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Abstract
In this paper, we study the existence and uniqueness of solutions for impulsive
multi-orders Caputo-Hadamard fractional differential equations equipped with
boundary and integral conditions. The Banach, Schaefer, and Rothe fixed point
theorems and degree theory are used to establish our main results. Examples
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1 Introduction
During the last years, fractional calculus has gained considerable importance due to the
applications in almost all applied sciences. It was pointed out that fractional derivatives
and integrals are more convenient for describing real materials, and some physical prob-
lems were treated by using derivatives of non-integer orders. For details, and some recent
results on the subject we refer to [–] and the references cited therein.

It has been noticed that most of the work on the topic is based on Riemann-Liouville
and Caputo type fractional differential equations. Another kind of fractional derivatives
that appears side by side to Riemann-Liouville and Caputo derivatives in the literature is
the fractional derivative due to Hadamard introduced in  [], which differs from the
preceding ones in the sense that the kernel of the integral (in the definition of Hadamard
derivative) contains a logarithmic function of arbitrary exponent. Details and properties of
the Hadamard fractional derivative and integral can be found in [, –]. However, this
calculus with Hadamard derivatives is still studied less than that of Riemann-Liouville.

On the other hand, integer order impulsive differential equations have become impor-
tant in recent years as mathematical models of phenomena in both the physical and the
social sciences. There has a significant development in impulsive theory especially in the
area of impulsive differential equations with fixed moments; see for instance [–].

Recently in [], Wang et al. studied existence and uniqueness results for the following
impulsive multipoint fractional integral boundary value problem involving multi-order
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fractional derivatives and a deviating argument:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cDαk
t+
k

u(t) = f (t, u(t), u(θ (t))),  < αk ≤ ,

�u(tk) = Ik(u(tk)), �u′(tk) = I∗
k (u(tk)), k = , , . . . , p,

u() =
∑p

k= λkJ βk
t+
k

u(ηk), u′() = , tk < ηk < tk+,

(.)

where cDαk
t+
k

is the Caputo fractional derivative of order αk , J βk
t+
k

is Riemann-Liouville frac-
tional integral of order βk > , f ∈ C(J × R × R,R), Ik , I∗

k ∈ C(R,R), θ ∈ C(J , J), J = [, T]
(T > ),  = t < t < · · · < tk < · · · < tp < tp+ = T , �u(tk) = u(t+

k ) – u(t–
k ), and �u′(tk) =

u′(t+
k ) – u′(t–

k ) where u(t+
k ), u′(t+

k ) and u(t–
k ), u′(t–

k ) denote the right and left hand limits
of u(t) and u′(t) at t = tk (k = , , . . . , p).

In , Wang et al. [] established the existence of solutions for a class of nonlin-
ear impulsive Hadamard fractional differential equations with initial condition of the
form

⎧
⎪⎪⎨

⎪⎪⎩

HDα
+ u(t) = f (t, u(t)), α ∈ (, ), t ∈ (, e] \ {t, t, . . . , tm},

�u(ti) = HJ–α
+ u(t+

i ) – HJ–α
+ u(t–

i ) = pi, pi ∈R, i = , , . . . , m,

HJ–α
+ u(+) = u, u ∈R,

(.)

where HDα
+ is the left-side Hadamard fractional derivative of order α with the lower limit

 and HJ–α
+ denotes left-side Hadamard fractional integral of order  –α. The existence re-

sults were obtained by using the Banach contraction principle and Schauder’s fixed point
theorem on the weight spaces of piecewise continuous functions.

The Hadamard and Riemann-Liouville fractional derivatives have one similar prop-
erty, which is the fact that the derivative of a constant is not equal to zero. It is caused
by the definitions of them containing the usual derivative outside the integrals. In ,
Jarad et al. [] presented the modifications of the Hadamard fractional derivative into a
more suitable one having physically interpretable initial conditions similar to the Caputo
sense. In , Gambo et al. [] proved the fundamental theorem of fractional calcu-
lus, some interesting results and also semigroup properties of Caputo-Hadamard opera-
tors.

In this paper we are concerned with the existence of solutions for boundary value prob-
lems of impulsive Hadamard fractional differential equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

CDpk
tk x(t) = f (t, x(t)), t ∈ Jk ⊂ [t, T], t �= tk ,

�x(tk) = ϕk(x(tk)), k = , , . . . , m,

αx(t) + βx(T) =
∑m

i= γiJ qi
ti x(ti+),

(.)

where CDpk
tk is the Hadamard fractional derivative of Caputo type of order  < pk ≤  on

intervals Jk := (tk , tk+], k = , , . . . , m, with J = [t, t],  < t < t < t < · · · < tk < · · · < tm <
tm+ = T are the impulse points, J := [t, T], f : J × R → R is a continuous function, ϕk ∈
C(R,R), J qi

ti is the Hadamard fractional integral of order qi > , i = , , . . . , m. The jump
conditions are defined by �x(tk) = x(t+

k ) – x(tk), x(t+
k ) = limε→+ x(tk + ε), k = , , , . . . , m.
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The paper is organized as follows: Section  contains some preliminary notations, def-
initions and lemmas that we need in the sequel. In Section  we present the main results
for the problem (.), where existence and uniqueness results are proved by using Banach
and Rothe fixed point theorems, Leray-Schauder alternative and degree theory. Examples
illustrating the obtained results are also presented.

2 Preliminaries
In this section, we introduce some notations and definitions of Hadamard fractional cal-
culus (see []) and present preliminary results needed in our proofs later.

Definition . For an at least n-times differentiable function g : [a, b] → R, a, b > , the
Caputo type Hadamard derivative of fractional order α is defined as

CDα
a g(t) =


�(n – α)

∫ t

a

(

log
t
s

)n–α–

δng(s)
ds
s

, n –  < α < n, n = [α] + ,

where δ = t d
dt , t ∈ [a, b], and [α] denotes the integer part of the real number α and log(·) =

loge(·).

Definition . The Hadamard fractional integral of order α is defined as

J α
a g(t) =


�(α)

∫ t

a

(

log
t
s

)α–

g(s)
ds
s

, α > ,

provided the integral exists on [a, b].

Lemma . [] Let x ∈ ACn
δ [a, b] or Cn

δ [a, b] and α ∈ C, where Xn
δ [a, b] = {g : [a, b] → C :

δn–g(t) ∈ X[a, b]}. Then we have

J α
a

(CDα
a
)
x(t) = x(t) –

n–∑

k=

δkx(a)
k!

log

(
t
a

)k

.

The key tools for proving of our results are based on the following fixed point theorems.

Theorem . [] Suppose that A : ̄ → E is a completely continuous operator. If one of
the following conditions is satisfied:

(i) (Altman) ‖Ax – x‖ ≥ ‖Ax‖ – ‖x‖, for all x ∈ ∂,
(ii) (Rothe) ‖Ax‖ ≤ ‖x‖, for all x ∈ ∂,

(iii) (Petryshyn) ‖Ax‖ ≤ ‖Ax – x‖, for all x ∈ ∂,
then deg(I – A,, θ ) = , and hence A has at least one fixed point in .

Theorem . [] Suppose that A : ̄ → E is completely continuous operator. If

Ax �= λx, ∀x ∈ ∂,λ ≥ ,

then deg(I – A,, θ ) =  and A has at least one fixed point in ̄.
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Theorem . [] Let E be a Banach space. Assume that T : E → E is a completely con-
tinuous operator and the set

V = {u ∈ E : u = λTu,  < λ < }

is bounded. Then T has a fixed point in E.

Lemma . Assume that � = α + β –
∑m

i=
γi(log(ti+/ti))qi

�(qi+) �= . Then the solution of the prob-
lem (.) is equivalent to the following integral equation:

x(t) = J pk
tk f

(
t, x(t)

)
+

k–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))

+

�

[ m∑

i=

γiJ qi+pi
ti f

(
ti+, x(ti+)

)
– βJ pm

tm f
(
T , x(T)

)

– β

m–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))

+
m∑

i=

(
γi(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj f
(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

))
)]

. (.)

Proof By Lemma ., the solution of (.) on interval J can be written as

x(t) = J p
t f

(
t, x(t)

)
+ x,

where x ∈R. For t ∈ J, by using Lemma . and the impulse condition �x(t) = ϕ(x(t)),
we obtain

x(t) = J p
t f

(
t, x(t)

)
+ x

(
t+

)

= J p
t f

(
t, x(t)

)
+ J p

t f
(
t, x(t)

)
+ ϕ

(
x(t)

)
+ x.

Again, for t ∈ J, we have

x(t) = J p
t f

(
t, x(t)

)
+ x

(
t+

)

= J p
t f

(
t, x(t)

)
+ J p

t f
(
t, x(t)

)
+ ϕ

(
x(t)

)
+ J p

t f
(
t, x(t)

)
+ ϕ

(
x(t)

)
+ x.

Repeating the above process, for t ∈ J , we obtain

x(t) = J pk
tk f

(
t, x(t)

)
+

k–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))
+ x. (.)

Applying the boundary condition of (.), it follows that

αx(t) + βx(T) = (α + β)x + βJ pm
tm f

(
T , x(T)

)

+ β

m–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))
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and

m∑

i=

γiJ qi
ti x(ti+)

=
m∑

i=

γiJ pi+qi
ti f

(
ti+, x(ti+)

)
+ x

m∑

i=

γi(log(ti+/ti))qi

�(qi + )

+
m∑

i=

(
γi(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J j–

tj f
(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

))
)

,

which leads to

x =

�

[ m∑

i=

γiJ qi+pi
ti f

(
ti+, x(ti+)

)
– βJ pm

tm f
(
T , x(T)

)

– β

m–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))

+
m∑

i=

(
γi(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J j–

tj f
(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

))
)]

.

Replacing the constant x into (.), we obtain (.), as desired. �

3 Main results
Let PC(J ,R) = {x : J → R; x(t) is continuous everywhere except for some tk at which x(t+

k )
and x(t–

k ) exist and x(t–
k ) = x(tk), k = , , . . . , m}. Obviously, PC(J ,R) is a Banach space with

the norm ‖x‖ = sup{|x(t)|; t ∈ J}. A function x ∈ PC is called a solution of the problem (.)
if it satisfies (.).

In this section, we investigate the existence and uniqueness of solutions for the problem
(.) via a variety of fixed point theorems by defining an operator K : PC → PC as

Kx(t) = J pk
tk f

(
t, x(t)

)
+

k–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))

+

�

[ m∑

i=

γiJ qi+pi
ti f

(
ti+, x(ti+)

)
– βJ pm

tm f
(
T , x(T)

)

– β

m–∑

i=

(
J pi

ti f
(
ti+, x(ti+)

)
+ ϕi+

(
x(ti+)

))

+
m∑

i=

(
γi(log(ti+/ti)qi )

�(qi + )

)( i–∑

j=

(
J pj

tj f
(
tj+, x(tj+)

)
+ ϕj+

(
x(tj+)

))
)]

.

Clearly, the boundary value problem (.) becomes a fixed point problem x = Kx.
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For convenience, we set the notations of constants, thus

� =
(log(t/tk))pk

�(pk + )
+

m–∑

i=

(log(ti+/ti))pi

�(pi + )

+


|�|

{ m∑

i=

|γi|(log(ti+/ti))qi+pi

�(qi + pi + )
+ |β|

m∑

i=

(log(ti+/ti))pi

�(pi + )

+ |β| (log(T/tm))pm

�(pm + )
+

m∑

i=

i–∑

j=

(
(log(tj+/tj))pj

�(pj + )

)( |γi|(log(ti+/ti))qi

�(qi + )

)}

,

� = k +
(log(t/tk))pk

�(pk + )
+


�

[

|β|m +
m∑

i=

|γi|(log(ti+/ti))qi

�(qi + )
+ |β| (log(T/tm))pm

�(pm + )

]

.

Theorem . Assume that f : J × R → R and ϕk : R → R, k = , , . . . , m, are continuous
functions which satisfy the following conditions:

(H) |f (t, x) – f (t, y)| ≤ L|x – y|,∀t ∈ J , L > , x, y ∈R;
(H) |ϕk(u) – ϕk(v)| ≤ L|u – v|, L > , for all u, v ∈R,∀k = , , . . . , m.

If L� + L� <  then the problem (.) has a unique solution on J .

Proof We define a closed ball Br by Br = {x ∈ PC;‖x‖ ≤ r} where r ≥ (M� + M�)( –
L� – L�)–, where M = supt∈J |f (t, )| and M = max{|ϕi()|, i = , , . . . , m}.

We will show that K : Br → Br . For any x ∈ Br , we have

∣
∣Kx(t)

∣
∣ ≤ J pk

tk

∣
∣f

(
t, x(t)

)∣
∣ +

k–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ + |β|J pm

tm

∣
∣f

(
T , x(T)

)∣
∣

+ |β|
m–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
)
)]

≤ J pk
tk

(∣
∣f

(
t, x(t)

)
– f (t, )

∣
∣ +

∣
∣f (t, )

∣
∣
)

+
k–∑

i=

(
J pi

ti

(∣
∣f

(
ti+, x(ti+)

)
– f (ti+, )

∣
∣ +

∣
∣f (ti+, )

∣
∣
)

+
∣
∣ϕi+

(
x(ti+)

)
– ϕi+()

∣
∣ +

∣
∣ϕi+()

∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

(∣
∣f

(
ti+, x(ti+)

)
– f (ti+, )

∣
∣ +

∣
∣f (ti+, )

∣
∣
)

+ |β|J pm
tm

(∣
∣f

(
T , x(T)

)
– f (T , )

∣
∣ +

∣
∣f (T , )

∣
∣
)

+ |β|
m–∑

i=

(
J pi

ti

(∣
∣f

(
ti+, x(ti+)

)
– f (ti+, )

∣
∣ +

∣
∣f (ti+, )

∣
∣
)
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+
∣
∣ϕi+

(
x(ti+)

)
– ϕi+()

∣
∣ +

∣
∣ϕi+()

∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

(∣
∣f

(
tj+, x(tj+)

)
– f (tj+, )

∣
∣

+
∣
∣f (tj+, )

∣
∣
)

+
∣
∣ϕj+

(
x(tj+)

)
– ϕj+()

∣
∣ +

∣
∣ϕj+()

∣
∣
)
)]

≤ (Lr + M)
(log(t/tk))pk

�(pk + )
+

k–∑

i=

{

(Lr + M)
(log(ti+/ti))pi

�(pi + )
+ (Lr + M)

}

+


|�|

[ m∑

i=

|γi|(Lr + M)
(log(ti+/ti))qi+pi

�(qi + pi + )
+ |β|(Lr + M)

(log(T/tm))pm

�(pm + )

+ |β|
m–∑

i=

{

(Lr + M)
(log(ti+/ti))pi

�(pi + )
+ (Lr + M)

}

+
m∑

i=

{( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(Lr + M)
(log(tj+/tj))pj

�(pj + )
+ (Lr + M)

)}]

≤ (L� + L�)r + (M� + M�) ≤ r.

Then KBr ⊆ Br . Next we will show that K is a contraction mapping. For x, y ∈ Br , we get

|Kx – Ky|

≤ J pk
tk

∣
∣f

(
t, x(t)

)
– f

(
t, y(t)

)∣
∣ +

k–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)
– f

(
ti+, y(xi+)

)∣
∣

+
∣
∣ϕi+

(
x(ti+)

)
– ϕi+

(
y(ti+)

)∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

∣
∣f

(
ti+, x(ti+)

)
– f

(
ti+, y(ti+)

)∣
∣

+ |β|J pm
tm

∣
∣f

(
T , x(T)

)
– f

(
T , y(T)

)∣
∣

+ |β|
m–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)
– f

(
ti+, y(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)
– ϕi+

(
y(ti+)

)∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

∣
∣f

(
tj+, x(tj+)

)
– f

(
tj+, y(tj+)

)∣
∣

+
∣
∣ϕj+

(
x(tj+)

)
– ϕj+

(
y(tj+)

)∣
∣
)
)]

≤ (L� + L�)‖x – y‖.

Since (L� + L�) < , the operator K is contractive. Hence K has a unique fixed point
on Br . Therefore the problem (.) has a unique solution on J . �

Theorem . Let f and ϕk , k = , , . . . , m, be continuous functions. Assume that there are
two positive real numbers N and N such that:
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(H) |f (t, x)| ≤ N and |ϕk(x)| ≤ N, for t ∈ J , x ∈R and k = , , . . . , m.

Then the problem (.) has at least one solution on J .

Proof Define a ball Bω = {x ∈ PC;‖x‖ < ω}. The proof is divided into  steps.
Step . We will show that K is continuous. To prove this, we let {xn} be a sequence in PC

such that xn → x as n → ∞. Then we have

∣
∣Kxn(t) – Kx(t)

∣
∣

≤ J pk
tk

∣
∣f

(
t, xn(t)

)
– f

(
t, x(t)

)∣
∣

+
k–∑

i=

(
J pi

ti

∣
∣f

(
ti+, xn(ti+)

)
– f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
xn(ti+)

)
– ϕi+

(
x(ti+)

)∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

∣
∣f

(
ti+, xn(ti+)

)
– f

(
ti+, x(ti+)

)∣
∣

+ |β|J pm
tm

∣
∣f

(
T , xn(T)

)
– f

(
T , x(T)

)∣
∣

+ |β|
m–∑

i=

(
J pi

ti

∣
∣f

(
ti+, xn(ti+)

)
– f

(
ti+, x(ti+)

)∣
∣

+
∣
∣ϕi+

(
xn(ti+)

)
– ϕi+

(
x(ti+)

)∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

∣
∣f

(
tj+, xn(tj+)

)
– f

(
tj+, x(tj+)

)∣
∣

+
∣
∣ϕj+

(
xn(tj+)

)
– ϕj+

(
x(tj+)

)∣
∣
)
)]

.

Using the continuity of f and ϕk for k = , , . . . , m, we have |f (t, xn) – f (t, x)| and |ϕk(xn) –
ϕk(x)| vanish as n → ∞. Therefore ‖Kxn – Kx‖ → , which yields the continuity of the
operator K.

Step . K maps a bounded set into a bounded set. For each x ∈ B̄ω , we have

|Kx| ≤ J pk
tk

∣
∣f

(
t, x(t)

)∣
∣ +

k–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ + |β|J pm

tm

∣
∣f

(
T , x(T)

)∣
∣

+ |β|
m–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
)
)]

≤ �N + �N,

which yields the boundedness of KB̄ω .
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Step . K maps a bounded set into an equicontinuous set. Let τ, τ ∈ (tk , tk+), for each
k = , , , . . . , m, we have

∣
∣Kx(τ) – Kx(τ)

∣
∣ ≤ J pk

tk

∣
∣f

(
τ, x(τ)

)
– f

(
τ, x(τ)

)∣
∣.

The continuity of x and f implies that Kx(τ) → Kx(τ) as τ → τ. Consequently K is
completely continuous by applying the Azelá-Ascoli theorem.

Let V = {x ∈ Bω;μKx = x for μ ∈ (, )}. For all x ∈ V , x = μKx, we have

|x| ≤ μ|Kx| ≤ �N + �N.

Hence V is bounded. By Theorem ., the problem (.) has at least one solution on J . �

Theorem . Assume that

(H) limx→
f (t,x)

x =  and limx→
ϕk (x)

x =  for k = , , . . . , m.

Then the problem (.) has at least one solution on J .

Proof From (H), choosing ε = /(� + �), there exist constants δ, δ ∈ R
+ such that

∣
∣f (t, x)

∣
∣ < ε|x| where |x| < δ and

∣
∣ϕ(x)

∣
∣ < ε|x| where |x| < δ.

Now, we define an open ball  = {u ∈ PC;‖u‖ < min{δ, δ}}. By Theorem ., the operator
K : ̄ → PC is completely continuous. For any x ∈ ∂, we have

|Kx| ≤ J pk
tk

∣
∣f

(
t, x(t)

)∣
∣ +

k–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ + |β|J pm

tm

∣
∣f

(
T , x(T)

)∣
∣

+ |β|
m–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
)
)]

≤ (�ε + �ε)‖x‖ = ‖x‖.

It follows from Theorem ., case (ii), that the problem (.) has at least one solution on J .�

Theorem . Let f and ϕk for k = , , . . . , m, be continuous functions and satisfy the fol-
lowing inequalities:

(H) |f (t, x)| ≤ a|x| + b, ∀(t, x) ∈ J × R and |ϕk(x)| ≤ c|x| + d, ∀x ∈ R, k = , . . . , m, where
constants a, c >  and b, d ≥ .

Then the problem (.) has at least one solution on J .
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Proof Define a unit ball as O = {x ∈ PC;‖x‖ < }. It is straightforward to show that the
operator K : Ō → PC is completely continuous. Suppose that there is x∗ ∈ ∂O. Then we
choose λ = (a + c)� + (b + d)� +  such that Kx∗ = λx∗. By taking the norm in both sides
of ‖Kx∗‖ = ‖λx∗‖, we obtain ‖K‖‖x∗‖ ≥ λ‖x∗‖. Then we have

‖K‖ = sup
‖x‖=

|Kx|

= sup
‖x‖=

{

J pk
tk

∣
∣f

(
t, x(t)

)∣
∣ +

k–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+


|�|

[ m∑

i=

|γi|J qi+pi
ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ + |β|J pm

tm

∣
∣f

(
T , x(T)

)∣
∣

+ |β|
m–∑

i=

(
J pi

ti

∣
∣f

(
ti+, x(ti+)

)∣
∣ +

∣
∣ϕi+

(
x(ti+)

)∣
∣
)

+
m∑

i=

( |γi|(log(ti+/ti))qi

�(qi + )

)( i–∑

j=

(
J pj

tj

∣
∣f

(
tj+, x(tj+)

)∣
∣ +

∣
∣ϕj+

(
x(tj+)

)∣
∣
)
)]}

≤ (a + c)� + (b + d)� = λ – ,

which contradicts ‖K‖ ≥ λ. Hence the assumptions of Theorem . hold. Therefore the
problem (.) has at least one solution on J . �

4 Examples
In this section, we present four examples to illustrate our results.

Example . Consider the boundary value problem for an impulsive multi-order
Hadamard fractional differential equation of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD( k+
k+ )

tk x(t) = –t

(t+) ( (|x(t)|+)

|x(t)|+ ), t ∈ [, e+
 ] \ {tk},

�x(tk) = sin |x(tk )|
(–k) , tk = ke+

k+ , k = , , . . . , ,


 x() + 

 x( e+
 ) =

∑
i=( – e–i)J

( i+i+
i+i+

)
ti x(ti+).

(.)

Here α = /, β = /, m = , pk = (k +)/(k +), γk = –e–k , qk = (k +k +)/(k +k +)
for k = , , . . . , . From the information, we find that � ≈ ., � ≈ ., and
� ≈ .. The functions f and ϕk are given by

f (t, x) =
 – t

(t + )

(
(|x| + )

|x| + 

)

, ϕk(x) =
sin |x|

( – k)
,

which satisfy

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ 


|x – y| and

∣
∣ϕk(x) – ϕk(y)

∣
∣ ≤ 


|x – y|, ∀k = , , . . . , .

Then we get L = / and L = /, which implies L� + L� ≈ . < . There-
fore the problem (.) has a unique solution on [, (e + )/] due to Theorem ..
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Example . Consider the boundary value problem for an impulsive multi-order
Hadamard fractional differential equation of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CDlog(
∑k+

i= (/(i+)!))
tk x(t) = (–e–t ) log(|x(t)|+)

|x(t)|+ – , t ∈ [ π
 , π ] \ {tk},

�x(tk) = e– k
 cos(kx(tk)) + e k

 sin(kx(tk)), tk =  k–
 π , k = , , . . . , ,

–e– π
 x( π

 ) + e–π x(π ) =
∑

i=(–)i(i + )J ( |i–|
i+ )

ti x(ti+).

(.)

Here α = –e–π/, β = e–π , m = , pk = log(
∑k+

i= (/(i + )!)), γk = (–)k(k + ), qk = |k –
|/(k + ) for k = , , . . . , . We find that � ≈ –. �= . The functions f (t, x) = ( –
e–t) log(|x| + )/(|x| + ) –  and ϕk(x) = e– k

 cos(kx) + e k
 sin(kx) are bounded as

∣
∣f (t, x)

∣
∣ ≤  and

∣
∣ϕk(x)

∣
∣ ≤ √

e– + e.

Hence the assumption (H) of Theorem . holds. Therefore the problem (.) has at least
one solution on [π/, π ].

Example . Consider the boundary value problem for an impulsive multi-order
Hadamard fractional differential equation of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD
( k+

k+k+
)

tk x(t) = etx(t)(sin x(t)–x(t))
t+ , t ∈ [ 

 , ] \ {tk},
�x(tk) = kx(tk )

log(|x(tk )|+) , tk = k+
 , k = , , . . . , ,√

x( 
 ) + 

 x() =
∑

i=( i+
i+ )J arctan i

ti
x(ti+).

(.)

Here α =
√

, β = /, m = , pk = (k + )/(k + ), γk = (k + )/(k + ), qk = arctan(k) for
k = , , . . . , . We find that � ≈ . �= . The functions f (t, x) = etx(sin x – x)/(t + )
and ϕk(x) = kx/ log(|x| + ) satisfy

lim
x→

f (t, x)
x

= lim
x→

ext

t + 

(
sin x

x
– 

)

= 

and

lim
x→

ϕk(x)
x

= lim
x→

kx

log(|x| + )
= , ∀k = , , . . . , .

Thus the condition (H) of Theorem . holds. Therefore, we conclude that the problem
(.) has at least one solution on [/, ].

Example . Consider the boundary value problem for an impulsive multi-order
Hadamard fractional differential equation of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD
√

–sin(k+)
tk x(t) = e t

 sin x(t) + tx(t) cos x(t) + , t ∈ [ 
 , ] \ {tk},

�x(tk) = kx(tk) – log(|x(tk)| + 
 ), tk =  ·  k–

 , k = , , . . . , ,

 x( 

 ) – 
 x() =

∑
i=

(–)i

i+ J
( k+

k+ )
ti x(ti+).

(.)
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Here α = /, β = –/, m = , pk =
√

 – sin(k + ), γk = (–)k/(k + ), qk = (k +
)/(k + ), for k = , , . . . , . We find that � ≈ . �= . The functions f (t, x) =
e t

 sin x + tx cos x +  and ϕ(x) = kx – log(|x| + (/)) satisfy the inequalities

∣
∣f (t, x)

∣
∣ ≤ t|x| +

(
 + e

t

) ≤ |x| +

(
 + e)

and

∣
∣ϕk(x)

∣
∣ ≤ |x|(k + ) +




≤ |x| +



.

Therefore (H) holds. According to Theorem ., the problem (.) has at least one solu-
tion on [/, ].
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