and r >  such that ‖u‖ > r,

max
{

I(), I(u)
} ≤ inf‖u‖=r

I(u)

and I satisfies the nonsmooth C-condition with

c = inf
γ∈�

sup
t∈[,]

I
(
γ (t)

)
,

where � = {γ ∈ C([, ]; X) : γ () = ,γ () = u}, then c ≥ inf‖u‖=r I(u) and c is a critical
value of I . Moreover, if c = inf{I(u) : ‖u‖ = r}, then there exists a critical point u of I with
I(u) = c and ‖u‖ = r (i.e., KI

c ∩ ∂Br = ∅).

3 Existence and multiplicity of solutions
In this section, we let X = W ,p(x)

 (ω,�). For u ∈ X, we define an equivalent norm ‖u‖ =
|∇u|Lp(x)(ω,�) due to Proposition .. In order to discuss problem (.), we need the follow-
ing hypotheses:
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(H) For i = , , αi ∈ Lri(x)(�), αi(x) > , |ξi| ≤ c + c|u|qi(x)– for a.a. x ∈ �, ∀ξi ∈ ∂ji(x, u)
and u ∈ R, where c, c are positive constants, ri, qi ∈ C(�̄), r–

i > , q–
i > , and qi(x) <

ri(x)–
ri(x) p∗

s (x);
(H) q+

 < p–;
(H) q–

 > p+;
(H) There exists a >  such that j(x, u) ≥ –a for a.a. x ∈ � and u ∈ R;
(H) There exist θ > p+, M >  and |u| ≥ M for a.a. x ∈ � such that  < θ j ≤ uξ, where

ξ ∈ ∂j(x, u);
(H) There exist δ > , a, a > ,  ≤ q(x), q(x) < r(x)–

r(x) p∗
s (x) and q+

 , q–
 < p– such that

auq(x)

q(x)
≤ j(x, u) ≤ auq(x)

q(x)
for a.a. x ∈ �,∀u ∈ (, δ);

(H) There exist δ > , a > , q(x) ∈ C(�̄), q–
 > p+ and q(x) < r(x)–

r(x) p∗
s (x) such that

∣∣j(x, u)
∣∣ ≤ a|u|q(x) for a.a. x ∈ �,∀|u| ≤ δ;

(H) There exist δ > , a > , q(x) ∈ C(�̄),  ≤ q–
 ≤ q+

 < p– and q(x) < r(x)–
r(x) p∗

s (x) such
that

j(x, u) ≥ auq(x) for a.a. x ∈ �,∀u ∈ (, δ);

(H) For a.a. x ∈ �, i = , , all u ∈R, ji(x, –u) = ji(x, u).

In order to discuss the existence and multiplicity solutions for problem (.), we need
the following lemma.

Lemma . If p(x) ∈ C+(�̄), α(x) ∈ Lr(x)(�), α(x) >  for a.a. x ∈ �, r ∈ C(�̄) and r– > ,
q(x) ∈ C(�̄) and

 ≤ q(x) <
r(x) – 

r(x)
p∗

s (x) for a.a. x ∈ �̄, (.)

then there exists a compact embedding W ,p(x)(ω,�) ↪→ Lq(x)(α(x),�).

Proof Set u(x) ∈ W ,p(x)(ω,�), h(x) = r(x)
r(x)– and β(x) = h(x)q(x). From (.), it is easy to

see β(x) < p∗
s (x). By virtue of Proposition ., we have W ,p(x)(ω,�) ↪→ Lβ(x)(�). For u ∈

W ,p(x)(ω,�), we have |u(x)|q(x) ∈ Lh(x)(�) and from Proposition .,

∫
�

α(x)
∣∣u(x)

∣∣q(x) dx ≤ |α|r(x)
∣∣∣∣u(x)

∣∣q(x)∣∣
h(x) < ∞.

This means that W ,p(x)(ω,�) ⊂ Lq(x)(α(x),�). Now set {un} ⊂ W ,p(x)(ω,�) and un ⇀  in
W ,p(x)(ω,�). Then un →  in Lβ(x)(�) and from this we have ||u(x)|q(x)|h(x) → . Hence,
we obtain

∫
�

α(x)
∣∣un(x)

∣∣q(x) dx ≤ 
∣∣α(x)

∣∣
r(x)

∣∣∣∣un(x)
∣∣q(x)∣∣

h(x) → ,
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which means |un(x)|Lq(x)(α(x),�) → . This means that the embedding W ,p(x)(ω,�) ↪→
Lq(x)(α(x),�) is compact. Thus, we complete the proof. �

The following lemma is very important when we use the nonsmooth fountain and dual
fountain theorems to prove infinite solutions for problem (.).

Lemma . If  ≤ q(x) < r(x)–
r(x) p∗

s (x), α(x) ∈ Lr(x)(�), α(x) > , r ∈ C(�̄) and r– > , then we
have

βk = sup
u∈Zk ,‖u‖=

|u|Lq(x)(α(x),�) →  as k → ∞.

Proof It is clear that  < βk+ ≤ βk , so there exists β ≥  such that βk → β as k → ∞.
We will show β = . From the definition of βk , for every k ≥ , there exists uk ∈ Zk such
that ‖uk‖ =  and  ≤ β – |u|Lq(x)(α(x),�) ≤ 

k . Then there exists a subsequence of {uk}, for
convenience we still denote it by uk , such that uk ⇀ u in W ,p(x)(ω,�), and

〈
e∗

j , u
〉

= lim
k→∞

〈
e∗

j , uk
〉

= , j = , , . . . ,

which means that u =  and uk ⇀  in W ,p(x)(ω,�). Note that W ,p(x)(ω,�) ↪→ Lq(x)(α(x),
�) is compact, then uk →  in Lq(x)(α(x),�). Hence we obtain that β = . �

Next, we will use the nonsmooth fountain theorem to prove the existence of infinitely
many large energy solutions for problem (.).

Theorem . If hypotheses (P), (W), (H)-(H), (H) and (H) are satisfied, for all μ >
 and λ ∈ R, problem (.) has a sequence of solutions {±uk} such that I(±uk) → ∞ as
k → ∞.

Proof We choose an orthonormal basis (ej) of X and set Xj = Rej. On X we consider the
antipodal action of Z. We have known that I is locally Lipschitz on X. Considering (H),
we can employ the nonsmooth version of fountain theorem to prove Theorem ..

Claim . I satisfies the nonsmooth (PS)c.
Let {un}n≥ ⊂ X be a sequence such that

∣∣I(un)
∣∣ ≤ c for all n ≥  and mI(un) →  as n → ∞ (.)

for some c > . We assume that {un}n≥ is unbounded in X, then up to a subsequence
‖un‖ → ∞ as n → ∞. From (.), for n large enough, we have

–
〈
u∗

n, un
〉

= –
∫

�

ω(x)
∣∣∇un(x)

∣∣p(x) dx + λ

∫
�

α(x)ξ,n(x)un(x) dx

+ μ

∫
�

α(x)ξ,n(x)un(x) dx

≤ εn‖un‖, (.)
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and

θ

∫
�

ω(x)
p(x)

∣∣∇un(x)
∣∣p(x) dx – θλ

∫
�

α(x)j(x, un) dx

– θμ

∫
�

α(x)j(x, un) dx ≤ θc, (.)

where εn → , u∗
n ∈ ∂I(un), ξ,n ∈ ∂j(x, un), ξ,n ∈ ∂j(x, un) for a.a. x ∈ �. Adding (.) and

(.), from Proposition ., (H), (H), Lemma . and Lebourg’s mean value theorem, we
have

εn‖un‖ + θc

≥
∫

�

(
θ

p(x)
– 

)
ω(x)|∇un|p(x) dx + λ

∫
�

α(x)
(
ξ,nun – θ j(x, un)

)
dx

+ μ

∫
�

α(x)
(
ξ,nun – θ j(x, un)

)
dx

≥
∫

�

(
θ

p+ – 
)

ω(x)|∇un|p(x) dx + λ

∫
�

α(x)
(
ξ,nun – θ j(x, un)

)
dx

+ μ

∫
{x∈�:|un|≤M}

α(x)
(
ξ,nun – θ j(x, un)

)
dx

+ μ

∫
{x∈�:|un|>M}

α(x)
(
ξ,nun – θ j(x, un)

)
dx

≥
(

θ

p+ – 
)

‖un‖p–
+ λ

∫
�

α(x)
(
ξ,nun – θ j(x, un)

)
dx

+ μ

∫
{x∈�:|un|≤M}

α(x)
(
ξ,nun – θ j(x, un)

)
dx

≥
(

θ

p+ – 
)

‖un‖p–
– λ

∫
�

α(x)
(
b + b|un|q(x))dx – c

≥
(

θ

p+ – 
)

‖un‖p–
– λb

∫
�

α(x) dx – λb|un|Lq+
 (α(x),�)

– c

≥
(

θ

p+ – 
)

‖un‖p–
– λc‖un‖q+

 – b (.)

for some b, b, b, c, c > . Note that  < q+
 < p–, taking n → ∞ in the inequality above,

we derive a contradiction. Therefore {un}n≥ is bounded in X. Thus, by passing to a sub-
sequence if necessary, we assume that

un ⇀ u in X, un → u in Lq(x)(α(x),�
)

(.)

α(x) and q(x) are defined by Lemma .. So we have

∣∣∣∣〈A(un), un – u
〉
– λ

∫
�

α(x)ξ,n(un – u) dx – μ

∫
�

α(x)ξ,n(un – u) dx
∣∣∣∣

≤ εn‖un – u‖, (.)
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where ξi,n ∈ ∂ji(x, un) (i = , ), εn → . From (H), Propositions ., . and the definition
of Lp(x)(α(x),�), we obtain

∣∣∣∣
∫

�

α(x)ξ,n(un – u) dx
∣∣∣∣

≤
∫

�

α(x)
(
c + c|un|q(x)–)|un – u|dx

≤ c|un – u|L(α(x),�) + c

∫
�

(
α


q(x)
 (x)|un|

)q(x)–(
α


q(x)
 (x)|un – u|)dx

≤ c|un – u|L(α(x),�) + c

(∫
�

α(x)|un|q(x) dx
) q(x)–

q(x)

×
(∫

�

α(x)|un – u|q(x) dx
) 

q(x)

≤ c|un – u|L(α(x),�) + c
(|un|q

+
 –

Lq(x)(α(x),�)
+ 

)|un – u|Lq(x)(α(x),�).

Noting that q–
 > , from Lemma . and (.) we infer that

lim
n→∞

∫
�

α(x)ξ,n(x)(un – u) dx = . (.)

In a similar way, we have

lim
n→∞

∫
�

α(x)ξ,n(x)(un – u) dx = . (.)

Combining (.), (.) and (.), we have

lim sup
n→+∞

〈
A(un), un – u

〉 ≤ .

From Lemma ., we know that A is a mapping of type (S+). Hence we have

un → u in X.

In what follows, let us verify conditions (A) and (A) of the nonsmooth fountain theo-
rem (see Theorem .). From hypotheses (H) and (H), we can obtain

j(x, u) ≥ c|u|θ – c for some c, c > . (.)

The proof of (.) can be found in [] (Theorem ). For ∀u ∈ Yk , by virtue of (H),
Lemma ., Lebourg’s mean value theorem and (.), we obtain

I(u) ≤
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)j(x, u) dx – μc

∫
�

α(x)|u|θ dx

+ μc

∫
�

α(x) dx

≤ 
p–

∫
�

ω(x)|∇u|p(x) dx + |λ|
∫

�

α(x)d|u|q(x) dx

– μc

∫
�

α(x)|u|θ dx + c (.)
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for some c, d > . Since q+
 < p– ≤ p+ < θ and all norms on a finite dimensional

space Yk are equivalent, from (.), we can choose ρk >  large enough such that
ak = maxu∈Yk ,‖u‖=ρk I(u) ≤ , i.e., relation (A) is satisfied.

In view of (H)-(H), Lemma ., Lebourg’s mean value theorem and Lemma ., for
∀u ∈ Zk , |u| ≥  large enough, we have

I(u) ≥
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)
(
ν|u|q(x) + c

)
dx

– μ

∫
�

α(x)
(
ν|u|q(x) + c

)
dx

≥
∫

�

ω(x)
p(x)

|∇u|p(x) dx –
∫

�

(|λ|να(x) + μνα(x)
)|u|q(x) dx – c

≥ 
p+ ‖u‖p–

– cβ
q–


k ‖u‖q+

 – c,

where ν, ν, c and c are some positive constants. Choosing rk = (cq–
β

q–


k )


p––q+
 , for

u ∈ Zk and ‖u‖ = rk , then

I(u) ≥
(


p+ –


q–



)(
cq–

β
q–


k

) p–
p––q+

 – c.

Since  < p– ≤ p+ < q–
 and βk →  as k → ∞, we obtain

bk = inf
u∈Zk ,‖u‖=rk

I(u) → +∞.

Hence, from the nonsmooth fountain theorem, we obtain that problem (.) has a se-
quence of solutions {±uk} such that I(±uk) → ∞ as k → ∞. The proof of Theorem . is
completed. �

In the following, we will use the nonsmooth dual fountain theorem to prove the existence
of infinitely small energy solutions for problem (.).

Theorem . If hypotheses (P), (W) (H)-(H), (H)-(H) and (H) hold, then for every
λ >  and μ ∈ R, problem (.) has a sequence of solutions {±vk} such that I(±vk) <  and
I(±vk) →  as k → ∞.

Proof Let us verify all the conditions of the nonsmooth dual fountain theorem. From The-
orem ., we know that I is locally Lipschitz and even functional. Choosing an orthonor-
mal basis (ej) of X and setting Xj = Rej on X, we consider the antipodal action of Z on X.

In order to verify (A′
), set  > R >  such that

‖u‖ ≤ R, |u|Lq(x)(α(x),�) < ,

|u|Lq(x)(α(x),�) <  and |μ|ac‖u‖q–
 ≤ 

p+ ‖u‖p+
,
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c is some positive constant. Hence, from (H) and (H), for u ∈ Zk , u ∈ (, min{δ, δ}),
‖u‖ ≤ R and k large enough, we derive

I(u) =
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)j(x, u) dx – μ

∫
�

α(x)j(x, u) dx

≥ 
p+ ‖u‖p+

– λa

∫
�

α(x)
q(x)

uq(x) dx – |μ|a

∫
�

α(x)uq(x) dx

≥ 
p+ ‖u‖p+

–
λaβ

q–


k
q–


‖u‖q–

 – |μ|ac‖u‖q–


≥ 
p+ ‖u‖p+

–
λaβ

q–


k
q–


‖u‖q–

 . (.)

We set ρk = ( p+λaβ
q–


k

q–


)


p+–q–
 , ‖u‖ = ρk . From Lemma . and noting that q–

 < p+, we deduce
that ρk →  as k → ∞. There exists k >  such that ρk ≤ R when k ≥ k. Thus, for k ≥ k,
u ∈ Zk and ‖u‖ = ρk , we have ak = infu∈Zk ,‖u‖=ρk I(u) ≥  and (A′

) is proved.
For u ∈ Yk , there exists ε ∈ (, ) such that for all u ∈ Yk ∩ Bε , |u| ≤ min{δ, δ},

|u|Lq(x)(α(x),�) ≤  and |u|Lq(x)(α(x),�) ≤ . By virtue of hypotheses (H), (H) and Propo-
sition ., we have

I(u) =
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)j(x, u) dx – μ

∫
�

α(x)j(x, u) dx

≤ 
p– ‖u‖p–

–
λa

q+


∫
�

α(x)|u|q(x) dx + |μ|a

∫
�

α(x)|u|q(x) dx

≤ 
p– ‖u‖p–

–
λa

q+


|u|q+


Lq(x)(α(x),�)
+ |μ|a|u|q–


Lq(x)(α(x),�)

.

Since q+
 < p– < q–

 and all norms on Yk are equivalent, there exists rk ∈ (, ε) small enough
such that

bk = max
u∈Yk ,‖u‖=rk

I(u) < .

Hence relation (A′
) of Theorem . is satisfied. Since Yk ∩ Zk = ∅ and rk < ρk , we have

dk = inf
u∈Zk ,‖u‖≤ρk

I(u) ≤ bk = max
u∈Yk ,‖u‖=rk

I(u) < .

On the other hand, from (.), for k ≥ k, u ∈ Zk , ‖u‖ ≤ ρk ,

I(u) ≥ –
λaβ

q–


k
q–


‖u‖q–

 ≥ –
λaβ

q–


k
q–


ρ

q–


k .

Since βk →  and ρk →  as k → ∞, we have

dk = inf
u∈Zk ,‖u‖≤ρk

I(u) →  as k → ∞.

Relation (A′
) of Theorem . is verified.
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Finally, let us prove that I satisfies the nonsmooth (PS)∗c for all c ∈R. Consider a sequence
{unj} ⊂ X such that

nj → ∞, unj ∈ Ynj , I(unj ) → c, m
I|Ynj (unj ) → ,

where mI|Ynj (unj ) = infu∗
nj ∈∂I(unj ) ‖u∗

nj
‖X∗ . Similar to the process of verifying the (PS)c in the

proof of Theorem ., we can prove that unj → u in X. So it only remains to show  ∈ ∂I(u).
Note that

 ≤ mI(u) = mI(u) – mI(unj ) + mI(unj )

= mI(u) – mI(unj ) + mI|Ynj (unj ).

By virtue of Lemma ., we obtain mI(u) ≤  as j → ∞. Hence mI(u) = , i.e.,  ∈ ∂I(u),
which means that I satisfies the (PS)∗c for c ∈ R. So all the conditions of Theorem . are
verified. We complete the proof of Theorem .. �

Theorem . If hypotheses (P), (W), (H)-(H), (H) and (H) hold, and j(x, ) = , then
for all λ >  and μ ≤ , problem (.) has at least one nontrivial solution.

Proof By virtue of hypotheses (H), (H), Lebourg’s mean value theorem and Lemma .,
for u large enough, we have

I(u) =
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)j(x, u) dx – μ

∫
�

α(x)j(x, u) dx

≥ 
p+ ‖u‖p–

– λ

∫
�

α(x)
(
d

∣∣u(x)
∣∣q(x) + c

)
dx + μ

∫
�

aα(x) dx

≥ 
p+ ‖u‖p–

– λc‖u‖q+
 – c (d, c, c are some positive constants).

Note that p– > q+
 and λ > , then we have

I(u) → +∞ as ‖u‖ → +∞.

This means that I has a minimizer solution u for problem (.).
In the following, we prove u = . Choosing v ∈ C∞

 (�) such that  ≤ v(x) ≤
min{δ, δ},

∫
�

α(x)vq(x)
 (x) dx = b >  and

∫
�

α(x)vq(x)
 (x) dx = b > . From (H) and

(H), for t ∈ (, ) small enough, we have

I(tv) =
∫

�

ω(x)
p(x)

|∇tv|p(x) dx – λ

∫
�

α(x)j(x, tv) dx – μ

∫
�

α(x)j(x, tv) dx

≤ tp–
∫

�

ω(x)
p(x)

|∇v|p(x) dx – λ

∫
�

α(x)a
(
tv(x)

)q(x) dx

– μ

∫
�

α(x)a
(
tv(x)

)q(x) dx

≤ tp–
∫

�

ω(x)
p(x)

|∇v|p(x) dx – tq+
 λab – tq–

 μab.



Yuan and Huang Boundary Value Problems  (2015) 2015:120 Page 15 of 16

Since q+
 < p– < q–

 , we can find t ∈ (, ) such that I(tv) < . This implies that I(u) =
infu∈X I(u) < . Hence u =  (I() = ). So we complete the proof of Theorem .. �

Theorem . If hypotheses (P), (W), (H)-(H), (H), (H) and (H) hold, and j(x, ) = ,
for μ > , there exists λ(μ) >  such that when |λ| ≤ λ(μ), problem (.) has at least one
nontrivial solution.

Proof From the proof of Claim  in Theorem ., we can obtain that I satisfies the nons-
mooth C-condition. By hypotheses (H) and (H), we have

j(x, u) ≤ a|u|q(x) + d|u|q(x) (.)

for a.a. x ∈ �, d > . Then, for sufficiently small u,

I(u) =
∫

�

ω(x)
p(x)

|∇u|p(x) dx – λ

∫
�

α(x)j(x, u) dx – μ

∫
�

α(x)j(x, u) dx

≥ 
p+ ‖u‖p+

– λ

∫
�

α(x)j(x, u) dx – μa

∫
�

α(x)|u|q(x) dx

– μd

∫
�

α(x)|u|q(x) dx

≥ 
p+ ‖u‖p+ – c‖u‖q–

 – c‖u‖q–
 – λ

∫
�

α(x)j(x, u) dx

for some c, c > . Note that p+ < q–
 and p+ < q–

 . So there exist r >  and θ >  such that


p+ ‖u‖p+

– c‖u‖q–
 – c‖u‖q–

 > θ for a.a. x ∈ �,‖u‖ ≤ r.

We can find λ(μ) >  such that λ
∫
�

α(x)j(x, u) dx ≤ θ
 when |λ| ≤ λ(μ) for a.a. x ∈ �,

‖u‖ ≤ r. That is to say, when |λ| ≤ λ(μ), we obtain

I(u) ≥ θ


>  for a.a. x ∈ �,‖u‖ < r.

Then we have

inf
{

I(u) : ‖u‖ = r
}

> .

By virtue of (.) in Theorem ., we can find h ∈ X, ‖h‖ > r such that

I(h) < .

Hence, from the nonsmooth mountain pass theorem, we can deduce that problem (.)
has at least one nontrivial solution. �
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14. Denkowski, Z, Gasiński, L, Papageorgiou, N: Existence and multiplicity of solutions for semilinear hemivariational

inequalities at resonance. Nonlinear Anal. 66, 1329-1340 (2007)
15. Iannizzotto, A, Papageorgiou, N: Existence of three nontrivial solutions for nonlinear Neumann hemivariational

inequalities. Nonlinear Anal. 70, 3285-3297 (2009)
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