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Abstract
We deal with some generalizations on a Black-Scholes model arising in financial
mathematics. As a novelty in this paper, we consider a variable volatility and abstract
functional boundary conditions, which allow us to treat a very large class of problems
involving Black-Scholes equation. Our main results involve the existence of extremal
solutions in presence of lower and upper solutions. Some examples of applications
are provided too.
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1 Introduction
In this paper we are concerned with the following nonlinear boundary value problem:

{
x(V ′′)(x) + p(x)xV ′′(x) + q(x)(xV ′(x) – V (x)) = ,
B(V (c), V ) = , B(V (d), V ) = ,

()

where p, q are nonnegative bounded functions which could be discontinuous in [c, d],
c, d > , and Bi : R × C([c, d]) −→ R, i = , , are functions which satisfy some conditions
that we will state later. We observe that under this framework, a large class of boundary
conditions is included, namely:

() Dirichlet conditions: B(V (c), V ) = V (c) – Vc, B(V (d), V ) = V (d) – Vd ;
() Initial-integral conditions: B(V (c), V ) = V (c) –

∫ d
c k(x)V (x) dx;

() Multipoint conditions: B(V (d), V ) = V (d) –
∑n

j= V (xj),
with Vc, Vd ∈R.

This study follows and generalizes the results contained in [] with respect to the prob-
lem

{
x(V ′′)(x) + pxV ′′(x) + q(xV ′(x) – V (x)) = ,
V (c) = Vc, V (d) = Vd.

()

In [], it is assumed that p, q are positive constants and Vc < Vd . The contributions of
the present paper are the following. First we address this problem but drop the condition
Vc < Vd , and replace the constants p, q by two functions p(x), q(x); second, we replace
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the Dirichlet conditions by functional boundary conditions, which allows us to consider a
very large class of problems for the equation of ().

These problems are related to financial option pricing since they address the existence
of stationary solutions of a class of generalizations of the classical Black-Scholes model
(BS), introduced in  [], with equation

∂V
∂t

+


σ S ∂V

∂S + r
(

S
∂V
∂S

– V
)

= , ()

where V represents the value of a call or put option, depending on an underlying asset S
and on time t, r is the interest short rate and σ is the volatility of the asset price. In the
(BS) model, S is modeled as a geometric Brownian motion, and no costs are considered
when financial transactions hold.

Suppose that transaction costs are included in the model under the assumption that they
are a percentage of the transaction, given as in [] by a linear function h of the number
of shares traded, i.e., h(η) = a – bη, where η is the number of shares traded and a, b > .
The following nonlinear BS type equation is obtained, where �t is the interval between
transactions,

Vt +


σ SVSS – aσS

√


π�t
|VSS| + bSσ V 

SS + r(SVS – V ) = .

Then, if a is small enough and VSS >  (see [, , ]), the following nonlinear version of
() is obtained:

∂V
∂t

+


σ̃ S ∂V

∂S + bσ S
(

∂V
∂S

)

+ r
(

S
∂V
∂S

– V
)

= , ()

where σ̃ = σ  ( –  a
σ

√


π�t ) >  and is commonly denoted by adjusted volatility. Now, if we
consider the stationary version of (), we obtain the above ordinary differential equation
() where p = σ̃

bσ and q = r
bσ are constants.

This paper is organized as follows. In Section , we introduce an auxiliary nonlinear
boundary value problem and the notions of upper and lower solutions used later. In Sec-
tion , we consider problem () with Dirichlet boundary conditions. So, we start from
paper [] and we generalize it by considering p(x), q(x) instead of constants p, q, which cor-
responds to variable volatility in the (BS) model, and by dropping the condition Vc < Vd .
In Section , we deal with problem () on its full version, that is, with functional boundary
conditions. Namely, we provide a result on the existence of extremal solutions between
lower and upper solutions by using a generalized iteration with Dirichlet problems. Some
examples of application are provided, too.

2 Auxiliary problem and upper and lower solutions
If we look to the equation of ()

x(V ′′)(x) + p(x)xV ′′(x) + q(x)
(
xV ′(x) – V (x)

)
= ,
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and, as in [, ] and [], solve it algebraically in order to V ′′, we obtain

V ′′(x) = –
p(x)x ± √

p(x)x – xq(x)(xV ′(x) – V (x))
x . ()

Since we are interested in convex solutions of (), they can exist only if

V ′′(x) = –
p(x)x +

√
p(x)x – xq(x)(xV ′(x) – V (x))

x , ()

and

–
(
xV ′(x) – V (x)

) ≥ . ()

These facts lead us to consider first the following related problem:

{
V ′′(x) + H(x, V (x), V ′(x)) = ,
B(V (c), V ) = , B(V (d), V ) = ,

()

where

H(x, y, z) =
p(x)x –

√
p(x)x + xq(x)|xz – y|

x . ()

Then we will see how solutions of this problem are solutions of our original problem.
We will use the method of upper and lower solutions for this problem and we will begin

by considering the classical notions of C-lower and upper solutions. However, afterwards,
we will use some weaker notions, namely we will need a notion that allows lower solutions
to have ‘angles’. In fact, we will consider a maximum of two classical C-lower solutions
which is not necessarily differentiable and can exhibit an ‘angle’. So, denoting by D–f (x)
and D+f (x), respectively, the lower left-hand and the upper right-hand Dini-derivatives of
the function f at x, we introduce the following definitions (see []).

Definition . We say that α ∈ AC([c, d]) is a lower solution for problem () if

B
(
α(c),α

) ≤ , B
(
α(d),α

) ≤ ,

and for each x ∈ (c, d) one of the following conditions holds:
() D–α(x) < D+α(x);
() There exists an open interval J such that x ∈ J ⊂ (c, d), α|J ∈ W ,(J), and for

almost all x ∈ J we have

α′′(x) + H
(
x,α(x),α′(x)

) ≥ .

We say that β ∈ AC([c, d]) is an upper solution for problem () if

B
(
β(c),β

) ≥ , B
(
β(d),β

) ≥ ,

and for each x ∈ (c, d) one of the following conditions holds:
() D–β(x) > D+β(x);
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() There exists an open interval J such that x ∈ J ⊂ (c, d), β|J ∈ W ,(J), and for
almost all x ∈ J we have

β ′′(x) + H
(
x,β(x),β ′(x)

) ≤ .

Notice that if α, β are classical C-lower and upper solutions for problem (), then they
are also lower and upper solutions in the sense referred above.

3 Nonlinear problem with Dirichlet conditions
Consider problem () with

B
(
V (c), V

)
= V (c) – Vc, B

(
V (d), V

)
= V (d) – Vd,

that is, with standard Dirichlet conditions. So, we have in this case
{

x(V ′′)(x) + p(x)xV ′′(x) + q(x)(xV ′(x) – V (x)) = ,
V (c) = Vc, V (d) = Vd.

()

The auxiliary problem referred in the previous sections is now
{

V ′′(x) + H(x, V (x), V ′(x)) = ,
V (c) = Vc, V (d) = Vd,

()

where the function H is given by ().
From the study of problem (), we will deduce later existence and localization results for

problem (). Next proposition establishes adequately the existence of classical C-upper
and lower solutions for ().

Proposition . The following assertions hold:
() If Vd

d ≤ Vc
c , then the function

α(x) =
Vd

d
x ()

is a C-lower solution for problem ().
The converse is also valid.

() Take k >  such that

k ≥
√

Q
c

√
max

x∈[c,d]

∣∣∣∣k

(
x – cd

)
+

cVd – dVc

d – c

∣∣∣∣, ()

where

Q = max
x∈[c,d]

q(x).

Then the function

αk(x) =
k


x +
(

Vd – Vc

d – c
–

k


(d + c)
)

x +
k


cd –
cVd – dVc

d – c
()

is a C-lower solution for problem ().
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() The function

β(x) =
Vd – Vc

d – c
x +

dVc – cVd

d – c
, x ∈ [c, d] ()

is a C-upper solution for problem ().

Proof () If Vd
d ≤ Vc

c , the thesis follows since

α(c) =
Vd

d
c ≤ Vc, α(d) = Vd,

and, in (c, d),

α′′
 (x) + H

(
x,α(x),α′

(x)
)

= .

Conversely, if α is a lower solution for problem (), then α(c) = Vd
d c ≤ Vc, which implies

Vd
d ≤ Vc

c .
() Observe that αk(c) = Vc, αk(d) = Vd . On the other hand, as

H
(
x,αk(x),α′

k(x)
) ≥ p(x)x –

√
p(x)x –

√
xq(x)|xα′

k(x) – αk(x)|
x

≥ –
√

q(x)
x

√∣∣xα′
(x) – αk(x)

∣∣,
≥ –

√
Q
c

√
max

x∈[c,d]

∣∣∣∣k

(
x – cd

)
+

Vdc – Vcd
d – c

∣∣∣∣,
then

α′′
k (x) + H

(
x,αk(x),α′

k(x)
) ≥ k –

√
Q
c

√
max

x∈[c,d]

∣∣∣∣k

(
x – cd

)
– Vc +

Vd – Vc

d – c
c
∣∣∣∣.

Since k >  satisfies hypothesis (), we derive

α′′
k (x) + H

(
x,αk(x),α′

k(x)
) ≥ .

Then the assertion holds.
() The thesis follows easily from the fact that

β ′′(x) + H
(
x,β(x),β ′(x)

)
= H

(
x,β(x),β ′(x)

) ≤ 

and

β(c) = Vc, β(d) = Vd. �

Remark . () Notice that there is no ambiguity in considering k big enough such that
condition () holds. In fact, it is easy to see that the maximum in () depends on k and



Figueroa and Grossinho Boundary Value Problems  (2015) 2015:145 Page 6 of 14

is attained in the following way:

max
x∈[c,d]

∣∣∣∣k

(
x – cd

)
+

Vdc – Vcd
d – c

∣∣∣∣
= max

{∣∣∣∣k

(
d – cd

)
+

Vdc – Vcd
d – c

∣∣∣∣,
∣∣∣∣k

(
c – cd

)
+

Vdc – Vcd
d – c

∣∣∣∣
}

.

So, it is clear that in the proof of the previous proposition, we could choose k satisfying
() since

lim
k→∞

k√
k

= +∞.

() Observe also that the lower solution αk can be written as αk(x) = β(x) + θ (x), where

θ (x) =
k

(
x – (d + c)x + cd

)
.

In fact,

αk(x) =
k


x +
(

Vd – Vc

d – c
–

k


(d + c)
)

x +
k


cd –
Vdc – Vcd

d – c

=
(

Vd – Vc

d – c

)
x +

dVc – cVd

d – c
+

k

(
x – (d + c)x + cd

)
.

The function θ is quadratic, vanishes at x = c and x = d, and is negative in ]c, d[.

Notation . Given two functions φ ≤ ψ in [c, d], let us denote by [φ,ψ] the functional
interval

[φ,ψ] =
{

V ∈ W ,([c, d]
)

: φ(x) ≤ V (x) ≤ ψ(x) for all x ∈ [c, d]
}

.

Next, we state an existence and localization result for problem ().

Theorem . Let α, αk and β be the functions defined in the previous proposition.
(a) If Vd

d ≤ Vc
c , then problem () has extremal W ,-solutions, that is, the least and the

greatest one, in the functional interval [α,β].
(b) If k >  satisfies (), then problem () has extremal W ,-solutions in the functional

interval [αk ,β].

Proof Consider in case (a)

E =
{

(x, y, z) ∈ [c, d] ×R
 : α(x) ≤ y ≤ β(x)

}
,

and in case (b)

E =
{

(x, y, z) ∈ [c, d] ×R
 : αk(x) ≤ y ≤ β(x)

}
.
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It is clear that H is continuous in E and E. Moreover, we have that

∣∣H(x, y, z)
∣∣ ≤ p(x)

x
+

√
q(x)
x β(x) +

√
q(x)
x

√|z|

for all (x, y, z) ∈ E or (x, y, z) ∈ E. Then, putting

Â = max
x∈[c,d]

(
p(x)

x
+

√
q(x)
x β(x)

)
, B̂ = max

x∈[c,d]

√
q(x)
x

, ()

we derive that

∣∣H(x, y, z)
∣∣ ≤ Â + B̂

√|z| ()

for (x, y, z) ∈ E or (x, y, z) ∈ E, respectively. This inequality guarantees that the function
H satisfies the (classical) Nagumo condition both in E and E. Using the fact that α, αk

are C-lower solutions in cases (a) and (b), respectively, and β is a C-upper solution for
problem () such that

α ≤ β , αk ≤ β ,

the conclusion holds by application of a well-known result contained in []. �

Corollary . Let Vd
d ≤ Vc

c and k >  satisfy () and consider the functions α, αk and β

defined, respectively, by (), (), (). Define

α(x) = max
{
α(x),αk(x)

}
.

Then problem () has the extremal W ,-solutions in the interval

[α,β] =
{

V ∈ W ,([c, d]
)

: α(x) ≤ V (x) ≤ β(x) for all x ∈ [c, d]
}

.

Proof We observe that

α(x) = max
{
α(x),αk(x)

}

is a lower solution for problem () in the sense defined in the previous section (not nec-
essarily C) and, as before, β is a C-upper solution for problem (). Similarly to the proof
of Theorem ., the Nagumo condition holds in

E =
{

(x, y, z) ∈ [c, d] ×R
 : α(x) ≤ y ≤ β(x)

}
.

Then the result follows from an existence theorem contained in []. �

Proposition . The following assertions hold:
(a) Every solution V of problem () is convex.
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(b) Consider α defined by (). Then every solution V of problem () such that V ≥ α

satisfies, for all in x ∈ [c, d],

xV ′(x) – V (x) ≤ .

Proof (a) Clearly, the convexity of solutions of () derives from the fact that

V ′′(x) = –H
(
x, V (x), V ′(x)

) ≥  for all x ∈ ]c, d[

and from the continuity in c and d.
(b) Let V be a solution of problem () such that V ≥ α in [c, d]. We claim that Vd

d ≥
V ′(d). In fact, α = Vd

d x ≤ V (x) implies that Vd
d ≥ V (x)–Vd

x–d in [c, d], and then, letting x → d,
we obtain Vd

d ≥ V ′(d). This inequality together with the fact that the function x ∈ [c, d] 
−→
xV ′(x) – V (x) is nondecreasing implies that xV ′(x) – V (x) ≤  for all x ∈ [c, d]. �

Next theorem establishes the relations between the convex solutions of () and of ().

Theorem . Consider problems () and (). Then
(a) If Vd

d ≤ Vc
c , every solution V of () provided by Theorem . is a convex solution of

().
(b) Every convex solution V of problem () is a convex solution of problem ().

Proof As for (a), let Vd
d ≤ Vc

c . Then α is a lower solution of () and every solution V of
() provided by Theorem . satisfies V (x) ≥ α(x). Hence, by Proposition ., V is convex
and

∣∣xV ′(x) – V (x)
∣∣ = –

(
xV ′(x) – V (x)

)
.

So

V ′′(x) = –H
(
x, V (x), V ′(x)

)
=

–p(x)x +
√

p(x)x – q(x)x(xV ′(x) – V (x))
x ,

which shows clearly that V is a convex function that solves ().
As for (b), let V be a convex solution of (). Then

x(V ′′)(x) + p(x)xV ′′(x) + q(x)
(
xV ′(x) – V (x)

)
= ,

and as V ′′ ≥ , p(x) ≥  and  < c ≤ x ≤ d, then

q(x)
(
xV ′(x) – V (x)

) ≤ .

Then

x(V ′′)(x) + p(x)xV ′′(x) = xq(x)
∣∣xV ′(x) – V (x)

∣∣,
that is, by adding 

 p(x)x to both members,

(
xV ′′(x) +




p(x)x
)

=



p(x)x + xq(x)
∣∣xV ′(x) – V (x)

∣∣.
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Applying the square root, we obtain

xV ′′(x) +



p(x)x =
√




p(x)x + xq(x)
∣∣xV ′(x) – V (x)

∣∣,
and then

V ′′(x) =
–p(x)x +

√
p(x)x + xq(x)|xV ′(x) – V (x)|

x = –H
(
x, V (x), V ′(x)

)
.

So, V solves (). �

From Theorem ., Theorem . and Corollary ., it is clear that the following existence
and localization result holds.

Theorem . Consider problem () with standard Dirichlet conditions, that is,{
x(V ′′)(x) + p(x)xV ′′(x) + q(x)(xV ′(x) – V (x)) = ,
V (c) = Vc, V (d) = Vd.

() If Vd
d ≤ Vc

c , then this problem has the extremal convex W ,-solutions in the
functional interval [α,β], where α and β are provided, respectively, by () and ();

() If Vd
d ≤ Vc

c and k >  satisfies (), then this problem has the extremal convex
W ,-solutions in the functional interval [α,β], where

α(x) = max
{
α(x),αk(x)

}
and α, αk , β are provided, respectively, by (), (), ().

Remark . Under the hypotheses of the above theorem, observe that if Vd
d = Vc

c then α

is a solution of problem (). On the other hand, in the periodic case, Vc = Vd , the constant
function V ≡ Vc is a solution of ().

Example . Consider problem () in the interval [c, d] = [, ], with

p(x) =  + x, q(x) = [x],

where [·] denotes integer part, and boundary conditions V () = , V () = . Notice that in
this case it is Vc > Vd . From condition (), k >  must satisfy

k ≥
√




√
max

{| – k – |, |k – |},

so simple computations show that k =  satisfies (). Then the function

α(x) = x – x + 

is a lower solution for this problem. At the same time,

β(x) =  – x

is an upper solution.
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Then, by application of Theorem ., problem () with p(x) =  + x, q(x) = [x], and
boundary conditions V () = , V () = , has the extremal solutions in the functional in-
terval

[
max

{



x, x – x + 
}

,  – x
]

.

4 Problem with functional boundary conditions
In this section we deal with problem () on its full expression and, as said in the introduc-
tion, we will use a generalized monotone method. In the construction of this method we
will use two technical lemmas. First of them is the following generalization of Bolzano’s
theorem.

Lemma . ([], Lemma .) Let a, b ∈ R, a ≤ b, and h : R −→ R be a function satisfying
h(a) ≤  ≤ h(b) and

lim inf
z→x– h(z) ≥ h(x) ≥ lim sup

z→x+
h(z) for all x ∈ [a, b]. ()

Then there exist c, c ∈ [a, b] such that h(c) =  = h(c) and if h(c) =  for some c ∈ [a, b],
then c ≤ c ≤ c, that is, c and c are, respectively, the least zero and the greatest one of h
in [a, b].

The second auxiliary result we need deals with the existence of extremal fixed points for
nondecreasing operators defined in the space of absolutely continuous functions.

Lemma . ([], Proposition ..) Let I ⊂R be a nonempty closed interval and [α,β] be a
nonempty functional interval in AC(I). Assume that G : [α,β] −→ [α,β] is a nondecreasing
mapping and that there exists ψ ∈ L(I, [, +∞)) such that

∣∣(Gγ )′(x)
∣∣ ≤ ψ(x) for all γ ∈ [α,β] and almost all x ∈ I.

Then G has in [α,β] the greatest, V ∗, and the least, V∗, fixed points. Moreover, they satisfy

V∗ = min{V : GV ≤ V }, V ∗ = max{V : V ≤ GV }. ()

Now we establish a new result on the existence of extremal convex solutions for prob-
lem ().

Theorem . Assume that there exist α,β ∈ AC([c, d]) which are, respectively, a lower and
an upper solution for problem () satisfying α(x) ≤ β(x) for all x ∈ [c, d]. Put

[α,β] =
{
γ ∈ AC

(
[c, d]

)
: α(x) ≤ γ (x) ≤ β(x) for all x ∈ [c, d]

}
,

E =
{

y ∈R : min
x∈[c,d]

α(x) ≤ y ≤ max
x∈[c,d]

β(x)
}

,

and assume, moreover, that the following conditions hold:
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(H) For all γ ∈ [α,β] and all y ∈ E, we have

lim inf
z→y– Bi(z,γ ) ≥ Bi(y,γ ) ≥ lim sup

z→y+
Bi(z,γ ) (i = , );

(H) For all y ∈ E, the functions Bi(y, ·) are nonincreasing in [α,β] (i = , ), that is, if γ,γ ∈
[α,β] are such that γ(x) ≤ γ(x) for all x ∈ [c, d], then Bi(y,γ) ≥ Bi(y,γ).

In these conditions, problem () has the extremal convex solutions in [α,β].

Proof We define a mapping G : [α,β] −→ [α,β] as follows: for all γ ∈ [α,β], Gγ is the
greatest convex solution in [α,β] for the Dirichlet problem

{
V ′′(x) + H(x, V (x), V ′(x)) =  for all x ∈ [c, d],
V (c) = γc, V (d) = γd,

()

where γc, γd are the greatest solutions in, respectively, [α(c),β(c)] and [α(d),β(d)], for the
following respective algebraic equations:

B(y,γ ) = , ()

B(y,γ ) = . ()

Step : The mapping G is well defined. As α and β are lower and upper solutions of ()
and by condition (H), we have for all γ ∈ [α,β]:

B
(
α(c),γ

) ≤ B
(
α(c),α

) ≤  ≤ B
(
β(c),β

) ≤ B
(
β(c),γ

)
,

B
(
α(d),γ

) ≤ B
(
α(d),α

) ≤  ≤ B
(
β(d),β

) ≤ B
(
β(d),γ

)
,

and so condition (H) implies that the numbers γc and γd are well defined by application
of Lemma ..

On the other hand, as γc and γd are the greatest solutions of equations ()-() in,
respectively, [α(c),β(c)] and [α(d),β(d)], this implies that α(c) ≤ γc, α(d) ≤ γd , β(c) ≥ γc

and β(d) ≥ γd . So, α and β are, respectively, a lower and an upper solution for problem
(). This guarantees that () has the greatest convex solution in [α,β]. (Notice that ()-
() provides a Nagumo-type bound for H between our α and β .)

Step : G is a nondecreasing mapping. Let γ,γ ∈ [α,β] such that γ(x) ≤ γ(x) for all
x ∈ [c, d], and we will show that Gγ ≤ Gγ. First, notice that

B
(
Gγ(c),γ

) ≤ B
(
Gγ(c),γ

)
=  ()

and

B
(
β(c),γ

) ≥ B
(
β(c),β

) ≥ , ()

so reasoning as above we obtain that Gγ(c) ≤ Gγ(c). (Note that Gγ(c) > Gγ(c) coupled
with ()-() would contradict the fact that Gγ(c) is the greatest solution of B(·,γ) in
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[α(c),β(c)].) In a similar way we prove that Gγ(d) ≤ Gγ(d). Now, assume that Gγ � Gγ

and consider the function

α̂(x) = max
{

Gγ(x), Gγ(x)
}

.

Thus defined, α̂ is a lower solution for problem () with conditions V (c) = γc, V (d) = γd .
Indeed, if Gγ < Gγ in an interval (x̂, x̂), then

α̂′′(x) = Gγ ′′
 (x) = –H

(
x, Gγ(x), (Gγ)′(x)

)
= –H

(
x, α̂(x), α̂′(x)

)
for all x ∈ (x̂, x̂).

In the same way, if Gγ > Gγ in an interval (x̃, x̃), then

α̂′′(x) = –H
(
x, α̂(x), α̂′(x)

)
for all x ∈ (x̃, x̃).

On the other hand, if Gγ(x) = Gγ(x), then the convexity of Gγ and Gγ implies that
D–α̂(x) < D+α̂(x).

So, problem () with conditions V (c) = γc, V (d) = γd has a solution in [α̂,β], but this
contradicts the fact that Gγ is the greatest solution for this problem in [α,β]. Then we
conclude that Gγ ≤ Gγ, and so G is a nondecreasing mapping.

Step : G has the extremal fixed points. Let γ ∈ [α,β]. For all x ∈ [c, d], we have that

(Gγ )′(x) = (Gγ )′(c) –
∫ x

c
H

(
s, Gγ (s), Gγ ′(s)

)
ds,

and so

∣∣Gγ ′(x)
∣∣ ≤ max

{ |β(d) – α(c)|
d – c

,
|β(c) – α(d)|

d – c

}
+

∫ x

c
|Â + B̂

√
s|ds,

where Â, B̂ are as in (). Then, by application of Lemma ., we obtain that G has the
extremal fixed points in [α,β], say V ∗, V∗, which moreover satisfy ().

Step : V ∗ is the greatest convex solution of problem () in [α,β]. First, it is clear, as
GV ∗ = V ∗, that V ∗ is a solution of problem (). Now, if V is another solution of (), then we
have that V ≤ GV and so () implies that V ≤ V ∗. So, V ∗ is the greatest convex solution
of problem () in [α,β].

To obtain the least convex solution of () in [α,β], we only have to redefine the mapping
G in the obvious way. �

Remark . Notice that condition (H) is satisfied, for example, if B(·,γ ) is continuous
or if it has only downwards discontinuities.

Remark . The same argument used in the proof of Theorem . provides that extremal
convex solutions of problem () are also extremal convex solutions of problem () provided
that V (d)

d ≤ V (c)
c .

Example . Consider problem () in an interval [c, d], c > , with the following boundary
conditions:
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(B) ‘The initial value of the solution is one half of its mean value on the whole interval
[c, d]’;

(B) ‘The final value of the solution has integer part ’.

Previous conditions can be written in the following form:

(B) B(V (c), V ) = V (c) – 



d–c

∫ d
c V (s) ds = ;

(B) B(V (d), V ) = –[V (d)] +  = .

We will show that for V (d) ∈ [, ) and d ≥ c, α(x) = V (d)
d x and β ≡ V (d) are, respec-

tively, a lower and an upper solution for this problem. Indeed, we have –[α(d)] = – and

α(c) –




d – c

∫ d

c
α(s) ds =

V (d)
d

(
c –

d + c


)
≤ 

if d ≥ c. On the other hand, the constant function β ≡ V (d) is such that

B
(
β(c),β

)
=




V (d) ≥ 

and

B
(
β(d),β

)
= –

[
V (d)

]
+  = .

Finally, notice that for each V (d) ∈ [, ), functions B and B satisfy conditions (H)-(H)
between α and β . We can conclude, by application of Theorem ., that if d ≥ c then
problem () with boundary conditions (B)-(B) has the extremal solutions between α and
β for each V (d) ∈ [, ).

Remark . In papers [] and [] the authors obtained uniqueness of solutions for prob-
lem (). Notice that uniqueness of solutions cannot be guaranteed when we include vari-
able coefficients p and q and functional boundary conditions. For example, consider prob-
lem () with boundary conditions

[
V ()

]
= ,

[
V ()

]
= .

In this case, each function V (x) = ax with a ∈ [, .) is a solution of the problem.
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