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Abstract
In this paper we are concerned with the existence of solutions for the following
perturbed fractional Hamiltonian systems: –tDα∞(–∞Dα

t u(t)) – L(t)u(t) +∇W(t,u(t)) = f (t),
u ∈ Hα (R,Rn) (PFHS), where α ∈ (1/2, 1), t ∈ R, u ∈ R

n, L ∈ C(R,Rn2 ) is a symmetric
and positive definite matrix for all t ∈ R,W ∈ C1(R×R

n,R), and ∇W(t,u) is the
gradient ofW(t,u) at u, f ∈ C(R,Rn) and belongs to L2(R,Rn). The novelty of this paper
is that, assuming L(t) is bounded in the sense that there are constants 0 < τ1 < τ2 <∞
such that τ1|u|2 ≤ (L(t)u,u)≤ τ2|u|2 for all (t,u) ∈R×R

n andW(t,u) satisfies the
Ambrosetti-Rabinowitz condition and some other reasonable hypotheses, f (t) is
sufficiently small in L2(R,Rn), we show that (PFHS) possesses at least two nontrivial
solutions. Recent results are generalized and significantly improved.
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1 Introduction
Fractional differential equations both ordinary and partial ones are applied in mathemati-
cal modeling of process in physics, mechanics, control theory, biochemistry, bioengineer-
ing and economics. Therefore, the theory of fractional differential equations is an area
intensively developed during the last decades [, ]. The monographs [–] enclose a re-
view of methods of solving fractional differential equations, which are an extension of
procedures from differential equations theory.

Recently, also equations including both left and right fractional derivatives are discussed.
Apart from their possible applications, equations with left and right derivatives is an inter-
esting and new field in fractional differential equations theory. In this topic, many results
are obtained dealing with the existence and multiplicity of solutions of nonlinear frac-
tional differential equations by using techniques of nonlinear analysis, such as fixed point
theory (including the Leray-Schauder nonlinear alternative) [], topological degree theory
(including co-incidence degree theory) [] and comparison method (including upper and
lower solutions and monotone iterative method) [] and so on.

It should be noted that critical point theory and variational methods have also turned
out to be very effective tools in determining the existence of solutions for integer order
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differential equations. The idea behind them is to try to find solutions of a given boundary
value problem by looking for critical points of a suitable energy functional defined on an
appropriate function space. In the last  years, critical point theory has become a won-
derful tool in studying the existence of solutions to differential equations with variational
structures; we refer the reader to Mawhin and Willem [], Rabinowitz [], Schechter [],
and the references listed therein.

Recently, in [] the author was first to discuss the following perturbed fractional Hamil-
tonian systems:

⎧
⎨

⎩

–tDα∞(–∞Dα
t u(t)) – L(t)u(t) + ∇W (t, u(t)) = f (t),

u ∈ Hα(R,Rn),
(PFHS)

where α ∈ (/, ), t ∈R, u ∈R
n, L ∈ C(R,Rn ) is a symmetric and positive definite matrix

for all t ∈ R, W ∈ C(R×R
n,R), and ∇W (t, u) is the gradient of W (t, u) at u, f ∈ C(R,Rn)

and belongs to L(R,Rn). Under the conditions of (L), (W)-(W) (see below) and assum-
ing that the L norm of f is sufficiently small, he showed that (PFHS) has at least two
nontrivial solutions.

Equation (PFHS), if α =  and f (t) ≡ , reduces to the following second order Hamilto-
nian systems:

ü – L(t)u + ∇W (t, u) = . (HS)

It is well known that the existence of homoclinic solutions for Hamiltonian systems and
their importance in the study of the behavior of dynamical systems have been recognized
from Poincaré []. They may be ‘organizing centers’ for the dynamics in their neighbor-
hood. From their existence one may, under certain conditions, infer the existence of chaos
nearby or the bifurcation behavior of periodic orbits. During the past two decades, with
the works of [] and [] variational methods and critical point theory have been suc-
cessfully applied for the search of the existence and multiplicity of homoclinic solutions
of (HS).

Assuming that L(t) and W (t, u) are independent of t or periodic in t, many authors have
studied the existence of homoclinic solutions for (HS); see for instance [–] and the
references therein and some more general Hamiltonian systems are considered in [, ].
In this case, the existence of homoclinic solutions can be obtained by going to the limit of
periodic solutions of approximating problems. If L(t) and W (t, u) are neither autonomous
nor periodic in t, the existence of homoclinic solutions of (HS) is quite different from the
periodic systems, because of the lack of compactness of the Sobolev embedding, such as
in [, , ] and the references mentioned there.

Motivated by the above classical works, in [] the author considered the following frac-
tional Hamiltonian systems:

⎧
⎨

⎩

tDα∞(–∞Dα
t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,Rn),
(FHS)

where α ∈ (/, ), t ∈R, u ∈R
n, L ∈ C(R,Rn ) is a symmetric and positive definite matrix

for all t ∈ R, W ∈ C(R × R
n,R), and ∇W (t, u) is the gradient of W (t, u) at u. Assum-
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ing that L(t) and W (t, u) satisfy the following hypotheses, the author showed that (FHS)
possesses at least one nontrivial solution via the mountain pass theorem. Explicitly,

(L) L(t) is a positive definite symmetric matrix for all t ∈ R and there exists an l ∈
C(R, (,∞)) such that l(t) → ∞ as |t| → ∞ and

(
L(t)u, u

) ≥ l(t)|u| for all t ∈R and u ∈R
n. (.)

(W) W ∈ C(R×R
n,R) and there is a constant θ >  such that

 < θW (t, u) ≤ (∇W (t, u), u
)

for all t ∈R and u ∈R
n\{}.

(W) |∇W (t, u)| = o(|u|) as |u| →  uniformly with respect to t ∈R.
(W) There exists W ∈ C(Rn,R) such that

∣
∣W (t, u)

∣
∣ +

∣
∣∇W (t, u)

∣
∣ ≤ ∣

∣W (u)
∣
∣ for every t ∈R and u ∈R

n.

(W) is the so-called global Ambrosetti-Rabinowitz condition, which implies that W (t, u)
is of superquadratic growth as |u| → ∞. Inspired by this work, using the genus properties
of critical point theory, in [] the authors established some new criterion to guarantee
the existence of infinitely many solutions of (FHS) for the case that W (t, u) is subquadratic
as |u| → ∞, where the condition (L) is also needed to guarantee that the functional cor-
responding to (FHS) satisfies the (PS) condition.

As is well known, the condition (L) is the so-called coercive condition and is very re-
strictive. In fact, for a simple choice like L(t) = τ Idn, the condition (.) is not satisfied,
where τ >  and Idn is the n × n identity matrix. Therefore, in [] the authors focused
their attention on the case that L(t) is bounded in the sense that

(L)′ L ∈ C(R,Rn ) is a symmetric and positive definite matrix for all t ∈ R and there are
constants  < τ < τ < ∞ such that

τ|u| ≤ (
L(t)u, u

) ≤ τ|u| for all (t, u) ∈ R×R
n.

If the potential W (t, u) is supposed to be subquadratic as |u| → ∞, then, as they also
showed, (FHS) possesses infinitely many solutions.

Inspired by [, ], in the present paper we deal with (PFHS) for the case that L(t) is
bounded, i.e., (L)′ holds and W (t, u) is superquadratic as |u| → ∞. Explicitly, we assume
that the potential W (t, u) satisfies (W) and the following condition:

(W)′ there exists some positive continuous function a : R →R with

lim|t|→∞ a(t) =  (.)

such that

∣
∣∇W (t, u)

∣
∣ ≤ a(t)|u|θ– for all (t, u) ∈R×R

n.

Let � = sup{W (t, u) : t ∈R, |u| = } and assume that
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(Wf ) � < 
C

and f : R →R
n is a continuous square integrable function such that

‖f ‖L <


C∞

(


C
– �C

)

, (.)

where C and C∞ are defined in Section .

Now, we are in the position to state our main result.

Theorem . Suppose that (L)′, (W), (W)′ and (Wf ) are satisfied, then (PFHS) possesses
at least two nontrivial solutions.

Remark . Note that in (L)′, we assume that L(t) is bounded. Therefore, the coercive
condition (L) is not satisfied. Thus the results in [] are generalized and improved signif-
icantly.

Moreover, as mentioned above, the coercive condition (L) is used to establish some com-
pact embedding theorems to guarantee that the (PS) condition (or the other weak com-
pactness conditions) holds, which is the essential step to obtain the existence of homo-
clinic solutions of (PFHS) via critical point theory and variational methods. In the present
paper, we assume that L(t) satisfies (L)′ and could not obtain some compact embedding
theorem. Therefore, the main difficulty is to adapt some new technique to overcome this
difficulty and test that the (PS) condition is verified; see Lemmas . and . below.

The remaining part of this paper is organized as follows. Some preliminary results are
presented in Section . Section  is devoted to accomplishing the proof of Theorem ..

2 Preliminary results
In this section, for the reader’s convenience, first we introduce some basic definitions of
fractional calculus. The Liouville-Weyl fractional integrals of order  < α <  are defined
as

–∞Iα
x u(x) =


�(α)

∫ x

–∞
(x – ξ )α–u(ξ ) dξ

and

xIα
∞u(x) =


�(α)

∫ ∞

x
(ξ – x)α–u(ξ ) dξ .

The Liouville-Weyl fractional derivative of order  < α <  are defined as the left-inverse
operators of the corresponding Liouville-Weyl fractional integrals

–∞Dα
x u(x) =

d
dx –∞I–α

x u(x) (.)

and

xDα
∞u(x) = –

d
dx xI–α

∞ u(x). (.)
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The definitions of (.) and (.) may be written in an alternative form as follows:

–∞Dα
x u(x) =

α

�( – α)

∫ ∞



u(x) – u(x – ξ )
ξα+ dξ

and

xDα
∞u(x) =

α

�( – α)

∫ ∞



u(x) – u(x + ξ )
ξα+ dξ .

Moreover, recall that the Fourier transform û(w) of u(x) is defined by

û(w) =
∫ ∞

–∞
e–iwxu(x) dx.

In order to establish the variational structure which enables us to reduce the existence of
solutions of (PFHS) to find critical points of the corresponding functional, it is necessary to
construct the appropriate functional spaces. In what follows, we introduce some fractional
spaces; for more details see []. To this end, denote by Lp(R,Rn) ( ≤ p < ∞) the Banach
spaces of functions on R with values in R

n under the norms

‖u‖Lp =
(∫

R

∣
∣u(t)

∣
∣p dt

)/p

,

and L∞(R,Rn) is the Banach space of essentially bounded functions from R into R
n

equipped with the norm

‖u‖∞ = ess sup
{∣
∣u(t)

∣
∣ : t ∈R

}
.

For α > , define the semi-norm

|u|Iα–∞ =
∥
∥–∞Dα

x u
∥
∥

L

and the norm

‖u‖Iα–∞ =
(‖u‖

L + |u|Iα–∞
)/ (.)

and let

Iα
–∞ = C∞


(
R,Rn

)‖·‖Iα–∞ ,

where C∞
 (R,Rn) denotes the space of infinitely differentiable functions from R into R

n

with vanishing property at infinity.
Now we can define the fractional Sobolev space Hα(R,Rn) in terms of the Fourier trans-

form. Choose  < α < , define the semi-norm

|u|α =
∥
∥|w|αû

∥
∥

L
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and the norm

‖u‖α =
(‖u‖

L + |u|α
)/

and let

Hα = C∞


(
R,Rn

)‖·‖α

.

Moreover, we note that a function u ∈ L(R,Rn) belongs to Iα
–∞ if and only if

|w|αû ∈ L(
R,Rn).

Especially, we have

|u|Iα–∞ =
∥
∥|w|̂u∥

∥
L .

Therefore, Iα
–∞ and Hα are equivalent with equivalent semi-norm and norm. Analogous

to Iα
–∞, we introduce Iα∞. Define the semi-norm

|u|Iα∞ =
∥
∥xDα

∞u
∥
∥

L

and the norm

‖u‖Iα∞ =
(‖u‖

L + |u|Iα∞
)/ (.)

and let

Iα
∞ = C∞


(
R,Rn

)‖·‖Iα∞ .

Then Iα
–∞ and Iα∞ are equivalent with equivalent semi-norm and norm; see [].

Let C(R,Rn) denote the space of continuous functions from R into R
n. Then we obtain

the following lemma.

Lemma . ([], Theorem .) If α > /, then Hα ⊂ C(R,Rn) and there is a constant
C = Cα such that

‖u‖∞ = sup
x∈R

∣
∣u(x)

∣
∣ ≤ C‖u‖α .

Remark . From Lemma ., we know that if u ∈ Hα with / < α < , then u ∈ Lp(R,Rn)
for all p ∈ [,∞), since

∫

R

∣
∣u(x)

∣
∣p dx ≤ ‖u‖p–

∞ ‖u‖
L .

In what follows, we introduce the fractional space in which we will construct the varia-
tional framework of (PFHS). Let

Xα =
{

u ∈ Hα :
∫

R

[∣
∣–∞Dα

t u(t)
∣
∣ +

(
L(t)u(t), u(t)

)]
dt < ∞

}

,
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then Xα is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =
∫

R

[(
–∞Dα

t u(t), –∞Dα
t v(t)

)
+

(
L(t)u(t), v(t)

)]
dt

and the corresponding norm is

‖u‖
Xα = 〈u, u〉Xα .

Similar to Lemma . in [], we have the following conclusion. Its proof is just the rep-
etition of Lemma . of [], so we omit the details.

Lemma . Suppose L(t) satisfies (L)′, then Xα is continuously embedded in Hα .

Remark . From Remark . and Lemma ., the embedding of Xα into L∞(R,Rn) is
continuous. On the other hand, it is obvious that the embedding Xα ↪→ L(R,Rn) is also
continuous. Therefore, combining this with Remark ., for any p ∈ [,∞], there exists
Cp >  such that

‖u‖Lp ≤ Cp‖u‖Xα . (.)

Proposition . ([], Fact .) Under the assumption of (W), we have
(i) W (t, u) ≤ W (t, u

|u| )|u|θ for t ∈R and  < |u| ≤ ;
(ii) W (t, u) ≥ W (t, u

|u| )|u|θ for t ∈R and |u| ≥ .

Now we introduce some more notations and necessary definitions. Let B be a real Ba-
nach space, I ∈ C(B,R) means that I is a continuously Fréchet-differentiable functional
defined on B. Recall that I ∈ C(B,R) is said to satisfy the (PS) condition if any sequence
{un}n∈N ⊂ B, for which {I(un)}n∈N is bounded and I ′(un) →  as n → ∞, possesses a con-
vergent subsequence in B.

Moreover, let Br be the open ball inB with the radius r and centered at  and ∂Br denotes
its boundary. Under the conditions of Theorem ., we obtain the existence of the first
solution of (PFHS) by using the following well-known mountain pass theorem; see [].

Lemma . ([], Theorem .) Let B be a real Banach space and I ∈ C(B,R) satisfying
the (PS) condition. Suppose that I() =  and

(A) there are constants ρ , α >  such that I|∂Bρ ≥ α, and
(A) there is an e ∈ B \ Bρ such that I(e) ≤ .

Then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
g∈�

max
s∈[,]

I
(
g(s)

)
,

where

� =
{

g ∈ C
(
[, ],B

)
: g() = , g() = e

}
.

As far as the second one is concerned, we obtain it by a minimizing method, which is
concerned with a small ball centered at ; see Step  in proof of Theorem ..
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3 Proof of Theorem 1.1
The aim of section is to establish the proof of Theorem .. For this purpose, we are going
to establish the corresponding variational framework to obtain solutions of (PFHS). To
this end, define the functional I : B = Xα →R by

I(u) =
∫

R

[


∣
∣–∞Dα

t u(t)
∣
∣ +



(
L(t)u(t), u(t)

)
– W

(
t, u(t)

)
+

(
f (t), u(t)

)
]

dt

=


‖u‖

Xα –
∫

R

[
W

(
t, u(t)

)
–

(
f (t), u(t)

)]
dt. (.)

Under the conditions of Theorem ., as usual, we see that I ∈ C(Xα ,R), i.e., I is a con-
tinuously Fréchet-differentiable functional defined on Xα . Moreover, we have

I ′(u)v =
∫

R

[(
–∞Dα

t u(t), –∞Dα
t v(t)

)
+

(
L(t)u(t), v(t)

)

–
(∇W

(
t, u(t)

)
, v(t)

)
+

(
f (t), u(t)

)]
dt

for all u, v ∈ Xα , which yields

I ′(u)u = ‖u‖
Xα –

∫

R

[(∇W
(
t, u(t)

)
, u(t)

)
–

(
f (t), u(t)

)]
dt. (.)

Lemma . Under the conditions of Theorem ., �′ is compact, i.e., �′(un) → �′(u) if
un ⇀ u in Xα , where � : Xα →R is defined by

�(u) =
∫

R

W (t, u) dt. (.)

Proof Assume that un ⇀ u in Xα , then there is some constant M >  such that

‖un‖Xα ≤ M and ‖u‖Xα ≤ M

for n ∈N. In addition, from (W)′, for any ε >  there exists R >  such that

∣
∣∇W (t, u)

∣
∣ ≤ ε|u|θ– and

∣
∣∇W (t, un)

∣
∣ ≤ ε|un|θ– (.)

for |t| > R.
Consequently, for n large enough, we have

∣
∣
(
�′(un) – �′(u)

)
v
∣
∣ ≤

∫

R

∣
∣∇W (t, un) – ∇W (t, u)

∣
∣|v|dt

≤
∫ R

–R

∣
∣∇W (t, un) – ∇W (t, u)

∣
∣|v|dt

+
∫

|t|>R

∣
∣∇W (t, un)

∣
∣|v|dt +

∫

|t|>R

∣
∣∇W (t, u)

∣
∣|v|dt

≤ ε‖v‖∞ + ε

∫

|t|>R
|un|θ–|v|dt + ε

∫

|t|>R
|u|θ–|v|dt

≤ εC∞‖v‖Xα + ε

∫

|t|>R

(
θ – 

θ
|un|θ +


θ
|v|θ

)

dt
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+ ε

∫

|t|>R

(
θ – 

θ
|u|θ +


θ
|v|θ

)

dt

≤ εC∞‖v‖Xα + ε
θ – 

θ

∫

|t|>R

(|un|θ + |u|θ )dt

+ ε

θ

∫

|t|>R
|v|θ dt. (.)

Here we apply the Young inequality:

ab ≤ ap

p
+

bq

q
, a, b > , p, q >  and


p

+

q

= .

In view of (.) and (.), we obtain

∥
∥�′(un) – �′(u)

∥
∥ = sup

‖v‖Xα =

∣
∣
∣
∣

∫

R

(∇W (t, un) – ∇W (t, u), v
)

dt
∣
∣
∣
∣

≤ εC∞ + ε(Cθ M)θ
θ – 

θ
+ εCθ

θ


θ

,

which yields �′(un) → �′(u) as un ⇀ u, that is, �′ is compact. �

Lemma . Under the conditions of Theorem ., I satisfies the (PS) condition.

Proof Assume that {uk}k∈N ⊂ Xα is a sequence such that {I(uk)}k∈N is bounded and
I ′(uk) →  as k → ∞. Then there exists a constant M >  such that

∣
∣I(uk)

∣
∣ ≤ M and

∥
∥I ′(uk)

∥
∥

(Xα )∗ ≤ M (.)

for every k ∈N, where (Xα)∗ is the dual space of Xα .
First, we show that {un}k∈N is bounded. In fact, in view of (W), (.), (.), and (.), we

obtain

M +
M
θ

‖uk‖Xα ≥ I(uk) –

θ

I ′(uk)uk

=
(




–

θ

)

‖uk‖
Xα –

∫

R

[

W
(
t, uk(t)

)
–


θ

(∇W
(
t, uk(t)

)
, uk(t)

)
]

dt

+
(

 –

θ

)∫

R

(
f (t), uk(t)

)
dt

≥
(




–

θ

)

‖uk‖
Xα –

(

 –

θ

)

C‖f ‖L‖uk‖Xα .

Since θ > , the boundedness of {uk}k∈N follows directly. Then the sequence {uk}k∈N has a
subsequence, again denoted by {uk}k∈N, and there exists u ∈ E such that

uk ⇀ u weakly in E,

which yields

(
I ′(uk) – I ′(u)

)
(uk – u) →  as k → ∞.
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Note that, according to (.), we have

(
I ′(uk) – I ′(u)

)
(uk – u) = ‖uk – u‖

Xα –
(
�′(uk) – �′(u)

)(
uk(t) – u(t)

)
.

On the other hand, in view of Lemma ., �′(uk) → �′(u) as k → ∞. Consequently, we
deduce that ‖uk – u‖Xα →  as k → ∞ and prove that the (PS) condition holds. �

Now we are in the position to give the proof of Theorem .. We divide its proof into
four steps.

Proof
Step . It is clear that I() =  and I ∈ C(Xα ,R) satisfies the (PS) condition by Lemma ..
Step . We now show that there exist constants ρ >  and α >  such that I satisfies

condition (A) of Lemma .. Let ρ = 
C∞ , where C∞ is defined in (.). Assume that u ∈ E

with ‖u‖Xα ≤ ρ , then ‖u‖∞ ≤ .
In consequence, combining this with (i) of Proposition ., we obtain

I(u) ≥ 

‖u‖

Xα –
∫

R

W
(

t,
u(t)
|u(t)|

)
∣
∣u(t)

∣
∣θ dt –

∫

∞

(
f (t), u(t)

)
dt

≥ 

‖u‖

Xα – �

∫

R

∣
∣u(t)

∣
∣ dt – C‖f ‖L‖u‖Xα

=
(




– �C


)

‖u‖
Xα – C‖f ‖L‖u‖Xα , ‖u‖Xα = ρ, (.)

where � is defined in (Wf ). The inequalities (.) and (.) imply that

I|∂Bρ ≥ 
C∞

– �
C


C∞

– ‖f ‖L
C

C∞
= α > .

Step . It remains to prove that there exists an e ∈ Xα such that I(e) ≤  with ‖e‖Xα > ρ ,
where ρ is defined in Step . Choose ϕ ∈ Xα such that |ϕ(t)| =  for all t ∈ [, ]. In view of
(.) and (ii) of Proposition ., we have, for every s ∈ [,∞),

I(sϕ) =
s


‖ϕ‖

Xα –
∫

R

W
(
t, sϕ(t)

)
dt + s

∫

R

(
f (t),ϕ(t)

)
dt

≤ s


‖ϕ‖

Xα – sθ

∫ 


W

(

t,
ϕ(t)
|ϕ(t)|

)
∣
∣ϕ(t)

∣
∣θ dt + sC‖f ‖L‖ϕ‖Xα

≤ s


‖ϕ‖

Xα – msθ

∫ 



∣
∣ϕ(t)

∣
∣θ dt + sC‖f ‖L‖ϕ‖Xα , (.)

where m = min{W (t, u) : t ∈ [, ], |u| = }. Since θ > , (.) implies that I(sϕ) = I(e) <  for
some s �  with ‖sϕ‖Xα > ρ , where ρ is defined in Step . By Lemma ., I possesses a
critical value c ≥ α >  given by

c = inf
g∈�

max
s∈[,]

I
(
g(s)

)
,

where

� =
{

g ∈ C
(
[, ], Xα

)
: g() = , g() = e

}
.
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Hence there is  �= u ∈ Xα such that

I(u) = c and I ′(u) = .

That is, the first nontrivial solution of (PFHS) exists.
Step . From (.), we see that I is bounded from below on Bρ(). Therefore, we can

denote

c = inf‖u‖Xα ≤ρ
I(u),

where ρ is defined in Step . Due to the fact that I() = , c < c. Then there is a minimizing
sequence {vk}k∈N ⊂ Bρ() such that

I(vk) → c and I ′(vk) → 

as k → ∞. That is, {vk}k∈N is a (PS) sequence. Furthermore, from Lemma . I satisfies
the (PS) condition. Therefore, c is one nontrivial critical value of I (note that in our case
u(t) ≡  is not a solution of (PFHS)). Consequently, there is  �= u ∈ Xα such that

I(u) = c and I ′(u) = .

That is, I has another nontrivial solution. �
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