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1 Introduction
Let HN be the space R

N ×R
N ×R. Then H

N is a Lie group by the following group opera-
tion:

(x, y, t) ◦ (
x′, y′, t′) =

(
x + x′, y + y′, t + t′ + 

(
x′ · y – x · y′)),

where ‘·’ represents the usual inner-product in R
N . The vector fields X, . . . , XN , Y, . . . , YN ,

and T given by

Xj =
∂

∂xj
+ yj

∂

∂t
, Yj =

∂

∂yj
– xj

∂

∂t
, T =

∂

∂t

form a basis for the tangent space at η = (x, y, t).

Definition . The Heisenberg Laplacian is defined by

�H =
N∑

j=

(
X

j + Y 
j
)
.

Denote ∇Hu as the N-vector (Xu, . . . , XN u, Yu, . . . , YN u), and then divH �F = XF + · · · +
XN FN + YG + · · · + YN GN , where �F = (F, . . . , FN , G, . . . , GN ).

In this paper, we will study the multiplicity and boundedness of solutions for the equa-
tion

– divH Jξ (η, u,∇Hu) + Js(η, u,∇Hu) +
(
b(η) – λ

)
u = f (η, u), η ∈H

N , (.)
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where N > , λ ∈ R, and b(·) is a continuous function, satisfying b(η) ≥  for all η ∈ H
N

and lim|η|
HN →∞ b(η) = +∞.

There have been a number of papers concerned with the existence and multiplicity of
solutions for nonlinear equations or systems, such as [–].

In [], Aouaoui established the existence of infinitely many solutions for the problem

– div
(
A(x, u)∇u

)
+




As(x, u)|∇u| +
(
b(x) – λ

)
u = f (x, u), x ∈R

N .

In [], Pellacci and Squassina studied the quasilinear elliptic problem

– div
(
jξ (x, u,∇u)

)
+ js(x, u,∇u) = g(x, u) in �,

with homogeneous boundary and bounded open set � ⊂R
N .

Set

E =
{

u ∈ L(
H

N) ∣∣
∣
∫

HN

(
b(η)|u| + |∇Hu|) < ∞

}
.

We will use the variational methods to solve the problem of (.). Explicitly, we will look
for critical points of the functional I : E → R,

I(u) =
∫

HN
J(η, u,∇Hu) +




∫

HN

(
b(η) – λ

)
u –

∫

HN
F(η, u), (.)

where F(η, ξ ) =
∫ ξ

 f (η, t) dt. The main difficulty in this problem is that the functional is
continuous but not differentiable in whole space E. Nevertheless, the derivatives of I exist
along the directions of E ∩ L∞(HN ).

Remark . E ↪→ Lp(HN ), when  ≤ p ≤ ∗; E ↪→↪→ Lp(HN ), when  ≤ p < ∗, where
∗ = Q

Q– , Q = N + .

Proof When  ≤ p ≤ ∗, it is obvious that E ↪→ Lp(HN ) by Folland-Stein embedding the-
orem [].

It is sufficient to prove the conclusion when p = . Let {un} be a weakly convergent se-
quence to zero in E. Since lim|η|

HN →∞ b(η) = +∞, for any ε >  there exists Mε > , such
that 

b(η) < ε for any |η|HN > Mε . Thus, we have

‖u‖
L(HN ) =

∫

{|η|
HN >Mε}


b(η)

b(η)u
n +

∫

{|η|
HN ≤Mε}

u
n

≤ ε‖u‖ +
∫

{|η|
HN ≤Mε}

u
n.

As {un} is bounded in E, {un} possess a subsequence strongly converging to zero in
L({|η|HN ≤ Mε}) by the Folland-Stein embedding theorem []. The proof is completed.

�

Firstly, we introduce the eigenvalue problem. Let Lu = –�Hu + b(η)u. We consider the
following eigenvalue problem:

Lu = λu.
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By virtue of the spectral theory for compact operators, we get a sequence of eigenvalues

 < λ < λ ≤ · · · ≤ λn ≤ · · · ,

with λn → +∞ as n → ∞ and the first eigenvalue λ has the variational characterization

λ = inf
{‖u‖; u ∈ E,‖u‖L(HN ) = 

}
.

Definition . A critical point u of the functional I is defined to be a function u ∈ E such
that 〈I ′(u), h〉 = , ∀h ∈ E ∩ L∞(HN ).

Next we state the assumptions and main results of this paper. We make the following
hypotheses:

(J) J(·, ·, ·) : HN ×R×R
N →R satisfies:

for each (s, ξ ) ∈ R×R
N , J(η, s, ξ ) is measurable with respect to η;

for a.e. η ∈H
N , J(η, s, ξ ) is of class C with respect to (s, ξ );

J(η, s, ξ ) is convex with respect to ξ .
(J) There exist  < α < β < +∞ such that

α|ξ | ≤ J(η, s, ξ ) ≤ β|ξ | a.e. η ∈H
N and ∀(s, ξ ) ∈ R×R

N ,
∣
∣Js(η, s, ξ )

∣
∣ ≤ β|ξ | a.e. η ∈H

N and ∀(s, ξ ) ∈R×R
N .

(J) There exist R > , θ > ,  < γ < θ
 , and α >  such that

Js(x, s, ξ )s ≥ , |s| > R,

θ J(x, s, ξ ) – γ Js(x, s, ξ )s – γ Jξ (x, s, ξ ) · ξ ≥ α|ξ |.

(J) J(η, s, ξ ) = J(η, –s, –ξ ) a.e. η ∈H
N and ∀(s, ξ ) ∈ R×R

N .
(f) We assume that f (·, ·) : HN ×R →R is a Carathéodory function such that

θF(η, s) ≤ f (η, s)s + a(η) + b(η)|s| a.e. η ∈H
N ,

F(η, s) ≥ k|s|θ – ā(η) – b̄(η)|s| a.e. η ∈H
N ,

where θ is as in (J), k is a positive constant, ā(η), a(η) ∈ L(HN ), and b(η), b̄(η) ∈
L

Q
Q+ (HN ).

(f) |f (η, s)| ≤ aε(η) + ε|s|∗– a.e. η ∈H
N and ∀s ∈R.

(f) f (η, –s) = –f (η, s) a.e. η ∈H
N and ∀s ∈R.

Remark . Under assumptions (J) and (J), we have
() |Jξ (η, s, ξ )| ≤ β|ξ |,
() Jξ (η, s, ξ ) · ξ ≥ α|ξ |.

Proof J(η, s, ξ ) is convex with respect to ξ , which means

J(η, s, ξ + ζ ) ≥ J(η, s, ξ ) + Jξ (η, s, ξ ) · ζ .
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If Jξ (η, s, ξ ) = , then () holds obviously. If Jξ (η, s, ξ ) �= , by taking ζ = Jξ (η,s,ξ )|ξ |
|Jξ (η,s,ξ )| , then ()

holds by using (J).
On the other hand,

J(η, s, ) ≥ J(η, s, ξ ) + Jξ (η, s, ξ ) · (–ξ )

by virtue of assumption (J), one has (). �

Remark . Under assumptions (J)-(J) and (f)-(f), for the functional I , we have the
following assertions:

() I : E →R is continuous.
() For any u ∈ E and h ∈ E ∩ L∞(HN ), we have

〈
I ′(u), h

〉
=

∫

HN
Jξ (η, u,∇Hu)∇Hh +

∫

HN
Js(η, u,∇Hu)h

+
∫

HN

(
b(η) – λ

)
uh –

∫

HN
f (η, u)h.

Moreover, for any h ∈ E ∩ L∞(HN ), the map u �→ 〈I ′(u), h〉 is continuous.

Thirdly, we recall some definitions and properties of nonsmooth critical theory (see [,
–]).

Definition . Let f : X →R be a continuous functional and u ∈ X. We denote by |df |(u)
the supremum of the σ ′ in [, +∞) such that there exist δ >  and a continuous map H :
B(u, δ) × [, δ] → X such that for all (v, t) ∈ B(u, δ) × [, δ],

d
(
H(v, t), v

) ≤ t and f
(
H(v, t)

) ≤ f (v) – σ t.

The extended real number |df |(u) is called the weak slope of f at u.

Remark . For any u ∈ E,

|dI|(u) ≥ sup
{〈

I ′(u), h
〉
; h ∈ E ∩ L∞(

H
N)

,‖h‖ ≤ 
}

.

Proof If sup{〈I ′(u), h〉; h ∈ E ∩ L∞(HN ),‖h‖ ≤ } = , then the conclusion holds.
Otherwise, for a given σ with

 < σ < sup
{〈

I ′(u), h
〉
; h ∈ E ∩ L∞(

H
N)

,‖h‖ ≤ 
}

,

there exists h ∈ E ∩ L∞(HN ) such that ‖h‖ ≤  and 〈I ′(u), h〉 > σ . Since 〈I ′(u), h〉 is contin-
uous with respect to u, there exists δ >  such that

〈
I ′(v), h

〉
> σ

for any v ∈ B(u, δ). Define a continuous map:

H : B(u, δ) × [, δ] → E (δ = δ/)
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by H(v, t) = v – th. It is trivial that ‖H(v, t) – v‖ ≤ t. On the other hand, by Lagrange mean
value theorem, it is easy to see that

I
(
H(v, t)

) ≤ I(v) – σ t.

It follows that |dI|(u) ≥ σ , and we complete the proof by the arbitrariness of σ . �

Definition . Let X be a metric space and f : X → R be a continuous functional. For
a c ∈ R, we say that f satisfies the Palais-Smale condition at level c, denoted by (PS)c, if
every sequence {un} in X with |df |(un) →  and f (un) → c admits a strongly convergent
subsequence.

The main result of this paper is the following theorem.

Theorem . Assume (J)-(J) and (f)-(f) hold. Then there exists a sequence {un} ⊂ E ∩
L∞(HN ) of weak solutions of problem (.) with I(un) → +∞.

The paper is organized as follows. In Section , we introduce and establish some lemmas
for Theorem .. In Section , we will prove the main theorem. In the last section, we obtain
boundedness of critical points (Theorem .).

2 Preliminaries and fundamental lemmas
First we introduce the following fundamental theorem (see Theorem . of []), which is
an extension of a well-known result for C functionals (see Theorem . of []).

Lemma . Let X be an infinite-dimensional Banach space and f : X →R be continuous,
even and satisfy (PS)c for any c ∈ R. Assume, in addition, that:

() there exist ρ > , α > f () and a subspace V ⊂ X of finite codimension such that

∀u ∈ V : ‖u‖ = ρ ⇒ f (u) ≥ α;

() for every finite-dimensional subspace W ⊂ E, there exists R >  such that

∀u ∈ W : ‖u‖ = R ⇒ f (u) ≤ f ().

Then there exists a sequence {cn} of critical values of f with cn → +∞.

Now, in order to prove that the functional I satisfies the Palais-Smale condition, we will
introduce an auxiliary notion.

Definition . Let c be a real number. We say that functional I satisfies the concrete
Palais-Smale condition at level c (denoted by (CPS)c), if every sequence {un} ⊂ E satis-
fies

lim
n→∞ I(un) = c and

〈
I ′(un), h

〉
= 〈ωn, h〉,

where {ωn} is a sequence converging to zero in E∗, which is possible to extract a strongly
convergent subsequence in E.
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Lemma . Let c be a real number. If I satisfies (CPS)c, then I satisfies (PS)c.

By Remark ., the proof of this lemma is standard, and we omit it here.

Lemma . Let {un} be a bounded sequence in E, satisfying

〈
I ′(un), h

〉
= 〈ωn, h〉, ∀h ∈ E ∩ L∞(

H
N)

, (.)

where {ωn} is a sequence converging to zero in E∗. Then there exists u ∈ E such that ∇Hun →
∇Hu a.e. in H

N and, up to a subsequence, {un} is weakly convergent to u in E. Moreover, we
have

〈
I ′(u), h

〉
= , ∀h ∈ E ∩ L∞(

H
N)

, (.)

i.e., u is a critical point of I .

Proof By the argument as [], we get ∇Hun(η) → ∇Hu(η) a.e. η ∈ H
N . Since {un} is

bounded in E, we have

un ⇀ u in E,

un → u in Lq,  ≤ q < ∗,

un(η) → u(η) a.e. η ∈ H
N .

Substituting h = ϕe–M(un–R)– into (.), where ϕ ∈ E ∩ L∞(HN ), ϕ ≥ , and M = β

α
, we

have

〈
I ′(un),ϕe–M(un–R)– 〉

=
〈
ωn,ϕe–M(un–R)– 〉

,

i.e.,

〈
ωn,ϕe–M(un–R)– 〉

=
∫

HN
Jξ (η, un,∇Hun)∇Hϕ · e–M(un–R)–

+
∫

HN

(
b(η) – λ

)
unϕe–M(un–R)–

+
∫

HN

(
Js(η, un,∇Hun)

– MJξ (η, un,∇Hun)∇H(un – R)–)
ϕe–M(un–R)–

–
∫

HN
f (η, un)ϕe–M(un–R)– .

When un ≥ R, by (J), we have

(
Js(η, un,∇Hun) – MJξ (η, un,∇Hun)∇H(un – R)–)

ϕe–M(un–R)–

= Js(η, un,∇Hun)ϕe–M(un–R)– ≥ .

When un ≤ R, by (J) and Remark ., we have

(
Js(η, un,∇Hun) – MJξ (η, un,∇Hun)∇H(un – R)–)

ϕe–M(un–R)–

≥ –β|∇Hun| + Mα|∇Hun| = .
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By the convergency of {un}, Remark ., ωn →  in E∗ and (f), we get

∫

HN
Jξ (η, un,∇Hun)∇Hϕe–M(un–R)– →

∫

HN
Jξ (η, u,∇Hu)∇Hϕe–M(u–R)–

,
∫

HN

(
b(η) – λ

)
unϕe–M(un–R)– →

∫

HN

(
b(η) – λ

)
uϕe–M(u–R)–

,
∫

HN
f (η, un)ϕe–M(un–R)– →

∫

HN
f (η, u)ϕe–M(u–R)–

,

〈
ωn,ϕe–M(un–R)– 〉 → ,

as n → ∞. We apply Fatou’s lemma to get

∫

HN
Jξ (η, u,∇Hu)∇Hϕe–M(u–R)–

+
∫

HN

(
b(η) – λ

)
uϕe–M(u–R)–

+
∫

HN

(
Js(η, u,∇Hu) – MJξ (η, u,∇Hu)∇H(u – R)–)

ϕe–M(u–R)–

–
∫

HN
f (η, u)ϕe–M(u–R)– ≤ .

Next, let ϕ = ψeM(u–R)– H( u
k ), where ψ ≥ , ψ ∈ E ∩ L∞(HN ), k ∈N and H(η) ∈ C∞

 (HN )
with H(η) =  as |η|HN ≤ , H(η) =  as |η|HN ≥ .

Then we have
∫

HN
Jξ (η, u,∇Hu)∇HψH

(
u
k

)
+

∫

HN

(
b(η) – λ

)
uψH

(
u
k

)

+
∫

HN
Js(η, u,∇Hu)ψH

(
u
k

)
+

∫

HN
Jξ (η, u,∇Hu)ψH ′

(
u
k

)∇Hu
k

–
∫

HN
f (η, u)ψH

(
u
k

)
≤ .

Putting k → ∞, we get

〈
I ′(u),ψ

〉 ≤ .

By taking h = ϕe–M(un+R)+ and a similar argument we can get the opposite inequality. So
we have

〈
I ′(u),ψ

〉
=  for ψ ≥ ,ψ ∈ E ∩ L∞(

H
N)

.

Hence,

〈
I ′(u), h

〉
= , h ∈ E ∩ L∞(

H
N)

.

The proof has been completed. �

In (.) we can only select test functions in E ∩ L∞(HN ). In the following lemma, we will
enlarge the class of test functions.
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Lemma . Suppose that u ∈ E satisfies 〈I ′(u), h〉 = 〈ω, h〉, h ∈ E ∩ L∞(HN ), where ω ∈ E∗.
For v ∈ E, there exists W (η) ∈ L(HN ) with

Js(η, u,∇HN u)v ≥ W (η) a.e. η ∈ H
N , (.)

then 〈I ′(u), v〉 = 〈ω, v〉.

Proof Let

Tk(s) =

{
s, |s| ≤ k,
k s

|s| , |s| ≥ k.

Then Tk(v) ∈ E ∩ L∞(HN ) for every v ∈ E. By Lemma ., we have

〈
I ′(u), Tk(v)

〉
=

〈
ω, Tk(v)

〉
,

i.e.,
∫

HN
Jξ (η, u,∇Hu)∇HTk(v) +

∫

HN
Js(η, u,∇Hu)Tk(v)

+
∫

HN

(
b(η) – λ

)
uTk(v) –

∫

HN
f (η, u)Tk(v) =

〈
ω, Tk(v)

〉
. (.)

Since

∣∣Jξ (η, u,∇Hu)∇HTk(v)
∣∣ ≤ ∣∣Jξ (η, u,∇Hu)∇Hv

∣∣,

by Remark ., we have Jξ (η, u,∇Hu)∇Hv ∈ L(HN ). From Lebesgue’s dominated conver-
gence theorem, as k → ∞, we have

∫

HN
Jξ (η, u,∇Hu)∇HTk(v) →

∫

HN
Jξ (η, u,∇Hu)∇Hv,

∫

HN

(
b(η) – λ

)
uTk(v) →

∫

HN

(
b(η) – λ

)
uv,

∫

HN
f (η, u)Tk(v) →

∫

HN
f (η, u)v,

〈
ω, Tk(v)

〉 → 〈ω, v〉.

Then it is easy to see that

Js(η, u,∇HN u)Tk(v) ≥ –W –(η)

from (.). By taking the inferior limit in (.) and applying Fatou’s lemma, we obtain

∫

HN
Jξ (η, u,∇Hu)∇Hv +

∫

HN
Js(η, u,∇Hu)v

+
∫

HN

(
b(η) – λ

)
uv –

∫

HN
f (η, u)v ≤ 〈ω, v〉.
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Then Js(η, u,∇HN u)v ∈ L(HN ). Using Lebesgue’s dominated convergence theorem in (.)
again, we obtain

∫

HN
Jξ (η, u,∇Hu)∇Hv +

∫

HN
Js(η, u,∇Hu)v

+
∫

HN

(
b(η) – λ

)
uv –

∫

HN
f (η, u)v = 〈ω, v〉.

The lemma has been proved. �

Lemma . Let c ∈R and {un} be a sequence satisfying (.) and

lim
n→∞ I(un) = c. (.)

Then {un} is bounded in E.

Proof By (J), we have

Js(η, un,∇Hun)un ≥ –βR|∇Hun| ∈ L(
H

N)
.

Further, we get

〈
I ′(un), un

〉
= 〈ωn, un〉 (.)

by Lemma .. From the assumptions we have

θ I(un) – γ
〈
I ′(un), un

〉

= θ

∫

HN
J(η, un,∇Hun) – γ

∫

HN
Js(η, un,∇Hun)un

– γ

∫

HN
Jξ (η, un,∇Hun)∇Hun +

(
θ


– γ

)∫

HN

(
b(η) – λ

)
u

n

+
∫

HN

(
γ f (η, un)un – θF(η, un)

)

≤ c
(
 + ‖un‖

)
.

From (J) and (f), it follows that

α

∫

HN
|∇Hun| +

(
θ


– γ

)∫

HN

(
b(η) – λ

)
u

n + θ (γ – )
∫

HN
F(η, un)

≤ c
(
 + ‖un‖

)
+ γ ‖a‖ + γ ‖b‖

L
Q

Q+ (HN )
‖un‖

L
Q

Q– (HN )
. (.)

There exist M >  and c(M,λ) >  such that

(
θ


– γ

)∫

HN

(
b(η) – λ

)
u

n ≥
(

θ


– γ

)∫

HN

b(η)


u
n – c

∫

{|η|
HN <M}

u
n.
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By (.), we obtain

α

∫

HN
|∇Hun| +

(
θ


–

γ



)∫

HN
b(η)u

n + θ (γ – )
∫

HN
F(η, un)

≤ c
(
 + ‖un‖

)
+ c‖un‖

L({|η|
HN <M}) + γ ‖a‖ + γ ‖b‖

L
Q

Q+ (HN )
‖un‖

L
Q

Q– (HN )
. (.)

It follows from (f) and (.) that

min

{
α,

θ


–

γ



}
‖un‖ + θ (γ – )k‖un‖θ

Lθ ({|η|
HN <M})

≤ c
(
 + ‖un‖

)
+ c‖un‖

Lθ ({|η|
HN <M}) + γ ‖a‖L(HN ) + γ ‖b‖

L
Q

Q+ (HN )
‖un‖

L
Q

Q– (HN )

+ θ (γ – )‖ā‖L(HN ) + θ (γ – )‖b̄‖
L

Q
Q+ (HN )

‖un‖
L

Q
Q– (HN )

≤ c
(
 + ‖un‖

)
+

θ (γ – )k


‖un‖θ

Lθ ({|η|
HN <M}) + γ ‖a‖L(HN ) + c‖b‖

L
Q

Q+ (HN )
‖un‖

+ θ (γ – )‖ā‖L(HN ) + c‖b̄‖
L

Q
Q+ (HN )

‖un‖.

Therefore,

min

{
α,

θ


–

γ



}
‖un‖ ≤ c

(
 + ‖un‖

)
.

This implies that {un} is bounded in E. �

Lemma . Let {un} be a subsequence as in Lemma .. Then {un}, possessing a subse-
quence, converges strongly in E.

Proof Consider the cut-off function

ζ (s) =

{
M|s|, |s| ≤ R,
MR, |s| ≥ R,

where M = β

α
. It is easy to prove {uneζ (un)} is bounded in E, up to a subsequence, having

uneζ (un) ⇀ ueζ (u) in E,

uneζ (un) → ueζ (u) in Lq,  ≤ q < ∗,

uneζ (un)(η) → ueζ (u)(η) a.e. η ∈H
N .

By Lemma . we know that ueζ (u) is a critical point of the functional I . Let h = uneζ (un) in
(.). It follows from Lemma . that

∫

HN
Jξ (η, un,∇Hun)∇Huneζ (un) +

∫

HN

(
b(η) – λ

)
u

neζ (un)

+
∫

HN

(
Js(η, un,∇Hun) + Jξ (η, un,∇Hun)∇Hunζ

′(un)
)
uneζ (un)

–
∫

HN
f (η, un)uneζ (un) =

〈
ωn, uneζ (un)〉. (.)
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We claim

(
Js(η, un,∇Hun) + Jξ (η, un,∇Hun)∇Hunζ

′(un)
)
uneζ (un) ≥ .

In fact, when un ≥ R, we have

(
Js(η, un,∇Hun) + Jξ (η, un,∇Hun)∇Hunζ

′(un)
)
uneζ (un) = Js(η, un,∇Hun)uneζ (un) ≥ .

When  ≤ un ≤ R, we have

(
Js(η, un,∇Hun) + Jξ (η, un,∇Hun)∇Hunζ

′(un)
)
uneζ (un) ≥ (Mα – β)uneζ (un)|∇Hun| = .

In the case un ≤ , the proof is similar.
By Lemma ., ∇Hun → ∇Hu a.e. in H

N . By virtue of Fatou’s lemma, we have

∫

HN

(
Js(η, u,∇Hu) + Jξ (η, u,∇Hu)∇Huζ ′(u)

)
ueζ (u)

≤ lim inf
n→∞

∫

HN

(
Js(η, un,∇Hun) + Jξ (η, un,∇Hun)∇Hunζ

′(un)
)
uneζ (un). (.)

Moreover, it is easy to prove f (η, ·) : E → E∗ is a compact operator, and

lim
n→∞

∫

HN
f (η, un)uneζ (un) = lim

n→∞

∫

HN
f (η, u)ueζ (u), (.)

lim
n→∞

∫

HN
u

neζ (un) =
∫

HN
ueζ (u). (.)

By Lemma ., let h = ueζ (u) in (.), and then

∫

HN
Jξ (η, u,∇Hu)∇Hueζ (u) +

∫

HN

(
b(η) – λ

)
ueζ (u) –

∫

HN
f (η, u)ueζ (u)

+
∫

HN

(
Js(η, u,∇Hu) + Jξ (η, u,∇Hu)∇Huζ ′(u)

)
ueζ (u) = . (.)

Combining (.)-(.), we have

lim sup
n→∞

(∫

HN
Jξ (η, un,∇Hun)∇Huneζ (un) +

∫

HN
b(η)u

neζ (un)
)

= lim sup
n→∞

(∫

HN
–
(
Js(η, un,∇Hun) + Jξ (η, un,∇Hun)∇Hunζ

′(un)
)
uneζ (un)

+
∫

HN

(
λu

neζ (un) + f (η, un)uneζ (un))
)

≤
∫

HN
–
(
Js(η, u,∇Hu) + Jξ (η, u,∇Hu)∇Huζ ′(u)

)
ueζ (u)

+
∫

HN

(
λueζ (u) + f (η, u)uneζ (u))

=
∫

HN
Jξ (η, u,∇Hu)∇Hueζ (u) +

∫

HN
b(η)ueζ (u). (.)
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By Fatou’s lemma, we have

∫

HN
Jξ (η, u,∇Hu)∇Hueζ (u) +

∫

HN
b(η)ueζ (u)

≤ lim inf
n→∞

(∫

HN
Jξ (η, un,∇Hun)∇Huneζ (un) +

∫

HN
b(η)u

neζ (un)
)

≤ lim sup
n→∞

(∫

HN
Jξ (η, un,∇Hun)∇Huneζ (un) +

∫

HN
b(η)u

neζ (un)
)

≤
∫

HN
Jξ (η, u,∇Hu)∇Hueζ (u) +

∫

HN
b(η)ueζ (u).

Hence, we get

lim
n→∞

(∫

HN
Jξ (η, un,∇Hun)∇Huneζ (un) +

∫

HN
b(η)u

neζ (un)
)

=
∫

HN
Jξ (η, u,∇Hu)∇Hueζ (u) +

∫

HN
b(η)ueζ (u).

From Remark .,

|∇Hun| + b(η)u
n ≤ Jξ (η, un,∇Hun)∇Huneζ (un)

α
+ b(η)u

n.

It follows that

lim
n→∞

∫

HN

(|∇Hun| + b(η)u
n
)

=
∫

HN

(|∇Hu| + b(η)u). (.)

By Lebesgue’s dominated convergence theorem and the weak convergence of {un} to u in
E, we get

lim
n→∞

∫

HN
∇Hun∇Hu =

∫

HN
|∇Hu|, (.)

lim
n→∞

∫

HN
b(η)unu =

∫

HN
b(η)u. (.)

By (.), (.) and (.), we have

lim
n→∞

(∫

HN
|∇Hun – ∇Hu| +

∫

HN
b(η)|un – u|

)
= .

That is to say, {un} converges strongly to u in E. �

Remark . By Lemmas . and ., for any c, the functional I satisfies the (CPS)c condi-
tion.

3 Proof of Theorem 1.1
Proof of Theorem . The functional I is continuous and even. Moreover, by Lemma .
we know that I satisfies (PS)c for any c ∈ R.
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First we verify the condition () in Lemma .. Let W be a finite-dimensional subspace
of E. For any u ∈ W , by (f), we have

I(u) =
∫

HN
J(η, u,∇Hu) +




∫

HN

(
b(η) – λ

)
u –

∫

HN
F(η, u)

≤ max

{



,β
}
‖u‖ –

λ


‖u‖

L(HN ) –
∫

HN
k|u|θ + ‖ā‖L(HN ) + c‖b̄‖

L
Q

Q+ (HN )
‖u‖.

Since (
∫
HN |u|ρ)


ρ is a norm on W , there exists cρ >  such that

cρ‖u‖ρ ≤ ‖u‖ρ

Lρ (HN ).

Considering θ > , there exists R >  such that I(u) <  when ‖u‖ = R.
Next we consider the condition () in Lemma .. By (J) and (f), for any u ∈ E we have

I(u) ≥ min(,α)


‖u‖ –
λ



∫

HN
u –

∫

HN
aε|u| – cε

∫

HN
|u|∗

.

There exist a(η) ∈ C∞
 and a(η) ∈ L

Q
Q+ (HN ) such that

aε = a + a, ‖a‖
L

Q
Q+ (HN )

< ε.

Let Vk = span{v, v, . . . , vk}⊥ and {vj}j≥ be an orthonormal basis of eigenvectors of the
operator L. Then for any u ∈ Vk we have

I(u) ≥ min{,α}


‖u‖ –
λ


‖u‖

L(HN ) – ‖a‖L(HN )‖u‖L(HN )

– ‖a‖
L

Q
Q+ (HN )

‖u‖L∗ (HN ) – cε‖u‖∗
L∗ (HN )

≥ min{,α}


‖u‖ –
λ

λk+
‖u‖ –

‖a‖L(HN )√
λk+

‖u‖ – cε‖u‖ – cε‖u‖∗
.

When ‖u‖ = , we can choose k large enough and ε small enough such that

I(u) ≥ δ > I() = .

Hence the condition () of Lemma . holds with V = Vk . �

4 Boundedness of critical points
In this section, we will prove the critical point u ∈ L∞(HN ). We make the following hy-
potheses:

(J∗) there exist R > , θ > ,  < γ < θ
 , and α >  such that

Js(x, s, ξ )s ≥ ;

(f∗
 ) |f (η, s)| ≤ c|s|p a.e. η ∈H

N and ∀s ∈R, where p < ∗ –  and c is a positive constant.



Jia et al. Boundary Value Problems  (2015) 2015:131 Page 14 of 15

Theorem . Suppose that (J) and (f) are replaced with (J∗) and (f∗
 ). If u ∈ E is a critical

point of I , then u ∈ L∞(HN ).

Proof For k >  and M > , define

Gk =

{
s – ks

|s| if |s| > k,
 if |s| ≤ k.

Let �M(s) = min(Gk(s), M) and �M(s) = max(Gk(s), –M). Denote s+ = max(s, ) and s– =
min(s, ). Considering that u is a critical point of I , since �M(u+) ∈ E ∩ L∞(HN ), we can
take �M(u+) as a test function in 〈I ′(u), h〉 = . Thus

∫

HN
Jξ (η, u,∇Hu)∇H�M

(
u+)

+
∫

HN
Js(η, u,∇Hu)�M

(
u+)

+
∫

HN

(
b(η) – λ

)
u�M

(
u+)

=
∫

HN
f (η, u)�M

(
u+)

.

Now, observing that u+�M(u+) ≥  and by (J), As(η, u)�M(u+) ≥ , we get
∫

HN
Jξ (η, u,∇Hu)∇H�M

(
u+) ≤ |λ|

∫

HN
u+∣∣�M

(
u+)∣∣ +

∫

HN

∣∣f
(
η, u+)∣∣∣∣�M

(
u+)∣∣.

From (f) and the fact that |�M(u+)| ≤ |u+|, we deduce
∫

{u+>k}
Jξ (η, u,∇Hu)∇H�M

(
u+) ≤ c

∫

{u+>k}

(
u+)p+.

Taking M to +∞ and taking into account that, as M → +∞, �M(u+) → Gk(u+) a.e. in H
N

and �M(u+) ⇀ Gk(u+) in E, it follows that
∫

{u+>k}
Jξ

(
η, u+,∇Hu+)∇H

(
u+) ≤ c

∫

{u+>k}

(
u+)p+.

Denote �+
k = {η ∈H

N , u+ > k}. By Remark ., we obtain

∫

�+
k

∣
∣∇Hu+∣

∣ ≤ c
∫

�+
k

(
u+ – k

)p+ + ckp+m
(
�+

k
)
. (.)

Since u ∈ E, it implies that (
∫
�+

k
(u+ – k)p+)– 

p+ ≤ c, or

∫

�+
k

(
u+ – k

)p+ ≤ c
(∫

�+
k

(
u+ – k

)p+
) 

p+
. (.)

On the other hand, we have
∫

�+
k

k∗ ≤
∫

�+
k

∣
∣u+∣

∣∗
= c,

which implies that

k∗ ≤ c
m(�+

k )
. (.)
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Using (.), (.), and (.), the following inequality holds:

∫

�+
k

∣∣∇Hu+∣∣ ≤ c
(∫

�+
k

(
u+ – k

)p+
) 

p+
+ ckm

(
�+

k
)– p–

∗ , ∀k > .

From Theorem ., Chapter II of [], we deduce that u+ ∈ L∞(HN ). Replacing �M(u+)
by �M(u–) and by the same steps we can easily prove that u– ∈ L∞(HN ), which yields the
conclusion. �
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