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Abstract
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1 Introduction
In this paper, we study the existence of universal attractors to the one-dimensional com-
pressible thermally radiative magnetohydrodynamic equations.

Magnetohydrodynamics (MHD) is concerned with the study of the interaction between
magnetic fields and fluid conductors of electricity. The applications of magnetohydrody-
namics cover a very wide range of physical areas from liquid metals to cosmic plasmas,
for example, the intensely heated and ionized fluids in an electromagnetic field in astro-
physics, geophysics, high-speed aerodynamics, and plasma physics. In addition to these
situations, we also take into account the effect of the radiation field. The motion mentioned
above is described by the following equations in the Lagrangian coordinate system:
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here τ = 
ρ

denotes the specific volume, u ∈ R the longitudinal velocity, w ∈ R the trans-
verse velocity, b ∈ R the transverse magnetic field, and θ the temperature, p = p(τ , θ ) the
pressure, and e = e(τ , θ ) the internal energy; λ and μ are the bulk and the shear viscos-
ity coefficients, respectively, ν is the magnetic diffusivity acting as a magnetic diffusion
coefficient of the magnetic field, k = k(τ , θ ) is the heat conductivity, E is given by

E = e +


(
u + |w|) +



τ |b|.

For the constitutive relations, we consider (see, e.g., []) the Stefan-Boltzmann model,
i.e., the pressure p(τ , θ ), internal energy e(τ , θ ), and the thermo-radiative flux Q(τ , θ ) take
the following forms, respectively:

p(τ , θ ) =
Rθ

τ
+

a

θ, e(τ , θ ) = Cvθ + aτθ, Q(τ , θ ) = QF + QR = –κθx, (.)

where R >  is the perfect gas constant, Cv >  is the specific heat at constant volume, a > 
is a constant and the heat conductivity κ(τ , θ ) >  is a function of τ and θ . As initial and
boundary conditions, we consider

(τ , u, w, b, θ )|t= = (τ, u, w, b, θ)(x), x ∈ � = [, ], (.)

(u, w, b, θx)|∂� = . (.)

Before starting and proving our results, let us first recall the related results in the liter-
ature. For the one-dimensional ideal gas, i.e.,

e = Cvθ , σ = –
Rθ

τ
+

μ

τ
ux, Q = –κ

θx

τ
, w = b ≡ , (.)

with suitable positive constants Cv, R, Kazhikhov [, ], Kazhikhov and Shelukhin [],
Kawashima and Nishida [] established the existence of global smooth solutions. Zheng
and Qin [] proved the existence of maximal attractors in Hi (i = , ). However, under
very high temperatures and densities, the constitutive relations (.) become inadequate.
Thus a more realistic model would be a linearly viscous gas (or Newtonian fluid),

σ (τ , θ , ux) = –p(τ , θ ) +
μ(τ , θ )

τ
ux, (.)

satisfying Fourier’s law of heat flux,

Q(τ , θ , θx) = –
κ(τ , θ )

τ
θx, (.)

whose internal energy e and pressure p are coupled by the standard thermodynamical
relation

eτ (τ , θ ) = –p(τ , θ ) + θpθ (τ , θ ). (.)

In this case, Kawohl [] and Jiang [] obtained the existence of global solutions to D vis-
cous heat-conductive real gas with different growth assumptions on the pressure p, in-
ternal energy e, and heat conductivity κ in terms of temperature. Qin [] established the
regularity and asymptotic behavior of global solutions with more general growth assump-
tions on p, e, κ than those in [, ].
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For the radiative and reactive gas, Ducomet [] established the global existence and expo-
nential decay in H of smooth solutions. Umehara and Tani [] and Qin et al. [] proved
the global existence of smooth solutions for a self-gravitating radiative and reactive gas.

For the non-radiative MHD flows (i.e., a ≡ ), there have been a number of studies under
various conditions by several authors (see, e.g., [–]). The existence and uniqueness of
local smooth solutions was first obtained in [], moreover, the existence of global smooth
solutions with small smooth initial data was shown in []. Under the technical condition
that κ(ρ, θ ) satisfies

 < C–( + θq) ≤ κ(ρ, θ ) ≤ C
(
 + θq)

for q ≥ , Chen and Wang [] proved the existence and continuous dependence of global
strong solutions with large initial data satisfying

 < infρ ≤ ρ(x) ≤ supρ < ∞, ρ, u, w, b, θ ∈ H(�), θ(x) > .

Chen and Wang [] also investigated a free boundary problem with general large initial
data. Wang [] established the existence of large solutions to the initial-boundary value
problem for planar magnetohydrodynamics. Under the technical condition upon κ(ρ)

κ(ρ, θ ) ≡ κ(ρ) >
C
ρ

,

Fan, Jiang and Nakamura [] investigated the uniqueness of the weak solutions of
MHD with Lebesgue initial data. Fan, Jiang and Nakamura [] also considered a one-
dimensional plane MHD compressible flow, and proved that as the shear viscosity goes to
zero, global weak solutions converge to a solution of the original equations with zero shear
viscosity. The uniqueness and continuous dependence of weak solutions for the Cauchy
problem have been proved by Hoff and Tsyganov [].

For compressible and radiative MHD flow (i.e., a > ), the author and his colleagues [,
] established the global existence and exponential stability of solutions. For compress-
ible and radiative MHD flow (i.e., a > ) with self-gravitation, Ducomet and Feireisl []
proved the existence of global-in-time solutions of this problem with arbitrarily large ini-
tial data and conservative boundary conditions on a bounded spatial domain in R. Under
the technical condition that κ(ρ, θ ) satisfies

k
(
 + θq) ≤ κ(ρ, θ ),

∣∣κρ(ρ, θ )
∣∣ ≤ k

(
 + θq),

for some q > 
 , Zhang and Xie [] investigated the existence of global smooth solu-

tions to this problem. However, the large-time behavior is still open even for the non-
self-gravitative case, i.e., (.)-(.). In this paper, we obtained the existence of universal
attractors in Hi

+ (i = , ) (see below for their definitions) for one-dimensional compress-
ible and radiative magnetohydrodynamics equations. Before starting the research, let us
first explain some mathematical difficulties in studying this problem.

Firstly, for physical reasons, the special volume τ and the absolute temperature θ should
be positive for all time. These constraints give rise to some severe mathematical difficul-
ties. For instance, we must work on incomplete metric spaces H

+ and H
+, H

+ ⊂ H
+, which

are the usual Sobolev spaces with these constrains.
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Secondly, since the universal attractor is just the ω-limit set of an absorbing set in weak
topology, the requirement of completeness of the spaces is needed. To overcome this se-
vere mathematical difficulty, we restrict ourselves to a sequence of closed subspaces H

+

and H
+. It turns out that it is very crucial to prove that the orbit starting from any bounded

set of this closed subspace will re-enter this subspace and stay there after a finite time,
which should be uniform with respect to all orbits starting from a bounded set, other-
wise, there is no ground to talk about the existence of an absorbing set and a (maximal)
universal attractor in this subspace. The proof of the above fact becomes an essential part
of this paper and it will be done by use of delicate a priori estimates.

Thirdly, the total mass and the total energy are conserved. These conservations indicate
that there can be no absorbing set for initial data varying in the whole space. Instead, we
should rather consider the dynamics in a sequence of closed subspaces defined by some
parameters. In this regard, the situation is quite similar to those encountered for the single
Cahn-Hilliard equation in the isothermal case (see Temam [], Zheng and Qin [] and
Qin []). Therefore, one of the key issues is how to choose these closed subspaces.

Fourthly, (.)-(.) is a hyperbolic-parabolic coupled system. It turns out that in general
the orbit is not compact. In order to prove the existence of a maximal attractor by the
theory presented by Temam in [], we have either to show the uniform compactness of
the orbit of semigroup S(t) for large time or to show that one can decompose S(t) into two
parts, S(t) and S(t), with S(t) being uniformly compact for large time and S(t) going to
zero uniformly. Moreover, since our system is quasilinear, the usual way of decomposition
of S(t) into two parts for a semilinear system does not seem feasible. To overcome this
difficulty, we will adopt an approach motivated by the ideas in Ghidaglia [] (see also,
Lemma .).

Finally, (.)-(.) are complicated, it turns out that very delicate estimates are needed.
We define two spaces as follows:

H
+ =

{
(τ , u, w, b, θ ) ∈ (

H[, ]
) : τ (x) > , θ (x) > , x ∈ [, ],

u() = u() = , w() = w() = b() = b() = 
}

,

H
+ =

{
(τ , u, w, b, θ ) ∈ (

H[, ]
) : τ (x) > , θ (x) > , x ∈ [, ],

u() = u() = , w() = w() = b() = b() = ,

θ ′() = θ ′() = 
}

,

which become two metric spaces when equipped with the metrics induced from the usual
normal. In the above, H, H are the usual Sobolev spaces.

Let

Hi
δ =

{
(τ , u, w, b, θ ) ∈ Hi

+ : δ ≤
∫ 


τ (x, t) dx =

∫ 


τ(x) dx ≤ δ,

δ ≤
∫ 


E(x, t) dx ≤ δ, δ ≤ θ (x, t) ≤ δ, δ/ ≤ τ (x, t) ≤ δ,

(t) +
∫ t


V (s) ds ≤ δ

}
, i = , ,
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where

(t) =
∫ 



[
Cv(θ – log θ – ) + R(τ – log τ – )

]
(x, t) dx,

V (t) =
∫ 



(
κθ

x
τθ +

λu
x + μ|wx| + ν|bx|

τθ

)
(x, t) dx,

E(x, t) = e(τ , θ ) +


(
u + |w|) +



τ |b| = Cvθ + aτθ +



(
u + |w|) +



τ |b|,

δ ∈ R,  < δ < δ,  < δ < δ,  < δ < δ.

The notation in this paper will be chosen as follows:
Lp,  ≤ p ≤ +∞, W m,p, m ∈ N , H = W ,, H

 = W ,
 denote the usual (Sobolev) spaces

on [, ]. In addition, ‖ · ‖B denotes the norm in the space B, we also put ‖ · ‖ = ‖ · ‖L[,].
The constants Ci (i = , ) stand for universal positive constants depending only on the Hi

norm of the initial data, minx∈[,] θ and minx∈[,] τ. Cδ stands for the universal positive
constant, but independent of any length of time. CBi ,δ denotes the universal positive con-
stant depending only on δi (i = , . . . , ), the Hi

+ norm of the initial data (τ, u, w, b, θ),
minx∈[,] θ, and minx∈[,] τ.

Now we are in a position to state our main results.

Theorem . Assume that e, p, and Q are C functions satisfying (.) on  < τ < ∞ and
 ≤ θ < ∞. Then the unique generalized global solution (τ , u, w, b, θ ) to problem (.)-(.)
defines a nonlinear C-semigroup S(t) on H

+. Moreover, for any δi (i = , . . . , ), it possesses
in H

δ a universal (maximal) attractor A,δ .

Theorem . Assume that e, p, and Q are C functions satisfying (.) on  < τ < ∞ and
 ≤ θ < ∞. Then the unique generalized global solution (τ , u, w, b, θ ) to problem (.)-(.)
defines a nonlinear C-semigroup S(t) on H

+. Moreover, for any δi (i = , . . . , ), it possesses
in H

δ a universal (maximal) attractor A,δ .

Remark . See Ghidaglia [] and Qin [] for the definition of universal (maximal) at-
tractor.

2 An absorbing set in H1

In this section we will prove the existence of an absorbing ball in H
δ . Throughout this

section we assume that the initial data belong to a bounded set of H
δ . First, we have to

prove that the orbit starting from any bounded set of H
δ will re-enter H

δ and stay there
after a finite time, which should be a uniform with respect to all orbits starting from that
bounded set.

Lemma . Let H, H, H be three Banach spaces verifying the following conditions:
() the embeddings H → H and H → H are compact;
() there are C-semigroup S(t) on H and H which map H, H into H, H,

respectively, and for any t > , S(t) are continuous (nonlinear) operators on H, H

respectively;
() the semigroup S(t) on H possesses a bounded absorbing set in H; then there is a

weak universal attractor A in H.
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If, further, the following conditions are valid:
() the semigroup S(t) on H possesses a bounded absorbing set in H;
() for any t > , S(t) is continuous on bounded sets of H for the topology of the norm of

H, then there is a weak universal attractor A in H.

Proof See, e.g., Ghidaglia []. �

Lemma . Assume that the initial data (τ, u, w, b, θ) ∈ H
+, and compatibility condi-

tions are satisfied, and the heat conductivity κ is a C function on  < τ < ∞ and  ≤ θ < ∞
and satisfies the growth condition

k
(
 + θq) ≤ κ(τ , θ ) ≤ k

(
 + θq), |κτ | + |κττ | ≤ k

(
 + θq), q > , (.)

with positive constants k ≤ k, and there exists a constant ε >  such that τ =
∫ 

 τ dx ≤
ε. Then problem (.)-(.) admits a unique global solution (τ , u, w, b, θ ) ∈ H

+ verifying

 < C–
 ≤ τ (x, t) ≤ C,  < C–

 ≤ θ (x, t) ≤ C, ∀(x, t) ∈ [, ] × [,∞) (.)

and for any t > 

∥∥τ (t) – τ
∥∥

H +
∥∥u(t)

∥∥
H +

∥∥w(t)
∥∥

H +
∥∥b(t)

∥∥
H +

∥∥θ (t) – θ
∥∥

H

+
∫ t



(‖τ – τ‖
H + ‖u‖

H + ‖w‖
H + ‖b‖

H + ‖θ – θ‖
H + ‖ut‖

+ ‖wt‖ + ‖bt‖ + ‖θt‖)(s) ds ≤ C, (.)

where τ =
∫ 

 τ dx =
∫ 

 τ dx, constant θ >  is determined by

e(τ , θ ) = E ≡
∫ 



(


(
u

 + |w| + τ|b|
)

+ e(τ, θ)
)

dx.

Proof See, e.g., Qin et al. [, ]. �

Lemma . Assume that the initial data (τ, u, w, b, θ) ∈ H
+ and compatibility con-

ditions are satisfied, the heat conductivity κ is a C function satisfying (.) on  < τ < ∞
and  ≤ θ < ∞, and there exists a constant ε >  such that τ =

∫ 
 τ dx ≤ ε. Then problem

(.)-(.) admits a unique global solution (τ , u, w, b, θ ) ∈ H
+ verifying that, for any t > ,

∥∥τ (t) – τ
∥∥

H +
∥∥u(t)

∥∥
H +

∥∥w(t)
∥∥

H +
∥∥b(t)

∥∥
H +

∥∥θ (t) – θ
∥∥

H +
∥∥ut(t)

∥∥ +
∥∥wt(t)

∥∥

+
∥∥bt(t)

∥∥ +
∥∥θt(t)

∥∥ +
∫ t



(‖τ – τ‖
H + ‖u‖

H + ‖w‖
H + ‖b‖

H + ‖θ – θ‖
H

+ ‖utx‖ + ‖wtx‖ + ‖btx‖ + ‖θtx‖)(s) ds ≤ C. (.)

Proof See, e.g., Qin et al. [, ]. �

Lemma . The unique generalized global solution (τ , u, w, b, θ ) in Hi
+ (i = , ) to problem

(.)-(.) defines a nonlinear C-semigroup S(t) on Hi
+.
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Proof By Lemmas .-., we know that, for any t > , the operator S(t) : (τ, u, w,
b, θ) ∈ Hi

+ → (τ , u, w, b, θ ) ∈ Hi
+ (i = , ) exists and, by the uniqueness of generalized

global solutions, satisfies on H
+, for any t, t ∈ [,∞),

S(t + t) = S(t)S(t) = S(t)S(t). �

Lemma . If (τ, u, w, b, θ) ∈ H
δ , then the following estimates hold for any t > :

δ ≤
∫ 


τ (x, t) dx =

∫ 


τ(x) dx ≤ δ, (.)

δ ≤
∫ 


E(x, t) dx =

∫ 


E(x, ) dx ≡ E ≤ δ, (.)

(t) +
∫ t


V (s) ds ≤ δ. (.)

Proof We integrate (.) with respect to x and t and exploit the boundary conditions (.),
we will end up with (.). Integrating (.) over Qt := (, ) × (, t) and noting (.), we get
(.). The conservation law of total energy, (.), can be rewritten as

et + pux =
(

κθx

τ

)
x

+
λu

x + μ|wx| + ν|bx|
τ

, (.)

i.e.,

Cvθt + aτθθt +
Rθτt

τ
+

a


τtθ
 =

(
κθx

τ

)
x

+
λu

x + μ|wx| + ν|bx|
τ

. (.)

Multiplying (.) by θ–, and integrating the resulting equation over Qt , we get (.). �

Lemma . If (τ, u, w, b, θ) ∈ H
δ , then the following estimates hold for any t > :

 < C–
δ ≤

∫ 


θ dx ≤ Cδ . (.)

Proof It follows from (.) and the convexity of the function – log y that

∫ 


θ dx – log

∫ 


θ dx –  ≤

∫ 


(θ – log θ – ) dx ≤ Cδ , ∀t > ,

which implies that there exist b(t) ∈ [, ] and two positive constants r, r such that

 < r ≤
∫ 


θ dx = θ

(
b(t), t

) ≤ r, (.)

where ri = ri(δ) (i = , ) are two positive roots of the equation y – log y –  = Cδ . Thus (.)
follows from (.). The proof is complete. �

Lemma . If (τ, u, w, b, θ) ∈ H
δ , then the following estimates hold for any t > :

 ≤ C–
δ ≤ τ (x, t) ≤ Cδ , ∀(x, t) ∈ [, ] × [, +∞). (.)
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Proof See, e.g., Qin et al. [, ]. �

Lemma . If (τ, u, w, b, θ) ∈ H
δ , then the following estimates hold for any t > :

θ∗ ≤ θ̄ ≤ θ∗, (.)

 ≤ C–
δ ≤ θ (x, t), ∀(x, t) ∈ [, ] × [, +∞), (.)

where θ∗ = minτ∈[δ,δ],e∈[δ,δ] θ̂ (τ , e), θ∗ = maxτ∈[δ,δ],e∈[δ,δ] θ̂ (τ , e).

Proof We first show that, for boundary conditions (.),

min
τ∈[δ,δ],e∈[δ,δ]

≤ θ̄ ≤ max
τ∈[δ,δ],e∈[δ,δ]

θ̂ (τ , e). (.)

In fact, it follows from (.)-(.) that

δ ≤ ē := e(τ̄ , θ̄ ) ≤ δ, δ ≤ τ̄ ≤ δ,

which implies that θ̄ = θ̂ (τ̄ , θ̄ ) and (.) holds.
We derive from Lemma . that there exists a large time t >  such that

θ (x, t) ≥ 

θ > , ∀t ≥ t. (.)

On the other hand, we put ω := 
θ

, (.) becomes

eθωt =
(

κωx

τ

)
x

+
τp

θ

λ
–

[
κω

x
τω

+
ω

τ

(
μ|wx| + ν|bx|

)
+

λω

τ

(
ux –

τpθ

λω

)]
,

which with (.) and (.) implies that there exists a positive constant C such that

ωt ≤ 
eθ

(
κωx

τ

)
x

+ C.

Defining ω̃(x, t) := Ct + max[,]


θ(x) – ω(x, t) and a parabolic operator L := – ∂
∂t +


eθ

∂
∂x ( κ

τ
∂
∂x ), we have a system

Lω̃ ≤ , on QT = [, ] × [, t + ],

ω̃|t= ≥ , on [, ],

ω̃x|x=, = , on [, t + ].

The standard comparison argument implies

min
(x,t)∈QT

ω̃(x, t) ≥ ,

which gives, for any (x, t) ∈ QT ,

θ (x, t) ≥
(

Ct + max
x∈[,]


θ(x)

)–

.
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Thus,

θ (x, t) ≥
(

Ct + max
x∈[,]


θ(x)

)–

≥ C–
θ ,  ≤ t ≤ t

which, together with (.) and (.), gives (.). �

Lemma . For initial data belonging to an arbitrary fixed bounded set B of H
δ , there is

t >  depending only on the boundedness of this bounded set B such that, for all t ≥ t,
x ∈ [, ],

δ ≤ θ (x, t) ≤ δ, δ/ ≤ τ (x, t) ≤ δ. (.)

Proof Suppose that the assertion in Lemma . is not true. Then there is a sequence tn →
+∞, such that, for all x ∈ [, ],

sup θ (x, tn) > δ, (.)

where sup is taken for all initial data in a given bounded set B of H
δ . Then there exists

(τ, u, w, b, θ) ∈ B such that, for the corresponding solution (τ , u, w, b, θ ), we have

θ (x, tn) > δ, x ∈ [, ],

which yields

θ̄ ≥ δ. (.)

This contradicts (.). Similarly, we can prove other parts of (.). The proof is com-
plete. �

Remark . It follows from Lemma . and Lemma . that, for initial data belonging
to a given bounded set B of H

δ , the orbit will re-enter H
δ and stay there after a finite time.

In the sequel, we shall prove the existence of an absorbing ball in H
δ . Since we assume

that the initial data (τ, u, w, b, θ) belong to an arbitrary bounded set B of H
δ , there is

a positive constant B such that ‖(τ, u, w, b, θ)‖H ≤ B. We use CB,δ to denote generic
positive constants depending on B and δi (i = , . . . , ).

Lemma . For any initial data (τ, u, w, b, θ) ∈ H
δ , the unique generalized global

solution (τ , u, w, b, θ ) to problem (.)-(.) satisfies the estimate:



(
u + |w| + τ |b|) + C–

B,δ
(|τ – τ | + |η – η|)

≤ E(τ , u, w, b, θ )

≤ 

(
u + |w| + τ |b|) + CB,δ

(|τ – τ | + |η – η|). (.)

Proof See, e.g., Qin et al. [, ]. �
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Lemma . There are positive constants γ ′
 = γ ′

 (CB,δ) >  such that, for any fixed γ ∈
(,γ ′

 ] and for any t > , we have

eγ t(∥∥τ (t) – τ
∥∥ +

∥∥u(t)
∥∥ +

∥∥w(t)
∥∥ +

∥∥b(t)
∥∥ +

∥∥θ (t) – θ
∥∥ +

∥∥τx(t)
∥∥ +

∥∥ρx(t)
∥∥)

+
∫ t


eγ s(‖ρx‖ + ‖ux‖ + ‖wx‖ + ‖bx‖ + ‖θx‖ + ‖τx‖)(s) ds ≤ CB,δ . (.)

Proof See, e.g., Qin et al. [, ]. �

Lemma . There exists a positive constant γ = γ(CB,δ) ≤ γ ′
 such that, for any t >  and

any fixed γ ∈ (,γ ′
 ], the following estimate holds:

eγ t(∥∥ux(t)
∥∥ +

∥∥wx(t)
∥∥ +

∥∥bx(t)
∥∥ +

∥∥θx(t)
∥∥) +

∫ t


eγ s(‖uxx‖ + ‖wxx‖

+ ‖bxx‖ + ‖θxx‖ + ‖ut‖ + ‖wt‖ + ‖bt‖ + ‖θt‖)(s) ds ≤ CB,δ , (.)

which with Lemma . implies that, for any fixed γ ∈ (,γ ′
 ],

∥∥(
τ (t) – τ̄ , u(t), w(t), b(t), θ (t) – θ̄

)∥∥ ≤ CB,δe–γ t . (.)

Proof See, e.g., Qin et al. [, ]. �

Thus the following results on the existence of an absorbing set in H
δ follow from

Lemma ..

Lemma . Let R = R(δ) = 
√

δ
 + (θ∗) and

B =
{(

τ (t), u(t), w(t), b(t), θ (t)
) ∈ H

δ ,
∥∥(

τ (t), u(t), w(t), b(t), θ (t)
)∥∥

H
+
≤ R

}
.

Then B is an absorbing ball in H
δ , i.e., there exists some

t = t(CB,δ) = max
{

–γ –
 log

[

(
δ

 +
(
θ∗))/CB,δ

]
, t

} ≥ t

such that when t ≥ t, ‖(τ (t), u(t), w(t), b(t), θ (t))‖
H

+
≤ R

 .

3 An absorbing set in H2

In this section we are going to prove the existence of an absorbing set in H
δ . Throughout

this section we always assume that the initial data belonging to an arbitrary fixed bounded
set B of H

δ .
The next two lemmas concern the existence of an absorbing set in H

δ .

Lemma . There exists a positive constant γ ′
 = γ ′

(CB,δ) ≤ γ such that, for any fixed γ ∈
(,γ ′

], the following estimate holds:

eγ t(∥∥ut(t)
∥∥ +

∥∥wt(t)
∥∥ +

∥∥bt(t)
∥∥ +

∥∥θt(t)
∥∥ +

∥∥u(t)
∥∥

H +
∥∥w(t)

∥∥
H

+
∥∥b(t)

∥∥
H +

∥∥θ (t)
∥∥

H
)

+
∫ t


eγ s(‖utx‖ + ‖wtx‖ + ‖btx‖ + ‖θtx‖)(s) ds

≤ CB,δ , ∀t > . (.)
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Proof See, e.g., Qin et al. [, ]. �

Lemma . There exists a positive constant γ = γ(CB,δ) ≤ γ ′
 such that, for any fixed

γ ∈ (,γ], the following estimate holds:

∥∥τ (t) – τ
∥∥

H ≤ CB,δe–γ t , (.)

which together with Lemma . implies that, for any γ ∈ (,γ] and ∀t > ,

∥∥τ (t)
∥∥

H +
∥∥u(t)

∥∥
H +

∥∥w(t)
∥∥

H +
∥∥b(t)

∥∥
H +

∥∥θ (t)
∥∥

H

≤ 
(
δ

 +
(
θ∗)) + CB,δe–γ t . (.)

Proof See, e.g., Qin et al. [, ]. �

Now if we define t = t(CB,δ) ≥ max(t(CB,δ , –γ –
 ) log((δ

 + (θ∗))/CB,δ)), then estimate
(.) implies that, for any t ≥ t(CB,δ),

∥∥τ (t)
∥∥

H +
∥∥u(t)

∥∥
H +

∥∥w(t)
∥∥

H +
∥∥b(t)

∥∥
H +

∥∥θ (t)
∥∥

H ≤ 
(
δ

 +
(
θ∗))).

Taking R = 
√

δ
 + (θ∗), we immediately infer the following theorem.

Theorem . The ball B = {(τ (t), u(t), w(t), b(t), θ (t)) ∈ H
δ ,‖(τ (t), u(t), w(t), b(t),

θ (t))‖
H

+
≤ R

} is an absorbing ball in H
δ , i.e., when t ≥ t, we have

∥∥(
τ (t), u(t), w(t), b(t), θ (t)

)∥∥
H

+
≤ R

.

4 Universal attractor in H1 and H2

In this section we finish the proof of Theorems . and .. Having proved the existence
of absorbing balls in H

δ and H
δ , we can use the abstract framework established in [] by

Ghidaglia (see also Lemma .) to conclude that

Lemma . The set

ω(B) =
⋂
s≥

⋃
t≥s

S(t)B, (.)

where the closures are taken with respect to the weak topology of H
+, is included in B and

is nonempty. It is invariant by S(t), i.e.,

S(t)ω(B) = ω(B), ∀t > . (.)

Lemma . The set

A,δ = ω(B) (.)

satisfies

A,δ is bounded and weakly closed in H
δ , (.)
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S(t)A,δ = A,δ , ∀t ≥ , (.)

for every bounded set B in H
δ ,

lim
t→+∞ dω

(
S(t)B,A,δ

)
= . (.)

Moreover, it is the maximal set in the sense of an inclusion that satisfies (.), (.) and
(.).

Proof The proofs of Lemmas . and . follow from Lemma ., using the facts that S(t)
is continuous on H

δ and H
δ , respectively, H

δ is compactly embedded in H
δ , B, and B are

absorbing balls in H
δ and H

δ , respectively.
Following [], we also call A,δ the universal attractor of S(t) in H

δ . In order to discuss
the existence of a universal attractor in H

δ , we need to prove the following lemma.

Lemma . For every t ≥ , the mapping S(t) is continuous on bounded sets of H
δ for the

topology induced by the norm (L).

Proof We suppose that (τj, uj, wj, bj, θj) ∈ H
δ , ‖(τj, uj, wj, bj, θj)‖H ≤ R, (τj, uj, wj,

bj, θj) = S(t)(τj, uj, wj, bj, θj), and (τ , u, w, b, θ ) = (τ, u, w, b, θ) – (τ, u, w, b, θ).
Subtracting the corresponding equations (.)-(.) satisfied by (τ, u, w, b, θ) and

(τ, u, w, b, θ), we obtain

τt = ux, (.)

ut = –


|b|x – (bbx + bbx) + R

[
θτx

τ 


+
(

θτ

ττ

)
x

–
θx

τ

]

– λ

[
uxτx

τ 


+
(

uxτ

ττ

)
x

–
uxx

τ

]
–

a


(
θ

 θx – θ
 θx

)
θ

x , (.)

wt = –bx – μ

[
wxτx

τ 


+
(

wxτ

ττ

)
x

–
wxx

τ

]
, (.)

τbt = –uxb – wx – ν

[
bxτx

τ 


+
(

bxτ

ττ

)
x

–
bxx

τ

]
, (.)

Cvθt = –κ

[
θxτx

τ 


+
(

θxτ

ττ

)
x

–
θxx

τ

]
+

λu
x + μ|wx| + ν|bx|

τ

–
λu

x + μ|wx| + ν|bx|
τ

– aτθ

 θt +

Rθτt

τ
+

a


τtθ



+ aτθ

 θt +

Rθτt

τ
+

a


τtθ

 . (.)

By Lemma ., we know that, for any t >  and j = , ,

∥∥τj(t), uj(t), wj(t), bj(t), θj(t)
∥∥

H +
∫ t



(‖τjx‖ + ‖ujx‖
H + ‖wjx‖

H + ‖bjx‖
H

+ ‖θjx‖
H + ‖ujt‖ + ‖wjt‖ + ‖bjt‖ + ‖θjt‖)(s) ds ≤ CR,δ , (.)

where CR,δ >  is a constant depending only on R and δ.
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Multiplying (.)-(.) by τ , u, w, b, and θ , respectively, adding them up and integrating
the result over [, ], and using Lemmas .-., the Cauchy inequality, the embedding
theorem, the mean value theorem, and the inequalities

‖θ‖
L∞ ≤ C

(‖θ‖‖θx‖ + ‖θ‖), ‖τ‖
L∞ ≤ C‖τx‖,

we deduce that, for any small ε > ,

d
dt

(‖τ‖ + ‖u‖ + ‖w‖ + ‖b‖ + ‖θ‖) +
∫ 



(
κθ

x
τθ +

λu
x + μ|wx| + ν|bx|

τθ

)
(x, t) dx

≤ ε
(‖ux‖ + ‖wx‖ + ‖bx‖ + ‖θx‖)

+ CR,δ(ε)H(t)
(‖τ‖ + ‖u‖ + ‖w‖ + ‖b‖ + ‖θ‖)

which, together with Lemmas .-., yields

d
dt

(‖τ‖ + ‖u‖ + ‖w‖ + ‖b‖ + ‖θ‖) + C–
δ

(‖ux‖ + ‖wx‖ + ‖bx‖ + ‖θx‖) (.)

≤ CR,δH(t)
(‖τ‖ + ‖u‖ + ‖w‖ + ‖b‖ + ‖θ‖), (.)

where by (.), H(t) = ‖θt‖ +‖θt‖ +‖uxx‖ +‖uxx‖‖+‖wxx‖ +‖wxx‖‖+‖bxx‖ +
‖bxx‖‖ + ‖θxx‖ + ‖θxx‖ +  satisfies, for any t > ,

∫ t


H(s) ds ≤ CR,δ( + t). (.)

Therefore the assertion of this lemma follows from Gronwall’s inequality, (.), and (.).
The proof is complete. �

Now we can again use Lemma . to obtain the following result on existence of a uni-
versal attractor in H

δ .

Lemma . The set

A,δ =
⋂
s≥

⋃
t≥s

S(t)B, (.)

where the closures are taken with respect to the weak topology of H
+ is the (maximal) uni-

versal attractor in H
δ .

Remark . Since A,δ is bounded in H
+ and is bounded in H

+ and by the invariance
property (.), we have

A,δ ⊂A,δ . (.)

On the contrary if we knew that A,δ is bounded in H
+, then the opposite inclusion would

hold.

Proof of Theorems . and . Combing Lemmas .-. and Lemmas .-., we easily
complete the proofs of Theorems . and .. �
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