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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration on an ar-
bitrary order that may be noninteger. Fractional differential equations have been proved
to be valuable tools in the modeling of many phenomena in various fields of science and
engineering. We can see numerous applications in viscoelasticity, neurons, electrochem-
istry, control, etc. (see [–]). Recently, with the intensive development of the theory of
fractional calculus itself and its applications, there have many important results of frac-
tional differential equations on initial value problems, and boundary value problems at
nonresonance and resonance (see [–]).

In the study of the turbulent flow in a porous medium, Leibenson (see []) introduced
the p-Laplacian equation as follows:

(
φp

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
, (.)

where φp(s) = |s|p–s, p > . Obviously, φp is invertible and its inverse operator is φq, where
q >  is a constant such that /p + /q = . In the past few decades, many important results
relative to (.) with certain boundary value conditions have been obtained. See the papers
[–] and the references therein. However, as far as we know, work on the existence of
solutions for periodic boundary value problems (PBVPs for short) of fractional differential
equations was discussed less.
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The aim of this paper is to concentrate on the following periodic boundary value prob-
lem for Duffing type fractional differential equations with p-Laplacian operator:

⎧
⎨

⎩
Dβ

+ (φp(Dα
+ x(t))) + g(t, x(t)) = e(t), t ∈ [, T],

x() = x(T), Dα
+ x() = Dα

+ x(T),
(.)

where  < α,β ≤ , Dα
+ , Dβ

+ are Caputo fractional derivatives, T >  is a given constant,
and g : [, T] ×R → R, e : [, T] → R are continuous. Throughout this paper, we assume
that

∫ T


(T – s)β–e(s) ds = .

The choice of periodic boundary conditions is motivated by the difficulty in the study
of the PBVP

⎧
⎨

⎩
Dβ

+ (φp(Dα
+ x(t))) = h(t), t ∈ [, T],

x() = x(T), Dα
+ x() = Dα

+ x(T).
(.)

As we know, PBVP (.) is not solvable for each h ∈ C([, T],R), and, when solvable, has no
unique solution because x(t) + c, ∀c ∈R is a solution together with x(t). A trivial necessary
condition for the solvability of PBVP (.) is that

∫ T
 (T – s)β–h(s) ds = .

Notice that Dβ

+ (φp(Dα
+ )) is a nonlinear operator, so the coincidence degree theory for

linear differential operators is invalid in the direct application to it.
The rest of this paper is organized as follows. In Section , we describe the fractional

differential operator and some lemmas. In Section , some sufficient conditions for the
existence of solutions for PBVP (.) are established, and a new result on the existence of
solutions is obtained. Finally, in Section , an example is given to illustrate the main result.

2 Preliminaries
Some definitions of the fractional derivative have emerged over the years (see [, ]),
and in this paper we restrict our attention to the use of the Caputo fractional derivative.
In this section, we introduce some basic definitions and lemmas which will be used in
what follows. For details, we refer the reader to [–].

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function u : (, +∞) →R is given by

Iα
+ u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right side integral is pointwise defined on (, +∞), where �(·) >  is the
Gamma function.

Definition . The Caputo fractional derivative of order α >  of a continuous function
u : (, +∞) →R is given by

Dα
+ u(t) = In–α

+
dnu(t)

dtn =


�(n – α)

∫ t


(t – s)n–α–u(n)(s) ds,
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where n is the smallest integer greater than or equal to α, provided that the right side
integral is pointwise defined on (, +∞).

Lemma . (see []) Let α > . Assume that u, Dα
+ u ∈ L([, T],R). Then the following

equality holds:

Iα
+ Dα

+ u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , here n is the smallest integer greater than or equal to α.

Lemma . (see []) For any u, v ≥ ,

φp(u + v) ≤
⎧
⎨

⎩
φp(u) + φp(v), if p < ;

p–(φp(u) + φp(v)), if p ≥ .

Now we briefly recall some notations and an abstract existence result, which can be
found in [].

Let X, Y be real Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator with index
zero, and P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L,

X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q.

It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse by KP .
If � is an open bounded subset of X such that dom L ∩ �̄ �= ∅, then the map N : X → Y

will be called L-compact on �̄ if QN(�̄) is bounded and KP(I – Q)N : �̄ → X is compact.

Lemma . (see []) Let X and Y be two Banach spaces, L : dom L ⊂ X → Y be a Fred-
holm operator with index zero, � ⊂ X be an open bounded set, and N : �̄ → Y be L-
compact on �̄. Suppose that all of the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ dom L, λ ∈ (, );
() QNx �= , ∀x ∈ ∂� ∩ Ker L;
() deg(JQN ,� ∩ Ker L, ) �= , where J : Im Q → Ker L is an isomorphism map.

Then the equation Lx = Nx has at least one solution on �̄ ∩ dom L.

3 Existence result
For making use of the continuation theorem to study the existence of solutions for PBVP
(.), we consider a system as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ x(t) = φq(x(t)),

Dβ

+ x(t) = e(t) – g(t, x(t)),

x() = x(T), x() = x(T).

(.)
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Clearly, if x(·) = (x(·), x(·))T is a solution of PBVP (.), then x(·) must be a solution of
PBVP (.). So, to prove PBVP (.) has solutions, we only need to show that PBVP (.)
has solutions.

In this paper, we take X = {x = (x, x)T | x, x ∈ C([, T],R)} with the norm ‖x‖ =
max{‖x‖,‖x‖}, where ‖xi‖ = maxt∈[,T] |xi(t)| (i ∈ {, }). By means of the linear func-
tional analysis theory, we can prove X is a Banach space.

Define the operator L : dom L ⊂ X → X by

Lx =

(
Dα

+ x

Dβ

+ x

)

, (.)

where

dom L =
{

x ∈ X | Dα
+ x, Dβ

+ x ∈ C
(
[, T],R

)
,

x() = x(T), x() = x(T)
}

.

Let N : X → X be defined by

Nx(t) =

(
φq(x(t))

e(t) – g(t, x(t))

)

, ∀t ∈ [, T]. (.)

It is easy to see that PBVP (.) can be converted to the operator equation

Lx = Nx, x ∈ dom L.

Now let us introduce some lemmas.

Lemma . Let L be defined by (.), then

Ker L =
{

x ∈ X | x(t) = c,∀t ∈ [, T], c ∈R
}, (.)

Im L =

{

y ∈ X

∣∣
∣∣
∣

(∫ T
 (T – s)α–y(s) ds

∫ T
 (T – s)β–y(s) ds

)

= 

}

. (.)

Proof Obviously, from Lemma ., we can see that (.) holds.
If y ∈ Im L, then there exists x ∈ dom L such that y = Lx. That is, y(t) = Dα

+ x(t), y(t) =
Dβ

+ x(t). By using Lemma ., we have

x(t) = c +


�(α)

∫ t


(t – s)α–y(s) ds, c ∈R,

x(t) = c +


�(β)

∫ t


(t – s)β–y(s) ds, c ∈R.

From conditions x() = x(T), x() = x(T), we obtain

(∫ T
 (T – s)α–y(s) ds

∫ T
 (T – s)β–y(s) ds

)

= . (.)
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On the other hand, suppose y ∈ X and satisfies (.). Let x(t) = Iα
+ y(t), x(t) = Iβ

+ y(t).
Obviously x() = x(T), x() = x(T). Hence x = (x, x)T ∈ dom L and Lx = y. So y ∈ Im L.
The proof is complete. �

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero. The
projectors P : X → X and Q : X → X can be defined as

Px(t) = x(), ∀t ∈ [, T],

Qy(t) =

(
α

Tα

∫ T
 (T – s)α–y(s) ds

β

Tβ

∫ T
 (T – s)β–y(s) ds

)

:=

(
(Qy)

(Qy)

)

, ∀t ∈ [, T].

Furthermore, the operator KP : Im L → dom L ∩ Ker P can be written as

KPy =

(
Iα

+ y

Iβ

+ y

)

,

which is (L|dom L∩Ker P)–.

Proof For any y ∈ X, we have

Qy = Q

(
(Qy)

(Qy)

)

=

(
(Qy)

α
Tα

∫ T
 (T – s)α– ds

(Qy)
β

Tβ

∫ T
 (T – s)β– ds

)

= Qy.

Let y∗ = y – Qy =
( y∗


y∗



)
, then we get

∫ T


(T – s)α–y∗

 (s) ds =
∫ T


(T – s)α–y(s) ds –

∫ T


(T – s)α–(Qy) ds

=
Tα

α

(
(Qy) –

(
Qy

)


)
= .

Similarly, we have
∫ T

 (T – s)β–y∗
(s) ds = . So y∗ ∈ Im L. Hence X = Im L + Im Q. Since

Im L ∩ Im Q = {}, we have X = Im L ⊕ Im Q. Thus

dim Ker L = dim Im Q = codim Im L = .

This means that L is a Fredholm operator of index zero.
From the definition of KP , for y ∈ Im L, we have

LKPy =

(
Dα

+ Iα
+ y

Dβ

+ Iβ

+ y

)

= y.

On the other hand, for x ∈ dom L ∩ Ker P, we have x() = x() = . By Lemma ., we get

KPLx =

(
x – x()
x – x()

)

= x.

So, we know that KP = (Ldom L∩Ker P)–. The proof is complete. �
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Lemma . Let N be defined by (.). Assume � ⊂ X is an open bounded subset such that
dom L ∩ �̄ �= ∅, then N is L-compact on �̄.

Proof By the continuity of φq, e, g , we find that QN(�̄) and KP(I – Q)N(�̄) are bounded.
Moreover, there exists a constant M >  such that ‖(I – Q)Nx‖ ≤ M, ∀x ∈ �̄, t ∈ [, T].
Thus, in view of the Arzelà-Ascoli theorem, we only need prove that KP(I – Q)N(�̄) ⊂ X
is equicontinuous.

For  ≤ t < t ≤ T , x ∈ �̄, we have

KP(I – Q)Nx(t) – KP(I – Q)Nx(t)

=

(
Iα

+ ((I – Q)Nx)(t) – Iα
+ ((I – Q)Nx)(t)

Iβ

+ ((I – Q)Nx)(t) – Iβ

+ ((I – Q)Nx)(t)

)

.

From ‖(I – Q)Nx‖ ≤ M, ∀x ∈ �̄, t ∈ [, T], we can see that

∣∣
∣∣


�(α)

(∫ t


(t – s)α–((I – Q)Nx

)
(s) ds –

∫ t


(t – s)α–((I – Q)Nx

)
(s) ds

)∣∣
∣∣

≤ M
�(α)

(∫ t



(
(t – s)α– – (t – s)α–)ds +

∫ t

t

(t – s)α– ds
)

=
M

�(α + )
(
tα
 – tα

 + (t – t)α
)

≤ M
�(α + )

(
tα
 – tα

 + (t – t)α
)
.

Since tα is uniformly continuous on [, T], we find that (KP(I – Q)N(�̄)) ⊂ C([, T],R) is
equicontinuous. A similar proof can show that (KP(I –Q)N(�̄)) ⊂ C([, T],R) is equicon-
tinuous. So we find that KP(I – Q)N : �̄ → X is compact. The proof is complete. �

Now we give the main result as regards the existence of solutions for PBVP (.).

Theorem . Assume that:

(H) there exists a constant d >  such that

(–)ixg(t, x) > 
(
i ∈ {, }),∀t ∈ [, T], |x| > d;

(H) there exist a constant d >  and nonnegative functions a, b ∈ C([, T],R) such that

∣
∣g(t, x)

∣
∣ ≤ a(t)|x|p– + b(t), ∀t ∈ [, T], |x| > d.

Then PBVP (.) has at least one solution, provided that

γ :=
pTβ+αp–α‖a‖

�(β + )(�(α + ))p– < , if p < ;

γ :=
p–Tβ+αp–α‖a‖

�(β + )(�(α + ))p– < , if p ≥ .
(.)
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Proof Set

�′ =
{

x ∈ dom L | Lx = λNx,λ ∈ (, )
}

.

For x ∈ �′, we get Nx ∈ Im L. So by (.), we have

∫ T


(T – s)α–φq

(
x(s)

)
ds = ,

∫ T


(T – s)β–(e(s) – g

(
s, x(s)

))
ds = .

From the integral mean value theorem and
∫ T

 (T – s)β–e(s) ds = , there exist constants
ζ ,η ∈ (, T) such that x(ζ ) = , g(η, x(η)) = . Together with the condition (H), we have
|x(η)| ≤ d. By Lemma ., we have

x(t) = x(η) – Iα
+ Dα

+ x(η) + Iα
+ Dα

+ x(t),

which, together with

∣
∣Iα

+ Dα
+ x(t)

∣
∣ =


�(α)

∣∣
∣∣

∫ t


(t – s)α–Dα

+ x(s) ds
∣∣
∣∣

≤ 
�(α)

∥∥Dα
+ x

∥∥
 · 

α
tα

≤ Tα

�(α + )
∥∥Dα

+ x
∥∥

, ∀t ∈ [, T],

and |x(η)| ≤ d, yields

‖x‖ ≤ d +
Tα

�(α + )
∥∥Dα

+ x
∥∥

. (.)

On the other hand, if x ∈ �′, we have
⎧
⎨

⎩
Dα

+ x(t) = λφq(x(t)),

Dβ

+ x(t) = λ(e(t) – g(t, x(t))).
(.)

From the first equation of (.), we get x(t) = φp(λ–Dα
+ x(t)). By substituting it into the

second equation of (.), we get

Dβ

+
(
φp

(
Dα

+ x(t)
))

= λpe(t) – λpg(t, x) := λpNgx(t).

Thus, by Lemma ., we obtain

φp
(
Dα

+ x(t)
)

= c + λpIβ

+ Ngx(t). (.)

Then we have

x(t) = c + Iα
+φq

(
c + λpIβ

+ Ngx
)
(t).
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By the boundary condition x() = x(T), we get


�(α)

∫ T


(T – s)α–φq

(
c + λpIβ

+ Ngx(s)
)

ds = .

Obviously, there exists a constant ξ ∈ (, T) such that φq(c + λpIβ

+ Ngx(ξ )) = , which
implies that c = –λpIβ

+ Ngx(ξ ). By substituting it into (.), we have

φp
(
Dα

+ x(t)
)

= –λpIβ

+ Ngx(ξ ) + λpIβ

+ Ngx(t). (.)

From the hypothesis (H), we get

∣
∣Iβ

+ Ngx(t)
∣
∣ =


�(β)

∣∣
∣∣

∫ t


(t – s)β–e(s) ds –

∫ t


(t – s)β–g

(
s, x(s)

)
ds

∣∣
∣∣

≤ Tβ

�(β + )
‖e‖ +


�(β)

∫ t


(t – s)β–∣∣g

(
s, x(s)

)∣∣ds

≤ Tβ

�(β + )
(‖e‖ + ‖a‖‖x‖p–

 + ‖b‖ + Gd

)
, ∀t ∈ [, T],

where Gd = max{|g(t, x)| | t ∈ [, T], |x| ≤ d}. Together with (.), (.), and

∣∣φp
(
Dα

+ x(t)
)∣∣ =

∣∣Dα
+ x(t)

∣∣p–,

we have

∥
∥Dα

+ x
∥
∥p–

 ≤ Tβ

�(β + )
(‖e‖ + ‖a‖‖x‖p–

 + ‖b‖ + Gd

)

≤ Tβ

�(β + )

[
‖e‖ + ‖b‖ + Gd + ‖a‖

(
d +

Tα

�(α + )
∥∥Dα

+ x
∥∥



)p–]
.

If p < , by using Lemma ., we get

∥∥Dα
+ x

∥∥p–
 ≤ Tβ

�(β + )
(‖e‖ + ‖b‖ + Gd

)

+
Tβ‖a‖

�(β + )

(
dp–

 +
(Tα)p–

(�(α + ))p–

∥∥Dα
+ x

∥∥p–


)

= A +
pTβ+αp–α‖a‖

�(β + )(�(α + ))p–

∥
∥Dα

+ x
∥
∥p–

 ,

where A = Tβ

�(β+) (‖e‖ + ‖b‖ + Gd ) + Tβ‖a‖
�(β+) dp–

 . Then, from (.), we have

∥∥Dα
+ x

∥∥
 ≤

(
A

 – γ

)q–

:= M.

Thus, from (.), we get

‖x‖ ≤ d +
Tα

�(α + )
M. (.)
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If p ≥ , similar to the above argument, let A = Tβ

�(β+) (‖e‖ + ‖b‖ + Gd ) + p–Tβ‖a‖
�(β+) dp–

 ,
we obtain

‖x‖ ≤ d +
Tα

�(α + )
M, (.)

where M = ( A
–γ

)q–. So, combining (.) with (.), we get

‖x‖ ≤ max

{
d +

Tα

�(α + )
M, d +

Tα

�(α + )
M

}
:= M. (.)

From the second equation of (.) and Lemma ., we have

x(t) = c + λIβ

+ Ngx(t),

which together with x(ζ ) =  yields

x(t) = –λIβ

+ Ngx(ζ ) + λIβ

+ Ngx(t).

Then we have

‖x‖ ≤ Tβ

�(β + )
(‖e‖ + GM

)
:= M,

where GM = max{|g(t, x)| | t ∈ [, T], |x| ≤ M}. Together with (.), we obtain

‖x‖ = max
{‖x‖,‖x‖

} ≤ max{M, M} := M.

Let � = {x ∈ X | ‖x‖ < M + }. From the above argument, we know that the equation

Lx = λNx, ∀λ ∈ (, )

has no solution on ∂� ∩ dom L. So the condition () of Lemma . is satisfied. Next the
other two conditions of Lemma . are to be verified.

For x ∈ Ker L, we have x(t) = c, x(t) = c, ∀t ∈ [, T], c, c ∈R. If QNx = , we obtain
∫ T


(T – s)α–φq(c) ds = ,

∫ T


(T – s)β–g(s, c) ds = .

From the first equality, we get c = . From the second equality and (H), we have |c| ≤ d.
So ‖x‖ = max{|c|, |c|} ≤ d < M + . Then the condition () of Lemma . is satisfied.

Define the operators J : Im Q → Ker L by

J(x, x)T =
(
(–)i+x, x

)T,

and F : [, ] × �̄ → X by

F(μ, x) = μx + ( – μ)JQNx =

(
μx + (–)i( – μ) β

Tβ

∫ T
 (T – s)β–g(s, x(s)) ds

μx + ( – μ) α
Tα

∫ T
 (T – s)α–φq(x(s)) ds

)

,
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where i ∈ {, }. Let x ∈ Ker L satisfying F(μ, x) = , we get x(t) = c, x(t) = c, ∀t ∈ [, T],
c, c ∈ R, and

μc + (–)i( – μ)
β

Tβ

∫ T


(T – s)β–g(s, c) ds = , (.)

μc + ( – μ)φq(c) = . (.)

From (.), we get c =  because c and φq(c) have the same sign. From (.), if μ = ,
we get |c| ≤ d because of (H). If μ ∈ (, ], we also get |c| ≤ d. In fact, if |c| > d, in
view of (H), one has

μc
 + ( – μ)

β

Tβ

∫ T


(T – s)β–(–)icg(s, c) ds > ,

which contradicts (.). From the argument above, we obtain ‖x‖ < M + . Thus

F(μ, x) �= , ∀(μ, x) ∈ [, ] × (∂� ∩ Ker L).

Hence, by the homotopy property of the degree, we have

deg(JQN ,� ∩ Ker L, ) = deg
(
F(, ·),� ∩ Ker L, 

)

= deg
(
F(, ·),� ∩ Ker L, 

)
= deg(I,� ∩ Ker L, ) �= .

So the condition () of Lemma . is satisfied.
Consequently, by using Lemma ., the operator equation Lx = Nx has at least one so-

lution x(·) = (x(·), x(·))T on �̄∩ dom L. Namely, PBVP (.) has at least one solution x(·).
The proof is complete. �

4 An example
In this section, we will give an example to illustrate our main result.

Example . Consider the following PBVP for a fractional p-Laplacian equation:

⎧
⎨

⎩
D



+ (φ(D



+ x(t))) – 

 x(t) + 
 = ( – t) 

 sin π t, t ∈ [, ],

x() = x(), D


+ x() = D



+ x().

(.)

Corresponding to PBVP (.), we get p = , α = /, β = /, T = , e(t) = ( – t) 
 sin π t,

and

g(t, x) = –



x +




.

Choose a(t) = 
 , b(t) = . By a simple calculation, we obtain

xg(t, x) = –
x


(
x – 

)
< , ∀t ∈ [, ], |x| > ,

γ =
/
�( 

 + )

[


�( 
 + )

]

< .
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Obviously, PBVP (.) satisfies all assumptions of Theorem .. Hence, PBVP (.) has at
least one solution.
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