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Abstract
In this paper, a posteriori error estimates for the generalized overlapping domain
decomposition method with Dirichlet boundary conditions on the interfaces, for
parabolic variational equation with second order boundary value problems, are
derived using the semi-implicit-time scheme combined with a finite element spatial
approximation. Furthermore a result of asymptotic behavior in uniform norm is given
using Benssoussan-Lions’ algorithm.
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1 Introduction
The Schwarz alternating method can be used to solve elliptic boundary value problems on
domains which consist of two or more overlapping subdomains. It has been invented by
Herman Amandus Schwarz in . This method has been used to solve the stationary or
evolutionary boundary value problems on domains which consist of two or more overlap-
ping subdomains (see [–]). The solution of these qualitative problem is approximated
by an infinite sequence of functions which results from solving a sequence of stationary or
evolutionary boundary value problems in each of the subdomains. An extensive analysis of
Schwarz alternating method for nonlinear elliptic boundary value problems can be found
in [–] and the references therein. Also the effectiveness of Schwarz methods for these
problems, especially those in fluid mechanics, has been demonstrated in many papers. See
proceedings of the annual domain decomposition conference beginning with []. More-
over, the a priori estimate of the error for stationary problem is given in several papers;
see for instance [] in which a variational formulation of the classical Schwarz method is
derived. In [] geometry related convergence results are obtained. In [] the accelerated
version of the GODDM has been treated. In addition, in [] the convergence for simple
rectangular or circular geometries has been studied. However, one did not give a crite-
rion to stop the iterative process. All these results can also be found in the recent books
on domain decomposition methods [, ]. Recently in [, ], an improved version of
the Schwarz method for highly heterogeneous media has been presented. This method
uses new optimized interface conditions specially designed to take into account the het-
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erogeneity between the subdomains on the interfaces. A recent overview of the current
state of the art on domain decomposition methods can be found in two special issues of
the computer methods in applied mechanics and engineering journal [, , ].

In general, the a priori estimate for stationary problems is not suitable for assessing the
quality of the approximate solution on subdomains, since it depends mainly on the ex-
act solution itself, which is unknown. The alternative approach is to use the approximate
solution itself in order to find such an estimate. This approach, known as a posteriori esti-
mate, became very popular in the s with finite element methods; see the monographs
[, ], and the references therein. In [] an a posteriori estimate for a nonoverlapping do-
main decomposition algorithm has been given and an a posteriori error analysis for the
elliptic case has also been used by [] to determine an optimal value of the penalty pa-
rameter for penalty domain decomposition methods to construct fast solvers.

Quite a few works on maximum norm error analysis of overlapping nonmatching grids
methods for elliptic problems are known in the literature (cf., e.g., [–]). To prove the
main result of this paper, we proceed as in []. More precisely, we develop an approach
which combines a geometrical convergence result due to [, , ] and a lemma which
consists of estimating the error in the maximum norm between the continuous and dis-
crete Schwarz iterates. The optimal convergence order is then derived using the standard
finite element and an L∞-error estimate for linear elliptic equations [].

In recent research, in [] the authors proved the error analysis in the maximum norm
for a class of nonlinear elliptic problems in the context of overlapping nonmatching grids
and they established the optimal L∞-error estimate between the discrete Schwarz se-
quence and the exact solution of the PDE, and in [] the authors derived a posteriori
error estimates for the generalized overlapping domain decomposition method GODDM
with Robin boundary conditions on the interfaces for second order boundary value prob-
lems; they have shown that the error estimate in the continuous case depends on the dif-
ferences of the traces of the subdomain solutions on the interfaces after a discretization
of the domain by finite elements method. Also they used the techniques of the residual
a posteriori error analysis to get an a posteriori error estimate for the discrete solutions on
subdomains.

In this work we apply the derived a posteriori error estimates for the generalized overlap-
ping domain decomposition method (GODDM) to the following evolutionary equation:
find the u ∈ L(, T ; H

(�)) ∩ C(, T , H–(�)) solution of

⎧
⎪⎨

⎪⎩

∂u
∂t – �u + αu = f in �,
u =  in � × [, T],
u(·, ) = u in �,

(.)

where � is a set in R
 ×R defined as � = � × [, T] with T < +∞, where � is a smooth

bounded domain of R with boundary �.
The function α ∈ L∞(�) is assumed to be non-negative; it verifies

α ≤ β , β > . (.)

f is a regular function that satisfies

f ∈ L(, T , L(�)
) ∩ C(, T , H–(�)

)
.
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The symbol (·, ·)�stands for the inner product in L(�).
The outline of the paper is as follows: In Section , we introduce some necessary no-

tations, then we give a variational formulation of our model. In Section , an a posteri-
ori error estimate is proposed for the convergence of the discretized solution using the
semi-implicit-time scheme combined with a finite element method on subdomains. In
Section , we associate with the discrete introduced problem a fixed point mapping, which
we use in proving the existence of a unique discrete solution. Then in Section , an H

(�)-
asymptotic behavior estimate for each subdomain is derived.

2 The continuous problem
Using the Green formula, the problem (.) can be transformed into the following continu-
ous parabolic variational equation: find the u ∈ L(, T , H

(�))∩C(, T , H–(�)) solution
to

{
(ut , v)� + a(u, v) = (f , v)�, v ∈ H

(�),
u(·, ) = u,

(.)

where

a(u, v) =
∫

�

∇u∇v · dx +
∫

�

αuv · dx.

The symbol (·, ·)�stands for the inner product in L(�).

2.1 The semi-discrete parabolic variational equation
We discretize the problem (.) with respect to time by using the semi-implicit scheme.
Therefore, we search a sequence of elements uk ∈ H

(�) which approaches ui(tk), tk = k�t,
with initial data ui, = ui

.
Thus, we have, for k = , . . . , n,

{
( uk –uk–

�t , v) + a(uk , v) = (f k , v)� in �,
u(x) = u in �, u =  on ∂�,

(.)

which implies

{
( uk

�t , v) + a(uk , v) = (f k + uk–

�t , v),
u(x) = u in �, u =  on ∂�.

(.)

Then the problem (.) can be reformulated into the following coercive system of elliptic
variational equations:

{
b(uk , v) = (f k + λuk–, v) = (F(uk–), v),
u(x) = u in �, u =  on ∂�,

(.)

such that
{

b(uk , v) = λ(uk , v) + a(uk , v), uk ∈ H
(�),

λ = 
�t = 

k = T
n , k = , . . . , n.

(.)
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2.2 The space-continuous for generalized overlapping domain decomposition
Let � be a bounded domain in R

 with a piecewise C, boundary ∂�.
We split the domain � into two overlapping subdomains � and � such that

� ∩ � = �, ∂�i ∩ �j = �i, i �= j and i, j = , .

We need the spaces

Vi = H(�) ∩ H(�i) =
{

v ∈ H(�i) : v∂�i∩∂� = 
}

and

Wi = H



(�i) = {v|�i v ∈ Vi and v =  on ∂�i\�i}, (.)

which is a subspace of

H

 (�i) =

{
ψ ∈ L(�i) : ψ = ϕ�i for some ϕ ∈ Vi, i = , 

}
,

equipped with the norm

‖ϕ‖Wi = inf
v∈Vi ,v=ϕ on �i

‖v‖,�. (.)

We define the continuous counterparts of the continuous Schwarz sequences defined in
(.), respectively, by uk,m+

 ∈ H
(�), m = , , , . . . , such that

⎧
⎪⎪⎨

⎪⎪⎩

b(uk,m+
 , v) = (F(uk–,m+

 ), v)� ,
uk,m+

 =  on ∂� ∩ ∂� = ∂� – �,
∂uk,m+


∂η

+ αuk,m+
 = ∂uk,m


∂η

+ αuk,m
 on �,

(.)

and uk,m+
 ∈ H

(�) a solution of
⎧
⎪⎪⎨

⎪⎪⎩

b(uk,m+
 , v) = (F(uk–,m+

 ), v)� , m = , , , . . . ,
uk,m+

 =  on ∂� ∩ ∂� = ∂� – �,
∂uk,m+


∂η

+ αun+,m+
 = ∂uk,m


∂η

+ αuk,m
 on �,

(.)

where ηi is the exterior normal to �i and αi is a real parameter, i = , .

Theorem  (cf. []) The sequences (uk,m+); (uk,m+); n ≥ , produced by the Schwarz alter-
nating method converge geometrically to the solution u of the problem (.). More precisely,
there exist k, k ∈ (, ) which depend only, respectively, on (�,γ) and (�,γ) such that
all n ≥ ,

sup
�̄i

∣
∣u – uk,m+

i
∣
∣ ≤ kn

 kn
 sup

γ

∣
∣u∞ – u∣∣, (.)

where u∞, the asymptotic continuous solution and γi = ∂�i ∩ �j, i �= j, i = , .

Proof The Schwarz alternating method converges geometrically to the solution u for the
elliptic problem as has been proved in [, ]. Then it was updated and adapted for a new
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bilinear parabolic form in []. This theorem remains true for the problem introduced in
this paper, because the introduced problem (.) can be reformulated to the system of
elliptic variational equation (.). �

Also, in [] the authors proved the error estimate for the elliptic variational inequalities
using the standard nonmatching grids discretization with uniform norm and they found
the following estimate:

∥
∥u – um+

i
∥
∥

L∞(�̄) ≤ Ch| log h|, (.)

where C is a constant independent of both h and n.

Remark  For our introduced problem (our particular equation), it is noted that the
H

(�)-norm remained true for (.), and its proof is very similar to that in [].

In the next section, our main interest is to obtain the a posteriori error estimate we
need for stopping the iterative process as soon as the required global precision is reached.
Namely, by applying the Green formula in the Laplacian defined in (.) with the new
boundary conditions of the generalized Schwarz alternating method defined in (.) ap-
plied to the elliptic operator �, we get

(
–�uk,m+

 , v
)

�
=

(∇uk,m+
 ,∇v

)

�
–

(
∂uk,m+


∂η

, v

)

∂�–�

+
(

∂uk,m+

∂η

, v

)

�

=
(∇uk,m+

 ,∇v
)

�
–

(
∂uk,m+


∂η

, v

)

�

=
(∇uk,m+

 ,∇v
)

�
–

(
∂uk,m


∂η

+ αuk,m
 – αuk,m+

 , v

)

�

=
(∇uk,m+

 ,∇v
)

�
+

(
αuk,m+

 , v
)

�
–

(
∂uk,m


∂η

+ αuk,m
 , v

)

�

,

thus the problem (.) equivalent to finding uk,m+
 ∈ V such that

b
(
uk,m+

 , v
)

+
(
αun+,m+

 , v
)

�

=
(
F
(
uk–), v

)

�
+

(
∂uk,m


∂η

+ αuk,m
 , v

)

�

, ∀v ∈ V, (.)

and, for (.) uk,m+
 ∈ V, we have

b
(
uk,m+

 , v
)

+
(
αuk,m+

 , v
)

�

=
(
F
(
uk–), v

)

�
+

(
∂uk,m


∂η

+ αuk,m
 , v

)

�

, ∀v ∈ V. (.)

3 A posteriori error estimate in the continuous case
Since it is numerically easier to compare the subdomain solutions on the interfaces � and
� rather than on the overlap �, we need to introduce two auxiliary problems defined
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on nonoverlapping subdomains of �. This idea allows us to obtain the a posteriori error
estimate by following the steps of Otto and Lube []. We get these auxiliary problems by
coupling each one of the problems (.) and (.) with another problem in a nonoverlap-
ping way over �. These auxiliary problems are needed for the analysis and not for the
computation, to get the estimate.

To define these auxiliary problems we need to split the domain � into two sets of disjoint
subdomains: (�,�) and (�,�) such that

� = � ∪ �, with � ∩ � = ∅, � = � ∪ �, with � ∩ � = ∅.

Let (uk,m
 , un+,m

 ) be the solution of problems (.) and (.); we define the couple
(uk,m

 , uk,m
 ) over (�,�) to be the solution of the following nonoverlapping problems:

⎧
⎪⎪⎨

⎪⎪⎩

uk,m+
 –uk–,m+


�t – �uk,m+

 = f k in �, k = , . . . , n,
uk,m+

 =  on ∂� ∩ ∂�,
∂uk,m+


∂η

+ αuk,m+
 = ∂uk,m


∂η

+ αuk,m
 on �

(.)

and

⎧
⎪⎪⎨

⎪⎪⎩

uk,m+
 –uk–,m+

�t – �uk,m+
 = f k in �,

uk,m+
 =  on ∂� ∩ ∂�,

∂uk,m+

∂η

+ αun+,m+
 = ∂uk,m


∂η

+ αuk,m
 on �.

(.)

One can take ε
n+,m
 = un+,m

 – un+,m
 on �, the difference between the overlapping and

the nonoverlapping solutions un+,m
 and un+,m

 in problems (.), (.), and (.) and (.)
in �. Both the overlapping and the nonoverlapping problems converge, see [], that is,
uk,m

 and uk,m
 tend to u (resp. u), and ε

k,m
 should tend to naught as m tends to infinity

in V.
By putting

�
k,m
 =

∂un+,m

∂η

+ αun+,m
 ,

�
k,m
 =

∂uk,m


∂η
+ αuk,m

 ,

�
k,m
 =

∂uk,m


∂η
+ αuk,m

 +
∂ε

k,m


∂η
+ αε

k,m
 ,

�
k,m
 =

∂uk,m


∂η
+ αuk,m

 ,

(.)

and using the Green formula, (.) and (.) can be reformulated to the following system
of elliptic variational equations:

b
(
uk,m+

 , v
)

+
(
αuk,m+

 , v
)

�

=
(
F
(
uk–), v

)

�
+

(
�

k,m
 , v

)

�
, ∀v ∈ V, (.)
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b
(
uk,m+

 , v
)

+
(
αuk,m+

 , v
)

�

=
(
F
(
uk–), v

)

�
+

(
�

k,m
 , v

)

�
, ∀v ∈ V. (.)

On the other hand by taking

θ
k,m
 =

∂ε
k,m


∂η
+ αε

k,m
 , (.)

we get

�
k,m
 =

∂uk,m


∂η
+ αuk,m

 +
∂(uk,m

 – uk,m
 )

∂η
+ α

(
uk,m

 – uk,m


)

=
∂uk,m


∂η

+ αuk,m
 +

∂ε
k,m


∂η
+ αε

k,m


=
∂uk,m


∂η

+ αuk,m
 + θ

k,m
 . (.)

Using (.) we have

�
k,m+
 =

∂uk,m+

∂η

+ αuk,m+
 + θ

k,m+


= –
∂uk,m+


∂η

+ αuk,m+
 + θ

k,m+


= αuk,m+
 –

∂uk,m


∂η
– αuk,m

 + αuk,m+
 + θ

k,m+


= (α + α)uk,m+
 – �

k,m
 + θ

k,m+
 (.)

and by the last equation in (.), we have

�
k,m+
 = –

∂uk,m+

∂η

+ αuk,m+


= αuk,m+
 –

∂uk,m


∂η
– αuk,m

 + αuk,m+
 + αuk,m+



= (α + α)uk,m+
 – �

k,m
 + θ

k,m+
 . (.)

From this result we can write the following algorithm, which is equivalent to the aux-
iliary nonoverlapping problem (.), (.). We need this algorithm and two lemmas for
obtaining an a posteriori error estimate for this problem.

3.1 Algorithm
The sequences (uk,m

 , uk,m
 )m∈N, solutions of (.), (.), satisfy the following domain de-

composition algorithm:

Step : k = .
Step : Let �

k,
i ∈ W ∗

 be an initial value, i = ,  (W ∗
 is the dual of W).
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Step : Given �
k,m
j ∈ W ∗ solve for i, j = , , i �= j: find the uk,m+

i ∈ Vi solution of

bi
(
uk,m+

i , vi
)

+
(
αiuk,m+

i , vi
)

�i

=
(
F
(
uk–,m+), vi

)

�i
+

(
�

k,m+
j , vi

)

�i
, ∀vi ∈ Vi.

Step : Compute

θ
k,m+
 =

∂ε
k,m+

∂η

+ αε
k,m+
 .

Step : Compute new data �
n+,m
j ∈ W ∗ and solve for i, j = , , from

(
�

k,m+
i ,ϕ

)

�i

=
(
(αi + αj)uk,m+

i , vi
)

�i
–

(
�

k,m+
j ,ϕ

)

�i
+

(
θ

k,m+
j ,ϕ

)

�i
, ∀ϕ ∈ Wi, i �= j.

Step : Set m = m +  and go to Step .
Step : Set k = k +  and go to Step .

Lemma  Let uk
i = uk

�i
, ek,m+

i = uk,m+
i – uk

i , and η
k,m+
i = �

k,m+
i – �k

i . Then for i, j = , ,
i �= j, the following relations hold:

bi
(
ek,m+

i , vi
)

+
(
αiek,m+

i , vi
)

�i
=

(
η

k,m
j , vi

)

�i
, ∀vi ∈ Vi (.)

and

(
η

k,m+
i ,ϕ

)

�i
=

(
(αi + αj)ek,m+

i , v
)

�i
–

(
η

k,m
j ,ϕ

)

�i
+

(
θ

k,m+
j ,ϕ

)

�i
, ∀ϕ ∈ W. (.)

Proof . We have

bi
(
uk,m+

i , vi
)

+
(
αiuk,m+

i , vi
)

�i
=

(
F
(
uk–,m+), vi

)

�i
+

〈
�

k,m
j , v

〉

�i
, ∀vi ∈ Vi

and

bi
(
uk

i , vi
)

+
(
αiuk

i , vi
)

�i
=

(
F
(
uk–,m+), vi

)

�i
+

(
�k

j , v
)

�i
, ∀vi ∈ Vi.

Since b(·, ·) is a coercive bilinear form,

bi
(
uk,m+

i – un+
i , vi

)
+

(
αiuk,m+

i – un+
i , vi

)

�i
=

(
�

k,m
j – �k

i , vi
)

�i
, ∀vi ∈ Vi,

and so

bi
(
ek,m+

i , vi
)

+
(
αiek,m+

i , vi
)

�i
=

(
η

k,m
i , v

)

�i
, ∀vi ∈ Vi.

. We have limm→+∞ ε
n+,m
 = limm→+∞ θ

n+,m
 = . Then

�k
i = (α + α)uk

i – �k
j .
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Therefore

η
k,m+
i = �

k,m+
i – �n+

i

= (α + α)uk,m+
i – �

k,m
j + θ

k,m+
j – (α + α)uk

i + �k
j

= (α + α)
(
uk,m+

 – uk
i
)

–
(
�

k,m
j – �k

j
)

+ θ
k,m+
j . �

Lemma  By letting C be a generic constant which has different values at different places,
one gets, for i, j = , , i �= j,

(
η

k,m–
i – αiek,m

i , w
)

�
≤ C

∥
∥ek,m

i
∥
∥

,�i
‖w‖W (.)

and

(
αiwi + θ

k,m+
 , ek,m+

i
)

�
≤ C

∥
∥ek,m+

i
∥
∥

,�i
‖w‖W . (.)

Proof Using Lemma  and the fact that the inverse of the trace mapping Tr–
i : W → Vi is

continuous we have for i, j = , , i �= j,

(
η

k,m–
i – αiek,m

i , w
)

�i
= bi

(
ek,m

i , Tr–w
)

=
(∇ek,m

i ,∇Tr–w
)

�i

+
(
αek,m

i , Tr–w
)

�i
+ λ

(
ek,m

i , Tr–w
)

�i

≤ ∣
∣ek,m

i
∣
∣
,�i

∣
∣Tr–w

∣
∣
,�i

+ ‖α‖∞
∥
∥ek,m

i
∥
∥

,�i

∥
∥Tr–w

∥
∥

,�i

+ |λ|∥∥ek,m
i

∥
∥

,�i

∥
∥Tr–w

∥
∥

,�i

≤ C
∥
∥ek,m

i
∥
∥

,�i
‖w‖W .

For the second estimate, we have

(
αiwi + θ

k,m+
 , ek,m+

i
)

�i
=

(
αiwi + θ

k,m+
 , ek,m+

i
)

�i

≤ ∥
∥αiwi + θ

k,m+


∥
∥

,�

∥
∥ek,m+

i
∥
∥

,�

≤ (|αi|‖wi‖,� +
∥
∥θ

k,m+


∥
∥

,�

)∥
∥en+,m+

i
∥
∥

,�

≤ max
(|αi|,

∥
∥θ

k,m+


∥
∥

,�

)‖wi‖,�

∥
∥ek,m+

i
∥
∥

,�

≤ C
∥
∥ek,m+

i
∥
∥

,�
‖wi‖,� ≤ C

∥
∥ek,m+

i
∥
∥

,�
‖wi‖W .

Thus,

|αi|‖wi‖,� +
∥
∥θ

k,m+


∥
∥

,�
≤ max

(|αi|,
∥
∥θ

k,m+


∥
∥

,�

)‖wi‖,� . �

Proposition  For the sequences (uk,m
 , uk,m

 )m∈N, solutions of (.), (.), we have the fol-
lowing a posteriori error estimation:

∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�
≤ C

∥
∥uk,m+

 – uk,m


∥
∥

W
.
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Proof From (.), (.), we have

b
(
ek,m+

 , v
)

+ b
(
ek,m

 , v
)

=
(
η

k,m
 – αek,m+

 , v
)

�
+

(
η

k,m–
 – αek,m

 , v
)

�

=
(
η

n+,m
 – αen+,m+

 , v
)

�
+

(
η

n+,m–
 – αen+,m

 , v
)

�

+
(
η

n+,m–
 – αen+,m

 , v
)

�
–

(
η

n+,m–
 – αen+,m

 , v
)

�
.

Thus, we have

b
(
ek,m+

 , v
)

+ b
(
ek,m

 , v
)

=
(
η

n+,m
 – αen+,m+

 + η
n+,m–
 – αen+,m

 , v
)

�

+
(
η

n+,m–
 – αen+,m

 , v – v
)

�

=
(
(α + α)en+,m

 + θ
n+,m
 – αen+,m+

 – αen+,m
 , v

)

�

+
(
η

n+,m–
 – αen+,m

 , v – v
)

�

=
(
α

(
en+,m

 – en+,m+


)
+ θ

n+,m
 , v

)

�
+

(
η

n+,m–
 – αen+,m

 , v – v
)

�
.

Take v = en+,m+
 and v = en+,m

 . Then using 
 (a + b) ≤ a + b and Lemma , we get



(∥
∥uk,m+

 – un+


∥
∥

,�
+

∥
∥uk,m

 – un+


∥
∥

,�

)

≤ ∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�

≤ ∥
∥ek,m+


∥
∥

,�
+

∥
∥ek,m


∥
∥

,�

≤ (∇ek,m+
 ,∇ek,m+


)

�
+

(
ek,m+

 , ek,m+


)

�

+
(∇ek,m

 ,∇en+,m


)

�
+

(
ek,m

 , ek,m


)

�

≤ (∇ek,m+
 ,∇ek,m+


)

�
+


β

(
αek,m+

 , ek,m+


)

�

+
(∇ek,m

 ,∇ek,m


)

�
+


β

(
αek,m

 , ek,m


)

�
.

Then



(∥
∥uk,m+

 – un+


∥
∥

,�
+

∥
∥uk,m

 – un+


∥
∥

,�

)

≤ max

(

,

β

)
(
b

(
ek,m+

 , ek,m+


)
+ b

(
ek,m

 , ek,m


))

= max

(

,

β

)
(
α

(
ek,m

 – ek,m+


)
+ θ

k,m
 , ek,m+


)

�

+
(
η

k,m–
 – αek,m

 , ek,m
 – ek,m+


)

�

≤ C
∥
∥ek,m+


∥
∥

,�

∥
∥ek,m

 – ek,m+


∥
∥

W
+ C

∥
∥ek,m


∥
∥

,�

∥
∥ek,m

 – ek,m+


∥
∥

W

≤ max(C, C)
[∥
∥ek,m+


∥
∥

,�
+

∥
∥ek,m


∥
∥

,�

]∥
∥ek,m

 – ek,m+


∥
∥

W
,
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thus

∥
∥en+,m+


∥
∥

,�
+

∥
∥en+,m


∥
∥

,�
≤ ∥

∥en+,m+
 – en+,m


∥
∥

W
.

Therefore

∥
∥un+,m+

 – un+


∥
∥

,�
+

∥
∥un+,m

 – un+


∥
∥

,�
≤  max(C, C)

∥
∥un+,m+

 – un+,m


∥
∥

W
. �

In a similar way, we define another nonoverlapping auxiliary problem over (�,�), and
we get the same result.

Proposition  For the sequences (uk,m
 , uk,m

 )m∈N we get a similar a posteriori error estima-
tion, as follows:

∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�
≤ C

∥
∥uk,m+

 – uk,m


∥
∥

W
. (.)

Proof The proof is very similar to the proof of Proposition . �

Theorem  Let uk
i = uk

�i
. For the sequences (uk,m

 , uk,m
 )m∈N, solutions of problems (.),

(.), one has the following result:

∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�

≤ C
(∥
∥uk,m+

 – uk,m


∥
∥

W
+

∥
∥uk,m

 – uk,m–


∥
∥

W
+

∥
∥ek,m


∥
∥

W
+

∥
∥ek,m–


∥
∥

W

)
.

Proof We use two nonoverlapping auxiliary problems over (�,�) and over (�,�),
respectively. From the previous two propositions, we have

∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�

≤ ∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�

+
∥
∥uk,m

 – un+


∥
∥

,�
+

∥
∥uk,m–

 – un+


∥
∥

,�

≤ C
∥
∥uk,m+

 – un+,m


∥
∥

W
+ C

∥
∥uk,m

 – uk,m–


∥
∥

W

≤ C
∥
∥uk,m+

 – uk,m
 + ε

n+,m


∥
∥

W
+ C

∥
∥uk,m

 – uk,m–
 + ε

k,m–


∥
∥

W
,

∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�

≤ C
(∥
∥uk,m+

 – uk,m
 + ε

k,m


∥
∥

W
+

∥
∥uk,m

 – uk,m–
 + ε

k,m–


∥
∥

W

+
∥
∥ε

k,m


∥
∥

W
+

∥
∥ε

k,m–


∥
∥

W

)
. �

4 A posteriori error estimate in the discrete case
In this section, we consider the discretization of the variational problems (.), (.). Let
τh be a triangulation of � compatible with the discretization and Vh ⊂ H

 be the subspace
of continuous functions which vanish over ∂�; we have

{Vi,h = Vh,�i , Wi,h = Wh�i , i = , }, (.)
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where Wh�i is a subspace of H



(�i) which consists of continuous piecewise polynomial
functions on �i which vanish at the end points of �i.

4.1 The space discretization
Let � be decomposed into triangles and τh denote the set of all those elements, h > ,
the mesh size. We assume that the family τh is regular and quasi-uniform. We consider
the usual basis of affine functions ϕi, i = {, . . . , m(h)} defined by ϕi(Mj) = δij where Mj is a
vertex of the considered triangulation.

We discretize in space, i.e., we approach the space H
 by a space discretization of finite

dimensional V h ⊂ H
. In a second step, we discretize the problem with respect to time us-

ing the θ -scheme. Therefore, we search a sequence of elements un
h ∈ V h which approaches

un(tn), tn = n�t, with initial data u
h = uh. Now we apply the θ -scheme in the following to

the semi-discrete approximation for vh ∈ V h.
Let um+

h ∈ Vh be the solution of discrete problem associated with (.), um+
i,h = um+

h�i
.

We construct the sequences (un+,m+
i,h )m∈N, un+,m+

i,h ∈ Vi,h (i = , ), solutions of the dis-
crete problems associated with (.), (.).

In similar manner to the previous section, we introduce two auxiliary problems. We
define for (�,�) the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

b(uk,m+
,h , v) + (α,huk,m+

,h , v)� = (F(uk–,m+
,h ), v)� ,

uk,m+
,h =  on ∂� ∩ ∂�,

∂uk,m+
,h
∂η

+ αuk,m+
,h =

∂uk,m
,h

∂η
+ αuk,m

,h on �

(.)

and
⎧
⎪⎪⎨

⎪⎪⎩

b(uk,m+
,h , v) + (α,huk,m+

,h , v)� = (F(uk–,m+
,h ), v)� ,

uk,m+
,h =  on ∂� ∩ ∂�,

∂uk,m+
,h
∂η

+ αuk,m+
,h = ∂uk,m


∂η

+ αuk,m
,h on �,

(.)

and for (�,�)

⎧
⎪⎪⎨

⎪⎪⎩

b(uk,m+
,h , v) + (α,huk,m+

,h , v)� = (F(uk–,m+
,h ), v)� ,

uk,m+
,h =  on ∂� ∩ ∂�,

∂uk,m+
,h
∂η

+ αuk,m+
,h =

∂uk,m
,h

∂η
+ αuk,m

,h on �

and
⎧
⎪⎪⎨

⎪⎪⎩

b(uk,m+
,h , v) + (α,huk,m+

,h , v)� = (F(uk–
,h ), v)� ,

un+,m+
,h =  on ∂� ∩ ∂�,

∂un+,m+
,h
∂η

+ αun+,m+
,h =

∂un+,m
,h
∂η

+ αun+,m
,h on �.

(.)

We can obtain the discrete counterparts of Propositions  and  by doing almost the
same analysis as in the section above (i.e., passing from continuous spaces to discrete sub-
spaces and from continuous sequences to discrete ones). Therefore,

∥
∥uk,m+

 – uk

∥
∥

,�
+

∥
∥uk,m

 – uk

∥
∥

,�
≤ C

∥
∥uk,m+

 – uk,m


∥
∥

W
(.)
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and

∥
∥uk,m+

 – un+


∥
∥

,�
+

∥
∥uk,m

 – un+


∥
∥

,�
≤ C

∥
∥uk,m+

 – uk,m


∥
∥

W
. (.)

Similar to the proof of Theorem  we get the following discrete estimates:

∥
∥uk,m+

,h – uk
,h

∥
∥

,�
+

∥
∥uk,m

,h – uk
,h

∥
∥

,�

≤ C
(∥
∥uk,m+

,h – uk,m
,h

∥
∥

W
+

∥
∥uk,m

,h – uk,m–
,h

∥
∥

W
+

∥
∥en+,m

,h
∥
∥

W
+

∥
∥en+,m–

,h
∥
∥

W

)
.

5 Asymptotic behavior for the problem
5.1 A fixed point mapping associated with discrete problem
We define for i = , , ,  the following mapping:

Th : Vi,h → H
(�i),

Wi → TWi = ξ
k,m+
h,i = ∂h

(
F(wi)

)
,

(.)

where ξ k
h,i is the solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

bi(ξ k,m+
i,h , vi) + (αi,hξ

k,m+
i,h , vi,h)�i = (F(wi), vi,h)�i ,

ξ
k,m+
i,h =  on ∂�i ∩ ∂�,

∂ξ
k,m+
i,h
∂ηi

+ αiξ
k,m+
i,h =

∂ξ
k,m
j,h

∂ηi
+ αiξ

k,m
j,h on �i, i = , . . . , , j = , .

(.)

5.2 An iterative discrete algorithm
Choose ui,

h = ui
h, the solution of the following discrete equation:

bi(u
h,i, vh

)
=

(
g

i , vh
)
, vh ∈ Vh, (.)

where gi, is a regular function.
Now we give the following discrete algorithm:

uk,m+
i,h = Thuk–,m+

i,h , k = , . . . , n, i = , . . . , ,

where uk
i,h is the solution of the problem (.).

Proposition  Let ξ
i,k
h be a solution of the problem (.) with the right-hand side Fi(wi) and

the boundary condition
∂ξ

k,m+
i,h
∂ηi

+ αiξ
k,m+
i,h , ξ̃ i,k

h the solution for F̃i and
∂ξ̃

k,m+
i,h
∂ηi

+ αiξ̃
k,m+
i,h . The

mapping Th is a contraction in Vi,h with the rate of contraction λ
β+λ

. Therefore, Th admits
a unique fixed point which coincides with the solution of the problem (.).

Proof We note that

‖W‖H
(�i) = ‖W‖.

Setting

φ =


β + λ

∥
∥F(wi) – F(w̃i)

∥
∥

.
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Then, a ξ
k,m+
i,h + φ is a solution of

⎧
⎪⎪⎨

⎪⎪⎩

b(ξ k,m+
i,h + φ, (vi,h + φ)) = (F(wi) + αiφ, (vi,h + φ)),

ξ
k,m+
i,h =  on ∂�i ∩ ∂�,

∂ξ
k,m+
i,h
∂ηi

+ αiξ
k,m+
i,h =

∂ξ
k,m
j,h

∂ηi
+ αiξ

k,m
j,h on �i, i = , . . . , , j = , .

From assumption (.), we have

F(wi) ≤ F(w̃i) +
∥
∥F(wi) – F(w̃i)

∥
∥



≤ F(w̃i) +
α

β + λ

∥
∥F(wi) – F(w̃i)

∥
∥



≤ F(w̃i) + αφ.

It is very clear that if Fi(wi) � Fi(w̃i) then ξ
k,m+
i,h � ξ̃

k,m+
i,h . Thus

ξ
k,m+
i,h ≤ ξ̃

k,m+
i,h + φ.

But the roles of wi and w̃i are symmetrical, thus we have a similar proof,

ξ̃
k,m+
i,h ≤ ξ

k,m+
i,h + φ,

which yields

∥
∥T(w) – T(w̃)

∥
∥

 ≤ 
β + λ

∥
∥F(wi) – F(w̃i)

∥
∥



=


β + λ

∥
∥f i + λwi – f i – λw̃i

∥
∥



≤ λ

β + λ
‖wi – w̃i‖. �

Proposition  Under the previous hypotheses and notations, we have the following esti-
mate of the convergence:

∥
∥un,m+

i,h – u∞,m+
i,h

∥
∥

 ≤
(


 + βθ (�t)

)n∥
∥u∞,m+

i,h – ui,h

∥
∥

, k = , . . . , n, (.)

where u∞,m+ is an asymptotic continuous solution and ui,h a solution of (.).

Proof We have

ui,∞
h = Thui,∞

h ,

∥
∥u,m+

i,h – u∞,m+
i,h

∥
∥

 =
∥
∥Thu,m+

i,h – Thu∞,m+
i,h

∥
∥

 ≤
(


 + βθ (�t)

)
∥
∥ui,

i,h – u∞,m+
i,h

∥
∥

,

and, for n + , we have

∥
∥un+,m+

h – ui,∞
h

∥
∥

 =
∥
∥Thun,m+

i,h – Thu∞,m+
i,h

∥
∥

 ≤
(


 + βθ (�t)

)
∥
∥un,m+

i,h – ui,∞
i,h

∥
∥

,
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then

∥
∥un,m+

i,h – u∞
i,h

∥
∥

 ≤
(


 + βθ (�t)

)n∥
∥u∞,m+

i,h – ui,h

∥
∥

. �

Now we evaluate the variation in H
-norm between u(T , x), the discrete solution calcu-

lated at the moment T = n�t, and u∞, the asymptotic continuous solution (.).

Theorem  Under the previous hypotheses, notations, and results, we have

∥
∥un,m+

i,h – u∞∥
∥

 ≤ C
[
∥
∥uk,m+

,h – uk,m
,h

∥
∥

W
+

∥
∥uk,m

,h – uk,m–
,h

∥
∥

W
+

∥
∥en+,m

,h
∥
∥

W

+
∥
∥en+,m–

,h
∥
∥

W
+

(


 + βθ (�t)

)n]

(.)

and

∥
∥un,m+

i,h – u∞∥
∥

 ≤ C
[

h| log h| +
(


 + βθ (�t)

)n]

. (.)

Proof Using Theorem  and Proposition , we get (.) and using (.) and Proposition 
we get (.). �

6 Conclusion
In this paper, a posteriori error estimates for the generalized overlapping domain decom-
position method with Robin boundary conditions on the interfaces for a parabolic varia-
tional equation with second order boundary value problems are studied using the semi-
implicit-time scheme combined with a finite element spatial approximation. Furthermore
a result of an asymptotic behavior using H

-norm is given using Benssoussan-Lions’ al-
gorithm. In the future this research will be completed. The geometrical convergence of
both the continuous and discrete error estimate for linear elliptic PDEs corresponding to
the Schwarz algorithms will be established and the results of some numerical experiments
will be presented to support the theory.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, College of Science and Arts, Al-Qassim University, Al-Ras, Kingdom of Saudi Arabia.
2Laboratory of Fundamental and Applied Mathematics, Oran University 1, Ahmed Benbella, Oran, Algeria. 3Department
of Mathematics, Faculty of Sciences, Annaba University, Annaba, Algeria. 4Department of Mathematics, Faculty of
Sciences, El’oued University, El’oued, Algeria.

Acknowledgements
The authors wish to thank the anonymous referees and the handling editor for their useful remarks and their careful
reading of the proofs presented in this paper.

Received: 21 February 2015 Accepted: 22 July 2015

References
1. Badea, L: On the Schwarz alternating method with more than two subdomains for monotone problems. SIAM J.

Numer. Anal. 28(1), 179-204 (1991)



Boulaaras et al. Boundary Value Problems  (2015) 2015:124 Page 16 of 16

2. Boulaaras, S, Haiour, M: Overlapping domain decomposition methods for elliptic quasi-variational inequalities related
to impulse control problem with mixed boundary conditions. Proc. Indian Acad. Sci. Math. Sci. 121(4), 481-493 (2011)

3. Nataf, F: Recent developments on optimized Schwarz methods. In: Domain Decomposition Methods in Science and
Engineering XVI. Lecture Notes in Computational Science and Engineering, vol. 55, pp. 115-125. Springer, Berlin
(2007)

4. Lions, PL: On the Schwarz alternating method. II. Stochastic interpretation and order properties. In: Domain
Decomposition Methods (Los Angeles, Calif, 1988), pp. 47-70. SIAM, Philadelphia (1989)

5. Otto, F-C, Lube, G: A posteriori estimates for a non-overlapping domain decomposition method. Computing 62(1),
27-43 (1999)

6. Douglas, J Jr., Huang, C-S: An accelerated domain decomposition procedure based on Robin transmission
conditions. BIT Numer. Math. 37(3), 678-686 (1997)

7. Engquist, B, Zhao, H-K: Absorbing boundary conditions for domain decomposition. Appl. Numer. Math. 27(4),
341-365 (1998)

8. Lions, P-L: On the Schwarz alternating method. I. In: Glowinski, R, Golub, GH, Meurant, GA, Périaux, J (eds.) First
International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 1-42. SIAM,
Philadelphia (1988)

9. Chan, TF, Hou, TY, Lions, P-L: Geometry related convergence results for domain decomposition algorithms. SIAM J.
Numer. Anal. 28(2), 378-391 (1991)

10. Quarteroni, A, Valli, A: Domain Decomposition Methods for Partial Differential Equations. Clarendon, Oxford (1999)
11. Toselli, A, Widlund, O: Domain Decomposition Methods Algorithms and Theory. Springer Series in Computational

Mathematics, vol. 34. Springer, Berlin (2005)
12. Maday, Y, Magoulès, F: Improved ad hoc interface conditions for Schwarz solution procedure tuned to highly

heterogeneous media. Appl. Math. Model. 30(8), 731-743 (2006)
13. Maday, Y, Magoulès, F: A survey of various absorbing interface conditions for the Schwarz algorithm tuned to highly

heterogeneous media. In: Domain Decomposition Methods: Theory and Applications. Gakuto International Series:
Mathematical Sciences Applications, vol. 25, pp. 65-93. Gakkotosho, Tokyo (2006)

14. Farhat, C, Le Tallec, P: Vista in domain decomposition methods. Comput. Methods Appl. Mech. Eng. 184(2-4), 143-520
(2000)

15. Magoulès, F, Rixen, D: Domain decomposition methods: recent advances and new challenges in engineering.
Comput. Methods Appl. Mech. Eng. 196(8), 1345-1346 (2007)

16. Ainsworth, M, Oden, JT: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)
17. Verfürth, A: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner,

Stuttgart (1996)
18. Bernardi, C, Chacón Rebollo, T, Chacón Vera, E, Franco Coronil, D: A posteriori error analysis for two-overlapping

domain decomposition techniques. Appl. Numer. Math. 59(6), 1214-1236 (2009)
19. Lions, PL: On the Schwarz alternating method. I. In: First International Symposium on Domain Decomposition

Methods for Partial Differential Equations (Paris, 1987), pp. 1-42. SIAM, Philadelphia (1988)
20. Benlarbi, H, Chibi, A-S: A posteriori error estimates for the generalized overlapping domain decomposition methods.

J. Appl. Math. 2012, Article ID 947085 (2012)
21. Boulbrachene, M, Al Farei, Q: Maximum norm error analysis of a nonmatching grids finite element method for linear

elliptic PDEs. Appl. Math. Comput. 238(7), 21-29 (2014)


	Asymptotic behavior and a posteriori error estimates for the generalized overlapping domain decomposition method for parabolic equation
	Abstract
	Keywords

	Introduction
	The continuous problem
	The semi-discrete parabolic variational equation
	The space-continuous for generalized overlapping domain decomposition

	A posteriori error estimate in the continuous case
	Algorithm

	A posteriori error estimate in the discrete case
	The space discretization

	Asymptotic behavior for the problem
	A ﬁxed point mapping associated with discrete problem
	An iterative discrete algorithm

	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


