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1 Introduction
In the remarkable paper [], Wang proved the existence of one positive solution of the
following one-dimensional p-Laplacian equation:

(
ϕp

(
u′))′(t) + g(t)f

(
u(t)

)
= , t ∈ (, ), (.)

subject to one of the following three pairs of nonlinear boundary conditions (BCs)

u′() = , u() + B
(
u′()

)
= ,

u() = B
(
u′()

)
, u′() = ,

u() = B
(
u′()

)
, u() + B

(
u′()

)
= ,

where B, B : R → R are continuous functions satisfying some suitable growth condi-
tions. The results of [] were extended by Karakostas [] to the context of deviated argu-
ments. In both cases, the existence results are obtained via a careful study of an associated
integral operator combined with the use of the Krasnosel’skĭı-Guo theorem on cone com-
pressions and cone expansions.

The Krasnosel’skĭı-Guo theorem and other topological methods are commonly used
tools in the study of existence of positive solutions for the p-Laplacian equation (.) sub-
ject to different BCs. This is an active area of research, for example, homogeneous Dirich-
let BCs were studied in [–], homogeneous Robin BCs in [, , ], nonlocal BCs of
Dirichlet type in [, –] and nonlocal BCs of Robin type in [, –].
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Here we study the one-dimensional (p, p)-Laplacian system

(
ϕp

(
u′))′(t) + g(t)f

(
t, u(t), v(t)

)
= , t ∈ (, ),

(
ϕp

(
v′))′(t) + g(t)f

(
t, u(t), v(t)

)
= , t ∈ (, ),

(.)

with ϕpi (w) = |w|pi–w, subject to the nonlinear boundary conditions

u′() = , u() + B
(
u′()

)
= , v() = B

(
v′()

)
, v() = . (.)

The existence of positive solutions for systems of equations of the type (.) has been
widely studied; see, for example, [–] under homogeneous Dirichlet BCs and [, –
] with homogeneous Robin or Neumann BCs. For earlier contributions on problems
with nonlinear BCs, we refer to [, , , –] and the references therein.

We improve and complement the previous results in several directions: we obtain multi-
plicity results for the (p, p)-Laplacian system subject to nonlinear BCs, we allow different
growths in the nonlinearities f and f, and also we discuss non-existence results. Finally
we illustrate in an example that all the constants that occur in our results can be computed.

Our approach is to seek solutions of system (.)-(.) as fixed points of a suitable integral
operator. We make use of the classical fixed point index theory and benefit from ideas of
the papers [, , , ].

2 The system of integral equations
We recall that a cone K in a Banach space X is a closed convex set such that λx ∈ K for
x ∈ K and λ ≥  and K ∩ (–K) = {}.

If � is an open bounded subset of a cone K (in the relative topology), we denote by �

and ∂� the closure and the boundary relative to K . When � is an open bounded subset
of X, we write �K = � ∩ K , an open subset of K .

The following lemma summarizes some classical results regarding the fixed point index;
for more details, see [, ].

Lemma . Let � be an open bounded set with  ∈ �K and �K �= K . Assume that F : �K →
K is a compact map such that x �= Fx for all x ∈ ∂�K . Then the fixed point index iK (F ,�K )
has the following properties.

() If there exists e ∈ K \ {} such that x �= Fx + λe for all x ∈ ∂�K and all λ > , then
iK (F ,�K ) = .

() If μx �= Fx for all x ∈ ∂�K and for every μ ≥ , then iK (F ,�K ) = .
() If iK (F ,�K ) �= , then F has a fixed point in �K .
() Let � be open in X with � ⊂ �K . If iK (F ,�K ) =  and iK (F ,�

K ) = , then F has a
fixed point in �K \ �

K . The same result holds if iK (F ,�K ) =  and iK (F ,�
K ) = .

To system (.)-(.) we associate the following system of integral equations, which
is constructed in a similar manner as in [] where the case of a single equation is
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studied:

u(t) =
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))
,  ≤ t ≤ ,

v(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ t
 ϕ–

p (
∫ σu,v

s g(τ )f(τ , u(τ ), v(τ )) dτ ) ds

+ B(ϕ–
p (

∫ σu,v
 g(τ )f(τ , u(τ ), v(τ )) dτ )),  ≤ t ≤ σu,v,

∫ 
t ϕ–

p (
∫ s
σu,v

g(τ )f(τ , u(τ ), v(τ )) dτ ) ds, σu,v ≤ t ≤ ,

(.)

where ϕ–
pi

(w) = |w| 
pi– sgn w and σu,v is the smallest solution x ∈ [, ] of the equa-

tion
∫ x


ϕ–

p

(∫ x

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds + B

(
ϕ–

p

(∫ x


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

=
∫ 

x
ϕ–

p

(∫ s

x
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds.

By a solution of (.)-(.), we mean a solution of system (.).
In order to utilize the fixed point index theory, we state the following assumptions on

the terms that occur in system (.):
(C) For every i = , , fi : [, ] × [,∞) × [,∞) → [,∞) satisfies Carathéodory

conditions, that is, fi(·, u, v) is measurable for each fixed (u, v) and fi(t, ·, ·) is
continuous for almost every (a.e.) t ∈ [, ], and for each r >  there exists
φi,r ∈ L∞[, ] such that

fi(t, u, v) ≤ φi,r(t) for u, v ∈ [, r] and a.e. t ∈ [, ].

(C) g ∈ L[, ], g ≥  and

 <
∫ 


ϕ–

p

(∫ s


g(τ ) dτ

)
ds < +∞.

(C) g ∈ L[, ], g ≥  and

 <
∫ /


ϕ–

p

(∫ /

s
g(τ ) dτ

)
ds +

∫ 

/
ϕ–

p

(∫ s

/
g(τ ) dτ

)
ds < +∞. (.)

(C) For every i = , , Bi : R →R is a continuous function, and there exist hi, hi ≥ 
such that

hiv ≤ Bi(v) ≤ hiv for any v ≥ .

Remark . Condition (.) is weaker than the condition

 <
∫ 


ϕ–

p

(∫ 

s
g(τ ) dτ

)
ds < +∞. (.)
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In fact, for example, the function

g(t) =

⎧
⎨

⎩


(t–) , t ∈ [, /],

t , t ∈ (/, ],

satisfies (.) but not (.).

Remark . From (C) and (C) it follows that there exists [a, b] ⊂ [, ) such that
∫ b

a
g(s) ds >  and there exists [a, b] ⊂ (, ) such that

∫ b
a

g(s) ds > .

We work in the space C[, ] × C[, ] endowed with the norm

∥
∥(u, v)

∥
∥ := max

{‖u‖∞,‖v‖∞
}

,

where ‖w‖∞ := max{|w(t)|, t ∈ [, ]}.
Take the cones

K :=
{

w ∈ C[, ] : w ≥ , concave and nonincreasing
}

,

K :=
{

w ∈ C[, ] : w ≥ , concave
}

.

It is known (see, e.g., []) that
• for w ∈ K, we have w(t) ≥ ( – t)‖w‖∞ for t ∈ [, ];
• for w ∈ K, we have w(t) ≥ min{t,  – t}‖w‖∞ for t ∈ [, ].

It follows that the functions in Ki are strictly positive on the sub-interval [ai, bi] and in
particular

• for w ∈ K, we have mint∈[a,b] w(t) ≥ ( – b)‖w‖∞;
• for w ∈ K, we have mint∈[a,b] w(t) ≥ min{a,  – b}‖w‖∞.

In the following we assume a =  and we make use of the notations

c :=  – b, c := min{a,  – b}.

Consider now the cone K in C[, ] × C[, ] defined by

K :=
{

(u, v) ∈ K × K
}

.

For a positive solution of system (.) we mean a solution (u, v) ∈ K of (.) such that
‖(u, v)‖ > . We seek such solution as a fixed point of the following operator T .

Consider the integral operator

T(u, v)(t) :=

(
T(u, v)(t)
T(u, v)(t)

)

, (.)

where

T(u, v)(t) :=
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))
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and

T(u, v)(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ t
 ϕ–

p (
∫ σu,v

s g(τ )f(τ , u(τ ), v(τ )) dτ ) ds

+ B(ϕ–
p (

∫ σu,v
 g(τ )f(τ , u(τ ), v(τ )) dτ )),  ≤ t ≤ σu,v,

∫ 
t ϕ–

p (
∫ s
σu,v

g(τ )f(τ , u(τ ), v(τ )) dτ ) ds, σu,v ≤ t ≤ .

From the definitions, for every (u, v) ∈ K , we have

max
t∈[,]

T(u, v)(t) = T(u, v)(σu,v).

Under our assumptions, we can show that the integral operator T leaves the cone K in-
variant and is compact.

Lemma . The operator (.) maps K into K and is compact.

Proof Take (u, v) ∈ K . From the definition we have that the function T(u, v) is nonincreas-
ing. The fact that T(u, v) and T(u, v) are convex functions is known, see Section , p.
of []. Thus T(u, v) ∈ K . Now, we show that the map T is compact. Firstly, we show that T
sends bounded sets into bounded sets. Take (u, v) ∈ K such that ‖(u, v)‖ ≤ r. Then, for all
t ∈ [, ], we have

T(u, v)(t) =
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

≤
∫ 

t
ϕ–

p

(∫ s


g(τ )φ,r(τ ) dτ

)
ds

+ hϕ
–
p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

≤
∫ 

t
ϕ–

p

(∫ 


g(τ )φ,r(τ ) dτ

)
ds + hϕ

–
p

(∫ 


g(τ )φ,r(τ ) dτ

)

≤
∫ 


ϕ–

p

(∫ 


g(τ )φ,r(τ ) dτ

)
ds + hϕ

–
p

(∫ 


g(τ )φ,r(τ ) dτ

)
< +∞.

We prove now that T sends bounded sets into equicontinuous sets. Let t, t ∈ [, ], t <
t, (u, v) ∈ K such that ‖(u, v)‖ ≤ r. Then we have

∣∣T(u, v)(t) – T(u, v)(t)
∣∣ =

∣
∣∣∣

∫ t

t

ϕ–
p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

∣
∣∣∣

≤
∣
∣∣
∣

∫ t

t

ϕ–
p

(∫ 


g(τ )φ,r(τ ) dτ

)
ds

∣
∣∣
∣ = Cr|t – t|.

Therefore we obtain |T(u, v)(t) – T(u, v)(t)| →  when t → t. By the Ascoli-Arzelà
theorem we can conclude that T is a compact map.

For the sake of completeness, we sketch the proof of the fact that T sends bounded
sets into equicontinuous sets. Let t, t ∈ [, ], t < t, (u, v) ∈ K such that ‖(u, v)‖ ≤ r. The
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cases  ≤ t < t ≤ σu,v or σu,v ≤ t < t ≤  can be handled as in the case of the operator T.
If  ≤ t < σu,v < t ≤ , we observe that

∣∣T(u, v)(t) – T(u, v)(t)
∣∣

=
∣
∣T(u, v)(t) – T(u, v)(σu,v) + T(u, v)(σu,v) – T(u, v)(t)

∣
∣

≤ ∣∣T(u, v)(t) – T(u, v)(σu,v)
∣∣ +

∣∣T(u, v)(σu,v) – T(u, v)(t)
∣∣,

and the proof follows as in previous cases.
Moreover, the map T is compact since the components Ti are compact maps. �

3 Existence results
For our index calculations, given ρ,ρ >  we use the following (relative) open bounded
sets in K :

Kρ,ρ =
{

(u, v) ∈ K : ‖u‖∞ < ρ and ‖v‖∞ < ρ
}

and

Vρ,ρ =
{

(u, v) ∈ K : min
t∈[,b]

u(t) < cρ and min
t∈[a,b]

v(t) < cρ

}
,

and if ρ = ρ = ρ , we write simply Kρ and Vρ . The set Vρ was introduced in [] as an
extension to the case of systems of a set given by Lan []. The use of different radii, in
the spirit of the paper [], allows more freedom in the growth of the nonlinearities.

The following lemma is similar to Lemma  of [] and therefore its proof is omitted.

Lemma . The sets defined above have the following properties:
• Kcρ,cρ ⊂ Vρ,ρ ⊂ Kρ,ρ .
• (w, w) ∈ ∂Kρ,ρ iff (w, w) ∈ K and ‖wi‖∞ = ρi for some i ∈ {, } and ‖wj‖∞ ≤ ρj for

j �= i.
• (w, w) ∈ ∂Vρ,ρ iff (w, w) ∈ K and mint∈[ai ,bi] wi(t) = ciρi for some i ∈ {, } and

mint∈[aj ,bj] wj(t) ≤ cjρj for j �= i.
• If (w, w) ∈ ∂Vρ,ρ , then for some i ∈ {, }, ciρi ≤ wi(t) ≤ ρi for each t ∈ [ai, bi] and

‖wi‖∞ ≤ ρi; moreover, for j �= i, we have ‖wj‖∞ ≤ ρj.

We firstly prove that the fixed point index is  on the set Kρ,ρ .

Lemma . Assume that

(I
ρ,ρ ) there exist ρ,ρ >  such that for every i = , 

f ρ,ρ
i < ϕpi (mi), (.)

where

f ρ,ρ
i = sup

{
fi(t, u, v)
ρ

pi–
i

: (t, u, v) ∈ [, ] × [,ρ] × [,ρ]
}

,


m

=
∫ 


ϕ–

p

(∫ s


g(τ ) dτ

)
ds + hϕ

–
p

(∫ 


g(τ ) dτ

)
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and


m

= max

[∫ 



ϕ–

p

(∫ 


s
g(τ ) dτ

)
ds + hϕ

–
p

(∫ 



g(τ ) dτ

)
,

∫ 




ϕ–
p

(∫ s




g(τ ) dτ

)
ds

]
.

Then iK (T , Kρ,ρ ) = .

Proof We show that λ(u, v) �= T(u, v) for every (u, v) ∈ ∂Kρ,ρ and for every λ ≥ ; this
ensures that the index is  on Kρ,ρ . In fact, if this does not happen, there exist λ ≥  and
(u, v) ∈ ∂Kρ,ρ such that λ(u, v) = T(u, v).

Firstly we assume that ‖u‖∞ = ρ and ‖v‖∞ ≤ ρ.
Then we have

λu(t) =
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

≤
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

= ρ

∫ 

t
ϕ–

p

(∫ s


g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
ds

+ ρhϕ
–
p

(∫ 


g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
.

Taking t =  gives

λu() = λρ

≤ ρ

∫ 


ϕ–

p

(∫ s


g(τ )f ρ,ρ

 dτ

)
ds + ρhϕ

–
p

(∫ 


g(τ )f ρ,ρ

 dτ

)

= ρϕ
–
p

(
f ρ,ρ


)(∫ 


ϕ–

p

(∫ s


g(τ ) dτ

)
ds + hϕ

–
p

(∫ 


g(τ ) dτ

))

= ρ


m
ϕ–

p

(
f ρ,ρ


)
.

Using hypothesis (.) and the strict monotonicity of ϕ–
p , we obtain λρ < ρ. This contra-

dicts the fact that λ ≥  and proves the result.
Now we assume ‖v‖∞ = ρ and ‖u‖∞ ≤ ρ.
Then we have

λρ =
∥∥T(u, v)

∥∥∞ = T(u, v)(σu,v).
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If σu,v ≤ 
 , we have

λρ =
∥∥T(u, v)

∥∥∞ = T(u, v)(σu,v)

=
∫ σu,v


ϕ–

p

(∫ σu,v

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ σu,v


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

≤
∫ 




ϕ–

p

(∫ 


s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ σu,v


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

≤
∫ 




ϕ–

p

(∫ 


s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ 



g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

= ρ

∫ 



ϕ–

p

(∫ 


s
g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
ds

+ ρhϕ
–
p

(∫ 



g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
;

thus we obtain

λρ ≤ ρϕ
–
p

(
f ρ,ρ


)(∫ 



ϕ–

p

(∫ 


s
g(τ ) dτ

)
ds + hϕ

–
p

(∫ 



g(τ ) dτ

))
.

If σu,v > 
 , we have

λρ =
∥∥T(u, v)

∥∥∞ = T(u, v)(σu,v)

=
∫ 

σu,v

ϕ–
p

(∫ s

σu,v

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

≤
∫ 




ϕ–
p

(∫ s




g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

= ρ

∫ 




ϕ–
p

(∫ s




g(τ )
f(τ , u(τ ), v(τ ))

ρ
p–


dτ

)
ds

≤ ρϕ
–
p

(
f ρ,ρ


)∫ 




ϕ–
p

(∫ s




g(τ ) dτ

)
ds.

Then, in both cases, we have

λρ =
∥
∥T(u, v)

∥
∥∞ = T(u, v)(σu,v)

≤ ρϕ
–
p

(
f ρ,ρ


)
max

[∫ 



ϕ–

p

(∫ 


s
g(τ ) dτ

)
ds + hϕ

–
p

(∫ 



g(τ ) dτ

)
,
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∫ 




ϕ–
p

(∫ s




g(τ ) dτ

)
ds

]

= ρϕ
–
p

(
f ρ,ρ


) 
m

.

Using hypothesis (.) and the strict monotonicity of ϕ–
p , we obtain λρ < ρ. This contra-

dicts the fact that λ ≥  and proves the result. �

We give a first lemma that shows that the index is  on a set Vρ,ρ .

Lemma . Assume that:

(I
ρ,ρ ) there exist ρ,ρ >  such that for every i = , 

fi,(ρ,ρ) > ϕpi (Mi), (.)

where

f,(ρ,ρ) = inf

{
f(t, u, v)
ρ

p–


: (t, u, v) ∈ [, b] × [cρ,ρ] × [,ρ]
}

,

f,(ρ,ρ) = inf

{
f(t, u, v)

ρ
p–


: (t, u, v) ∈ [a, b] × [,ρ] × [cρ,ρ]
}

,


M

=
∫ b


ϕ–

p

(∫ s


g(τ ) dτ

)
ds + hϕ

–
p

(∫ b


g(τ ) dτ

)
,

and


M

=



min
a≤ν≤b

[∫ ν

a

ϕ–
p

(∫ ν

s
g(τ ) dτ

)
ds

+
∫ b

ν

ϕ–
p

(∫ s

ν

g(τ ) dτ

)
ds + hϕ

–
p

(∫ ν

a

g(τ ) dτ

)]
.

Then iK (T , Vρ,ρ ) = .

Proof Let e(t) ≡  for t ∈ [, ]. Then (e, e) ∈ K . We prove that (u, v) �= T(u, v) + λ(e, e) for
(u, v) ∈ ∂Vρ,ρ and λ ≥ . In fact, if this does not happen, there exist (u, v) ∈ ∂Vρ,ρ and
λ ≥  such that (u, v) = T(u, v) + λ(e, e). We examine two cases.

Case (): cρ ≤ u(t) ≤ ρ for t ∈ [, b] and  ≤ v(t) ≤ ρ for t ∈ [, ].
Thus we have, for t ∈ [, b],

ρ ≥ u(t)

=
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))
+ λ

≥
∫ b

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
+ λ
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≥
∫ b

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ b


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
+ λ

= ρ

∫ b

t
ϕ–

p

(∫ s


g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
ds

+ ρhϕ
–
p

(∫ b


g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
+ λ.

For t = , we obtain

ρ ≥ ρϕ
–
p (f,(ρ,ρ) )

∫ b


ϕ–

p

(∫ s


g(τ ) dτ

)
ds

+ ρϕ
–
p (f,(ρ,ρ) )hϕ

–
p

(∫ b


g(τ ) dτ

)
+ λ

> ρϕ
–
p (f,(ρ,ρ))


M

+ λ.

Using hypothesis (.) we obtain ρ > ρ + λ, a contradiction.
Case ():  ≤ u(t) ≤ ρ for t ∈ [, ] and cρ ≤ v(t) ≤ ρ.
We distinguish three cases as follows.
Case ():  < σu,v ≤ a.
Therefore we get

ρ ≥ v(σu,v) = T(u, v)(σu,v) + λ

=
∫ 

σu,v

ϕ–
p

(∫ s

σu,v

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
ds + λ

≥
∫ b

a

ϕ–
p

(∫ s

a

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
ds + λ

= ρ

∫ b

a

ϕ–
p

(∫ s

a

g(τ )
f(τ , u(τ ), v(τ ))

ρ
p–


dτ

)
ds + λ

≥ ρϕ
–
p (f,(ρ,ρ) )

∫ b

a

ϕ–
p

(∫ s

a

g(τ ) dτ

)
ds + λ

≥ ρϕ
–
p (f,(ρ,ρ) )


M

+ λ.

Using hypothesis (.) we obtain ρ > ρ + λ, a contradiction.
Case (): σu,v ≥ b.

ρ ≥ v(σu,v) = T(u, v)(σu,v) + λ

=
∫ σu,v


ϕ–

p

(∫ σu,v

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ σu,v


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))
+ λ

≥
∫ b

a

ϕ–
p

(∫ b

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds
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+ hϕ
–
p

(∫ b

a

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
+ λ

= ρ

∫ b

a

ϕ–
p

(∫ b

s
g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
ds

+ ρhϕ
–
p

(∫ b

a

g(τ )
f(τ , u(τ ), v(τ ))

ρ
p–


dτ

)
+ λ

≥ ρϕ
–
p (f,(ρ,ρ) )

∫ b

a

ϕ–
p

(∫ b

s
g(τ ) dτ

)
ds

+ ρϕ
–
p (f,(ρ,ρ) )hϕ

–
p

(∫ b

a

g(τ ) dτ

)
+ λ

≥ ρϕ
–
p (f,(ρ,ρ) )


M

+ λ.

Using hypothesis (.) we obtain ρ > ρ + λ, a contradiction.
Case (): a < σu,v < b.

ρ ≥ v(σu,v) = λ + T(u, v)(σu,v)

= λ +
∫ σu,v


ϕ–

p

(∫ σu,v

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ σu,v


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

+
∫ 

σu,v

ϕ–
p

(∫ s

σu,v

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

≥ λ +
∫ σu,v

a

ϕ–
p

(∫ σu,v

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ σu,v

a

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)

+
∫ b

σu,v

ϕ–
p

(∫ s

σu,v

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

= λ + ρ

∫ σu,v

a

ϕ–
p

(∫ σu,v

s
g(τ )

f(τ , u(τ ), v(τ ))
ρ

p–


dτ

)
ds

+ ρhϕ
–
p

(∫ σu,v

a

g(τ )
f(τ , u(τ ), v(τ ))

ρ
p–


dτ

)

+ ρ

∫ b

σu,v

ϕ–
p

(∫ s

σu,v

g(τ )
f(τ , u(τ ), v(τ ))

ρ
p–


dτ

)
ds

≥ λ + ρϕ
–
p (f,(ρ,ρ) )

[∫ σu,v

a

ϕ–
p

(∫ σu,v

s
g(τ ) dτ

)
ds

+ hϕ
–
p

(∫ σu,v

a

g(τ ) dτ

)
+

∫ b

σu,v

ϕ–
p

(∫ s

σu,v

g(τ ) dτ

)
ds

]

≥ λ + ρϕ
–
p (f,(ρ,ρ) )


M

.

Using hypothesis (.) we obtain ρ > λ + ρ, a contradiction. �
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Remark . We point out that a stronger, but easier to check, hypothesis than (.) is

fi,(ρ,ρ) > ϕpi (M̃i),

where


M̃

=
∫ b


ϕ–

p

(∫ s


g(τ ) dτ

)
ds

and


M̃

=



min
a≤ν≤b

{∫ ν

a

ϕ–
p

(∫ ν

s
g(τ ) dτ

)
ds +

∫ b

ν

ϕ–
p

(∫ s

ν

g(τ ) dτ

)
ds

}
.

In the following lemma we exploit an idea that was used in [, , ], and we provide
a result of index  controlling the growth of just one nonlinearity fi, at the cost of having
a larger domain. Nonlinearities with different growths were considered, for example, in
[–].

Lemma . Assume that

(I
ρ,ρ )� there exist ρ,ρ >  such that for some i ∈ {, } we have

f ∗
i,(ρ,ρ) > ϕpi (Mi), (.)

where

f ∗
i,(ρ,ρ) = inf

{
fi(t, u, v)
ρ

pi–
i

: (t, u, v) ∈ [ai, bi] × [,ρ] × [,ρ]
}

.

Then iK (T , Vρ,ρ ) = .

Proof Suppose that condition (.) holds for i = . Let (u, v) ∈ ∂Vρ,ρ and λ ≥  such that
(u, v) = T(u, v) + λ(e, e). Thus we proceed as in the proof of Lemma .. �

The proof of the next result regarding the existence of at least one, two or three positive
solutions follows by the properties of fixed point index and is omitted. It is possible to state
results for four or more positive solutions, in a similar way as in [], by expanding the
lists in conditions (S), (S).

Theorem . System (.) has at least one positive solution in K if one of the following
conditions holds.

(S) For i = , , there exist ρi, ri ∈ (,∞) with ρi < ri such that (I
ρ,ρ ) [or (I

ρ,ρ )�], (I
r,r )

hold.
(S) For i = , , there exist ρi, ri ∈ (,∞) with ρi < ciri such that (I

ρ,ρ ), (I
r,r ) hold.

System (.) has at least two positive solutions in K if one of the following conditions holds.

(S) For i = , , there exist ρi, ri, si ∈ (,∞) with ρi < ri < cisi such that (I
ρ,ρ ) [or (I

ρ,ρ )�],
(I

r,r ) and (I
s,s ) hold.
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(S) For i = , , there exist ρi, ri, si ∈ (,∞) with ρi < ciri and ri < si such that (I
ρ,ρ ), (I

r,r )
and (I

s,s ) hold.

System (.) has at least three positive solutions in K if one of the following conditions holds.

(S) For i = , , there exist ρi, ri, si, δi ∈ (,∞) with ρi < ri < cisi and si < δi such that (I
ρ,ρ )

[or (I
ρ,ρ )�], (I

r,r ), (I
s,s ) and (I

δ,δ
) hold.

(S) For i = , , there exist ρi, ri, si, δi ∈ (,∞) with ρi < ciri and ri < si < ciδi such that (I
ρ,ρ ),

(I
r,r ), (I

s,s ) and (I
δ,δ

) hold.

4 Non-existence results
We now provide some non-existence results for system (.). We use an argument similar
to the ones of [, –].

Theorem . Assume that one of the following conditions holds.
. For i = , ,

fi(t, u, u) < ϕpi (miui) for every t ∈ [, ] and ui > , (.)

where mi is defined in Lemma ..
. For i = , ,

fi(t, u, u) > ϕpi

(
Mi

ci
ui

)
for every t ∈ [ai, bi] and ui > , (.)

where Mi is defined in Lemma ..
. There exists k ∈ {, } such that (.) is verified for fk and for j �= k condition (.) is

verified for fj.
Then there is no positive solution of system (.) in K .

Proof () Assume, on the contrary, that there exists (u, v) ∈ K such that (u, v) = T(u, v) and
(u, v) �= (, ). We distinguish two cases.

• Let ‖u‖∞ �= . Then we have

u(t) =
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

< m

∫ 

t
ϕ–

p

(∫ s


g(τ )ϕp

(
u(τ )

)
dτ

)
ds + mhϕ

–
p

(∫ 


g(τ )ϕp

(
u(τ )

)
dτ

)

≤ m‖u‖∞
(∫ 

t
ϕ–

p

(∫ s


g(τ ) dτ

)
ds + hϕ

–
p

(∫ 


g(τ ) dτ

))
.

Taking t =  gives

‖u‖∞ = u() < m‖u‖∞
∫ 


ϕ–

p

(∫ s


g(τ ) dτ

)
ds + m‖u‖∞hϕ

–
p

(∫ 


g(τ ) dτ

)

= m‖u‖∞


m
,

a contradiction.



Cianciaruso and Pietramala Boundary Value Problems  (2015) 2015:163 Page 14 of 18

• Let ‖v‖∞ �= .
Reasoning as in Lemma . we distinguish the cases σu,v ≤ / and σu,v > /.
In the first case we have

‖v‖∞ =
∥∥T(u, v)

∥∥∞

= T(u, v)(σu,v)

=
∫ σu,v


ϕ–

p

(∫ σu,v

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ σu,v


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

< m‖v‖∞
∫ σu,v


ϕ–

p

(∫ σu,v

s
g(τ ) dτ

)
ds

+ hm‖v‖∞ϕ–
p

(∫ σu,v


g(τ ) dτ

)

≤ m‖v‖∞
(∫ 




ϕ–

p

(∫ 


s
g(τ ) dτ

)
ds + hϕ

–
p

(∫ 



g(τ ) dτ

))

≤ m‖v‖∞


m
,

a contradiction.
In a similar manner we proceed in the case σu,v > /.

() Assume, on the contrary, that there exists (u, v) ∈ K such that (u, v) = T(u, v) and
(u, v) �= (, ). We distinguish two cases.

• Let ‖u‖∞ �= . Then, for t ∈ [a, b] = [, b], we have

u(t) =
∫ 

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

≥
∫ b

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ 


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

≥
∫ b

t
ϕ–

p

(∫ s


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ b


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

>
M

c

∫ b

t
ϕ–

p

(∫ s


g(τ )ϕp

(
u(τ )

)
dτ

)
ds

+
M

c
hϕ

–
p

(∫ b


g(τ )ϕp

(
u(τ )

)
dτ

)

>
M

c

∫ b

t
ϕ–

p

(∫ s


g(τ )ϕp

(
c‖u‖∞

)
dτ

)
ds
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+
M

c
hϕ

–
p

(∫ b


g(τ )ϕp (c‖u‖∞) dτ

)

= M‖u‖∞
(∫ b

t
ϕ–

p

(∫ s


g(τ ) dτ

)
ds + hϕ

–
p

(∫ b


g(τ ) dτ

))
.

For t =  we obtain

u() = ‖u‖∞ > M‖u‖∞


M
,

a contradiction.
• Let ‖v‖∞ �= . We examine the case σu,v ≥ b. We have

‖v‖∞ = v(σu,v) = T(u, v)(σu,v)

=
∫ σu,v


ϕ–

p

(∫ σu,v

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ B

(
ϕ–

p

(∫ σu,v


g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

))

≥
∫ b

a

ϕ–
p

(∫ b

s
g(τ )f

(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ hϕ
–
p

(∫ b

a

g(τ )f
(
τ , u(τ ), v(τ )

)
dτ

)

> M‖v‖∞
(∫ b

a

ϕ–
p

(∫ b

s
g(τ ) dτ

)
ds + hϕ

–
p

(∫ b

a

g(τ ) dτ

))

≥ M‖v‖∞


M
,

a contradiction. By similar proofs, the cases  < σu,v ≤ a and a < σu,v < b can be
examined.

() Assume, on the contrary, that there exists (u, v) ∈ K such that (u, v) = T(u, v) and
(u, v) �= (, ). If ‖u‖∞ �= , then the function f satisfies either (.) or (.), and the proof
follows as in the previous cases. If ‖v‖∞ �= , then the function f satisfies either (.) or
(.), and the proof follows as in the previous cases. �

5 An example
We illustrate in the following example that all the constants that occur in Theorem . can
be computed.

Consider the system

(
ϕp

(
u′))′(t) + g(t)f

(
t, u(t), v(t)

)
= , t ∈ (, ),

(
ϕp

(
v′))′(t) + g(t)f

(
t, u(t), v(t)

)
= , t ∈ (, ),

(.)

subject to the boundary conditions

u′() = , u() + B
(
u′()

)
= , v() = B

(
v′()

)
, v() = , (.)
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where B and B are defined by

B(w) =

⎧
⎪⎪⎨

⎪⎪⎩

w, w ≤ ,
w
 ,  ≤ w ≤ ,
w
 + 

 , w ≥ ,

and

B(w) =

⎧
⎨

⎩

w
 ,  ≤ w ≤ ,
w
 + 

 , w ≥ .

Now we assume g = g ≡ . Thus we have


m

=
p – 

p
+ h,


m

=
p – 

p

(



) p
p–

+ h

(



) 
p–

,


M

=


M[, b]
=

p – 
p

b
p

p–
 + hb


p–


and


M

=


M[a, b]

=



min
a≤ν≤b

(
p – 

p

(
(ν – a)

p
p– + (b – ν)

p
p–

)
+ h(ν – a)


p–

)
.

The choice p = 
 , p = , b = 

 , a = 
 , b = 

 , h = 
 , h = 

 , h = 
 and h = 

 gives,
by direct computation,

c =



; c =



; m = .; M = .; m = .; M = ..

Let us now consider

f(t, u, v) =



(
u + tv) +




, f(t, u, v) =
√

tu + v.

Then, with the choice of ρ = ρ = 
 , r = , r = 

 , s = s = , we obtain

inf

{
f(t, u, v) : (t, u, v) ∈

[
,




]
× [,ρ] × [,ρ]

}

= f(, , ) = . >
√

Mρ = .,

sup
{

f(t, u, v) : (t, u, v) ∈ [, ] × [, r] × [, r]
}

= f(, r, r) = . <
√

mr = .,

sup
{

f(t, u, v) : (t, u, v) ∈ [, ] × [, r] × [, r]
}

= f(, r, r) = . < (mr) = ,
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inf

{
f(t, u, v) : (t, u, v) ∈

[
,




]
× [cs, s] × [, s]

}

= f(, cs, ) = . >
√

Ms = .,

inf

{
f(t, u, v) : (t, u, v) ∈

[



,



]
× [, s] × [cs, s]

}

= f(t, , cs) = . > M
s

 = ..

Thus the conditions (I


 , 


)�, (I
, 


) and (I

,) are satisfied; therefore system (.)-(.)

has at least two positive solutions (u, v) and (u, v) such that 
 < ‖(u, v)‖ ≤  and

 < ‖(u, v)‖ ≤ .
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