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Abstract
In this paper, we give a modified characteristics projection finite element method for
the time-dependent conduction-convection problems, which is gotten by
combining the modified characteristics finite element method and the projection
method. The stability and the error analysis shows that our method is stable and has
optimal convergence order. In order to show the effect of our method, some
numerical results are presented. From the numerical results, we can see that the
modified characteristics projection finite element method can simulate the fluid field,
temperature field, and pressure field very well.
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1 Introduction
The conduction-convection problem constitutes an important system of equations in at-
mospheric dynamics and dissipative nonlinear system of equations. There is a significant
amount of literature as regards this problem. An optimizing reduced Petrov-Galerkin least
squares mixed finite element (PLSMFE) [] method for the non-stationary conduction-
convection problems was given. An efficient sequential method was developed to estimate
the unknown boundary condition on the surface of a body from transient temperature
measurements inside the solid []. An analysis of conduction natural convection conju-
gate heat transfer in the gap between concentric cylinders under solar irradiation [] was
carried out by Kim et al., Boland and Layton [] gave an error analysis for finite element
methods for steady natural convection problems. Newton type iterative methods [–]
and defect-correction methods [–] for the conduction-convection equations were pre-
sented.

The projection methods, which are efficient methods for solving the incompressible
time-dependent fluid flow, were first introduced by Chorin [] and Temam [] in the late
s. This method is based on a special time-discretization of the Navier-Stokes equa-
tions. In this method, the convection-diffusion and the incompressibility are dealt with
in two different sub-steps. The velocity obtained in the convection-diffusion sub-step is
projected in order to satisfy the weak incompressibility condition. The projection methods
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can be classified into three families: the pressure-correction method [, ], the velocity-
correction method [], and the consistent splitting scheme [, ], which is called a gauge
method also []. The convergence analysis of the semi-discrete projection methods can
be found in Shen [] and Guermond and Quartapelle []. In Guermond and Quartapelle
[], the projection method was implemented by the finite element method. It was used to
solved the variable density Navier-Stokes equations in []. In [], a gauge-Uzawa projec-
tion method was presented. Then it was applied to the conduction-convection equations
[] and incompressible flows with variable density [].

As we know, the characteristics method is a highly effective method for the advection
dominated problems. Douglas and Russell [] presented the modified method of char-
acteristics first. It was extended to nonlinear coupled systems by Russell [] in two and
three spatial dimensions. A detailed analysis for the Navier-Stokes equations has been
done by Dawson et al. [] and numerical tests have been presented by Buscagkia and
Dari []. A second order MMOC mixed defect-correction finite element method []
for time-dependent Navier-Stokes problems was given. Notsu et al. gave a single-step
characteristics finite difference analysis for the convection-diffusion problems [] and
a single-step finite element method for the incompressible Navier-Stokes equations [].
El-Amrani and Seaid gave the error estimates of the modified method of characteristics
finite element methods for the Navier-Stokes [], natural, and mixed convection flows
[]. In [], Achdou and Guermond gave the projection/Lagrange-Galerkin method for
the incompressible Navier-Stokes equations.

In this paper, we give the modified characteristics projection finite element method
(MCPFEM) for the time-dependent conduction-convection problems, which is gotten by
combining the modified characteristics finite element method and the projection method.
We give stability and error analysis, which show that our method is stable and has optimal
convergence order. In order to show the efficiency of our method, some numerical results
are presented. At first, the numerical results of Bénard convection problems are given.
Then we give some numerical results of the thermal driven cavity flow. From the numer-
ical results, we can see that MCPFEM can simulate the fluid field, temperature field, and
pressure field very well.

2 The modified characteristics projection finite element method for the
time-dependent conduction-convection problems

In this paper, we consider the time-dependent conduction-convection problem in two di-
mensions whose coupled equations governing viscous incompressible flow and heat trans-
fer for the incompressible fluid are Boussinesq approximations to the Navier-Stokes equa-
tions. For all t ∈ (, t], find (u, p, T) ∈ X × M × W such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut – ν�u + (u · ∇)u + ∇p = κνgT + f , x ∈ �,
div u = , x ∈ �,
Tt – λν�T + u · ∇T = b, x ∈ �,
u(x, ) = u, T(x, ) = T, x ∈ �,
u = , T = , x ∈ ∂�,

()

where � is a bounded domain in R
 assumed to have a Lipschitz continuous boundary

∂�. u = (u(x, t), u(x, t))T represents the velocity vector, p(x, t) represents the pressure,
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T(x, t) represents the temperature, κ represents the Grashoff number, λ = Pr–, Pr is the
Prandtl number, g represents the vector of gravitational acceleration, ν = Re–, Re is the
Reynolds number, and f and b are the forcing functions.

In this section, we aim to describe some notations and materials which will be frequently
used in this paper. For the mathematical setting of the conduction-convection problems
(), we introduce the Hilbert spaces

X = H
(�), W = H(�),

M = L
(�) =

{

ϕ ∈ L(�);
∫

�

ϕ dx = 
}

.

�h is a quasi-uniform partition of �̄h into non-overlapping triangles, indexed by a param-
eter h = maxK∈�h{hK ; hK = diam(K)}. We introduce the finite element subspace Xh ⊂ X,
Mh ⊂ M, Wh ⊂ W as follows:

Xh =
{

vh ∈ X ∩ C(�̄); vh|K ∈ P	(K),∀K ∈ �h
}

,

Mh =
{

qh ∈ M ∩ C(�̄); qh|K ∈ Pk(K),∀K ∈ �h
}

,

Wh =
{
φh ∈ W ∩ C(�̄);φh|K ∈ Pj(K),∀K ∈ �h

}
,

where P	(K) is the space of piecewise polynomials of degree 	 on K , 	 ≥ , k ≥ , j ≥ 
are three integers. Wh = Wh ∩ H

(�), and assume that (Xh, Mh) satisfies the discrete LBB
condition, there exists β >  such that

sup
vh∈Xh

d(vh,ϕh)
‖∇vh‖

≥ β‖ϕh‖, ∀ϕh ∈ Mh,

where d(vh,ϕh) = –(ϕh,∇ · vh). Let Vh be the kernel of the discrete divergence operator,

Vh =
{

vh ∈ Xh; (qh,∇ · vh) = ,∀qh ∈ Mh
}

.

For each positive integer N , let {Jn :  ≤ n ≤ N} be a partition of [, t] into subintervals
Jn = (tn–, tn], with tn = nτ , τ = T/N . Set un = u(·, tn). The characteristic trace-back along
the field un– of a point x ∈ � at time tn to tn– is approximately

x̄(x, tn–) = x – un–τ .

Consequently, the hyperbolic part in the first equation of () at time tn is approximated
by

ut + un– · ∇un ≈ un – ūn–

�t
,

where

ūn– =

{
un–(x̄), x̄ = x – un–τ ∈ �,
, otherwise,

for any function w.
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With the previous notations, we get the projection FEM for the time-dependent
conduction-convection problem (), which is a slight transmutation of the projection FEM
[, ] for the time-dependent Navier-Stokes equations.

Algorithm . (Projection FEM) Start u
h as a solution of (u

h, vh) = (u, vh) and (T
h ,ψh) =

(T,ψh), p
h =  for all vh ∈ Vh, ψh ∈ Mh.

Step : Find ûn+
h ∈ Xh as the solution of

(
ûn+

h – un
h

τ
, vh

)

+ B
(
un

h, ûn+
h , vh

)
+ ν

(∇ûn+
h ,∇vh

)

= κν(gTn
h , vh

)
+

(
f (tn+), vh

)
, ∀vh ∈ Xh,

where B(uh, vh, wh) = 
 ((uh · ∇)vh, wh) – 

 ((uh · ∇)wh, vh).
Step : Find un+

h ∈ Vh, pn+
h ∈ Mh as the solution of

(
un+

h – ûn+
h

τ
, vh

)

+ d
(
pn+

h , vh
)

= , ∀vh ∈ Vh,

d
(
qh, un+

h
)

= , ∀qh ∈ Mh.
()

Step : Compute Tn+
h ∈ Wh as the solution of the linear elliptic equation

(
Tn+

h – Tn
h

τ
,ψh

)

+ B̄
(
un+

h , Tn+
h ,ψh

)
+ λν

(∇Tn+
h ,∇ψh

)

=
(
b(tn+),ψh

)
, ∀ψh ∈ Wh, ()

B̄(uh, Th,ψh) = 
 ((uh · ∇)Th,ψh) – 

 ((uh · ∇)ψh, Th).

Remark . Denote by Ph the orthogonal projector in (L(�)) onto V . We can readily
check that () is equivalent to []

un+
h = Phûn+

h . ()

The MC time discretization, combined with the projection finite element method, leads
to the following MC projection finite element method.

Algorithm . (MC projection FEM) Start with u
h as a solution of (u

h, vh) = (u, vh) for
all vh ∈ Vh.

Step : Find ûn+
h ∈ Xh as the solution of

(
ûn+

h – u̇n
h

τ
, vh

)

+ ν
(∇ûn+

h ,∇vh
)

= κν(gTn
h , vh

)
+

(
f (tn+), vh

)
, ∀vh ∈ Vh, ()

where

u̇n
h =

{
un

h(ẋ), ẋ = x – un
hτ ∈ �,

, otherwise.
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Step : Find un+
h ∈ Vh, pn+

h ∈ Mh as the solution of

(
un+

h – ûn+
h

τ
, vh

)

+ b
(
pn+

h , vh
)

= , ∀vh ∈ Vh,

b
(
qh, un+

h
)

= , ∀qh ∈ Mh.
()

Step : Compute Tn+
h ∈ Wh, the solution of the linear elliptic equation

(
Tn+

h – Ṫn
h

τ
,ψh

)

+ λν
(∇Tn+

h ,∇ψh
)

=
(
b(tn+),ψh

)
, ∀ψh ∈ Wh, ()

where

Ṫn
h =

{
Tn

h (ẋ), ẋ = x – un
hτ ∈ �,

, otherwise.

Remark . Define Ẋ n+
x (t) = x – (tn+ – t)un

h , ∀t ∈ [tn–, tn+],  ≤ l ≤ N . Since Xh is a
subset of W ,∞(�), under the condition τ ≤ 

Ln
, Ln = max≤i≤n ‖un

h‖W ,∞ on the time step
it is an easy matter to verify that this mapping has a positive Jacobian, since un

h vanishes
on ∂�; this mapping is one-to-one and this is a change of variables from � onto �. This
yields for any positive function φ on � the estimate (please see [] for details)

∫

�

φ
(
Ẋ n+

h (t)
)

dx ≤ C
∫

�

φ(x) dx.

3 Stability analysis
Theorem . (Stability) If τ ≤ 

Ln
, Ln = max≤i≤n ‖ui

h‖W ,∞ , the MC projection FEM is
stable in the sense that

∥
∥uN+

h
∥
∥

 +
∥
∥TN+

h
∥
∥

 + ντ

N∑

n=

∥
∥∇un+

h
∥
∥

 + λντ

N∑

n=

∥
∥∇Tn+

h
∥
∥



≤ C
∥
∥u

h
∥
∥

 + C
∥
∥T

h
∥
∥

 + C
τ

ν

N∑

n=

∥
∥f (tn+)

∥
∥

– + Cτ

N∑

n=

∥
∥b(tn+)

∥
∥

–.

Remark . We will prove the boundary of ‖un
h‖W ,∞ in the next section. Here, we use

mathematical induction method.

Proof Let vh = un+
h in (), we obtain

(
ûn+

h – u̇n
h

τ
, un+

h

)

+ ν
(∇ûn+

h ,∇un+
h

)
= κν(gTn

h , un+
h

)
+

(
f (tn+), un+

h
)
.

Using (), we deduce

(
ûn+

h , vh
)

=
(
un+

h , vh
)

+ τd(ph, vh), ∀vh ∈ Xh.

Noting ∇ · un+
h = , we get

(
ûn+

h , un+
h

)
=

(
un+

h , un+
h

)
, ()
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(∇ûn+
h ,∇un+

h
)

=
(∇un+

h ,∇un+
h

)
. ()

Then we deduce
(

un+
h – u̇n

h
τ

, un+
h

)

+ ν
∥
∥∇un+

h
∥
∥

 = κν(gTn
h , un+

h
)

+
(
f (tn+), un+

h
)
.

We arrive at

∥
∥un+

h
∥
∥

 –
∥
∥un

h
∥
∥

 + ντ
∥
∥∇ûn+

h
∥
∥



≤ ∥
∥u̇n

h
∥
∥

 –
∥
∥un

h
∥
∥

 + κντ
(
gTn

h , ûn+
h

)
+ τ

(
f (tn+), ûn+

h
)
. ()

Now, we estimate the bound of ‖u̇n
h‖

 – ‖un
h‖

. By the definition of Ẋ n
x (tn–), we have

J
(
Ẋ n

x (tn–)
)

=

(
 – ∂xun–

h τ –∂yun–
h τ

–∂xun–
h τ  – ∂yun–

h τ

)

.

Hence,

det J
(
Ẋ n

x (tn–)
)

=  + O(τ ).

Then we get

‖u̇n
h‖

 – ‖un
h‖

 =
∫

�

(
u̇n

h
) dx –

∫

�

(
un

h
) dx

=
∫

�

(
un

h
)( + O(τ )

)
dx –

∫

�

(
un

h
) dx.

We have

∥
∥u̇n

h
∥
∥

 –
∥
∥un

h
∥
∥

 ≤ Cτ
∥
∥un

h
∥
∥

. ()

On the other hand, by Cauchy-Schwarz inequality, we deduce

κντ
(
gTn

h , un+
h

) ≤ Cκντ
∥
∥Tn

h
∥
∥



∥
∥un+

h
∥
∥



≤ Cκντ
∥
∥Tn

h
∥
∥

 + Cτ
∥
∥un+

h
∥
∥

. ()

Combining (), (), and (), we get

∥
∥un+

h
∥
∥

 –
∥
∥un

h
∥
∥

 + ντ
∥
∥∇un+

h
∥
∥



≤ Cτ
∥
∥un

h
∥
∥

 +
τ

ν

∥
∥f (tn+)

∥
∥

– +
ντ


∥
∥∇un+

h
∥
∥



+ Cκντ
∥
∥Tn

h
∥
∥

 + Cτ
∥
∥un+

h
∥
∥

. ()

Let ψh = τTn+
h in (), we obtain


(
Tn+

h – Ṫn
h , Tn+

h
)

+ τλν
(∇Tn+

h ,∇Tn+
h

)
= τ

(
b(tn+), Tn+

h
)
. ()
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We deduce
∥
∥Tn+

h
∥
∥

 –
∥
∥Tn

h
∥
∥

 + τλν
∥
∥∇Tn+

h
∥
∥

 ≤ τ
∥
∥b(tn+)

∥
∥

– +
∥
∥Ṫn

h
∥
∥

 –
∥
∥Tn

h
∥
∥

.

Similar to (), we have
∥
∥Ṫn

h
∥
∥

 –
∥
∥Tn

h
∥
∥

 ≤ Cτ
∥
∥un

h
∥
∥

.

Then we can get
∥
∥Tn+

h
∥
∥

 –
∥
∥Tn

h
∥
∥

 + τλν
∥
∥∇Tn+

h
∥
∥

 ≤ τ
∥
∥b(tn+)

∥
∥

– + Cτ
∥
∥un

h
∥
∥

. ()

Adding () and (), summing over all n from  to N , we can get

∥
∥uN+

h
∥
∥

 +
∥
∥TN+

h
∥
∥

 + ντ

N∑

n=

∥
∥∇un+

h
∥
∥

 + λντ

N∑

n=

∥
∥∇Tn+

h
∥
∥



≤ ∥
∥u

h
∥
∥

 +
∥
∥T

h
∥
∥

 + Cτ

N∑

n=

∥
∥un+

h
∥
∥



+
τ

ν

N∑

n=

∥
∥f (tn+)

∥
∥

– + Cκντ

N∑

n=

∥
∥Tn

h
∥
∥

 + τ

N∑

n=

∥
∥b(tn+)

∥
∥

–.

Using Gronwall lemma, we deduce

∥
∥uN+

h
∥
∥

 +
∥
∥TN+

h
∥
∥

 + ντ

N∑

n=

∥
∥∇un+

h
∥
∥

 + λντ

N∑

n=

∥
∥∇Tn+

h
∥
∥



≤ C
∥
∥u

h
∥
∥

 + C
∥
∥T

h
∥
∥

 + C
τ

ν

N∑

n=

∥
∥f (tn+)

∥
∥

– + Cτ

N∑

n=

∥
∥b(tn+)

∥
∥

–. �

4 Error analysis
In order to get the error analysis, we give some lemmas first.

Lemma . [, ] Let e(x, n) = [ un(x)–ūn–(x)
τ

– ( ∂u
∂t (x, tn) + un(x)∇un(x))] and let τ >  be

such that u ∈ C ([τ , T]; H(�)). For tn > τ , we have

e(x, n) = –τ

(



dgn
x

dt +
∂u
∂t

· ∇u(x, tn)
)

+ O
(
τ ), ()

where gn
x (t) = u(x – (tn – t)un–, t), un(x) = u(x, tn).

Lemma . Let

ζ (x, n) =
(

Tn(x) – Ṫn–(x)
τ

– Tt(x, t) – u · ∇T
)

,

and let τ >  be such that T ∈ C ([τ , T]; H(�)). For tn > τ , we have

ζ (x, n) = –τ

(



dγ n
x

dt +
∂u
∂t

· ∇T(x, tn)
)

+ O
(
τ ),

where γ n
x (t) = T(x – (tn – t)un–

h , t), un(x) = u(x, tn).
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Lemma . There exists rh : W → Wh; for all ψ ∈ W we have

(∇(ψ – rhψ),φh
)

= , ∀φh ∈ Wh, ()
∫

�

(ψ – rhψ) dx = , ‖∇rhψ‖ ≤ ‖∇ψ‖. ()

When ψ ∈ W r,q(�) ( ≤ q ≤ ∞), we have

‖ψ – rhψ‖–s,q ≤ Chr+s|ψ |r,q, – ≤ s ≤ m,  ≤ r ≤ m + . ()

There exists r̄h : W → Wh; for all ψ ∈ W we have

(∇(ψ – r̄hψ),φh
)

= , ∀φh ∈ Wh,‖∇ r̄hψ‖ ≤ ‖∇ψ‖. ()

When ψ ∈ W r,q(�) ( ≤ q ≤ ∞), we have

‖ψ – r̄hψ‖–s,q ≤ Chr+s|ψ |r,q, – ≤ s ≤ m,  ≤ r ≤ m + . ()

Then we define the Galerkin projection (Rh, Qh) = (Rh(u, p), Qh(u, p)) : (X, M) → (Xh,
Mh), such that

νa(Rh – u, vh) – d(Qh – p, vh) + d(ϕh, Rh – u) = ,

∀(u, p) ∈ (X, M), (vh,ϕh) ∈ (Xh, Mh). ()

Lemma . [, ] The Galerkin projection (Rh, Qh) satisfies

‖Rh – u‖ + h
(∥
∥∇(Rh – u)

∥
∥

 + ‖Qh – p‖
) ≤ Chk+(ν‖u‖k+ + ‖p‖k

)
,

k = , . ()

4.1 Error estimate for velocity and temperature
Lemma . If τ ≤ 

Ln
, Ln = max≤i≤n ‖ui

h‖W ,∞ , u, p, ut , and pt are sufficiently smooth, we
have

∥
∥un+

h
∥
∥

W ,∞ < +∞,

∥
∥ξN+

h
∥
∥

 +
N∑

n=

∥
∥ξ̂n+

h – ξn
h
∥
∥

 +


ντ

N∑

n=

∥
∥∇ ξ̂n+

h
∥
∥

 +
∥
∥εN+

h
∥
∥



+
N∑

n=

∥
∥εn+

h – ξn
h
∥
∥

 + λντ

N∑

n=

∥
∥∇εn+

h
∥
∥

 ≤ C
(
τ  + h(k+)),

∥
∥ξN+

h
∥
∥

 +
N∑

n=

∥
∥ξ̂n+

h – ξn
h
∥
∥

 +


ντ

N∑

n=

∥
∥∇ξn+

h
∥
∥

 +
∥
∥εN+

h
∥
∥



+
N∑

n=

∥
∥εn+

h – ξn
h
∥
∥

 + λντ

N∑

n=

∥
∥∇εn+

h
∥
∥

 ≤ C
(
τ  + h(k+)),
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where ξ̂n
h = ûn

h – Rn
h , ξn

h = un
h – Rn

h , εn+
h = Tn+

h – rhTn+, Rn
h = Rh(un, pn), C is a positive con-

stant independent of τ and h.

Proof Subtracting ( Rn+
h –Ṙn

h
τ

, vh) + ν(∇Rn+
h ,∇vh) from both sides of (), we can get

(
(ûn+

h – Rn+
h ) – (u̇n

h – Ṙn
h)

τ
, vh

)

+ ν
(∇(

ûn+
h – Rn+

h
)
,∇vh

)

= kνg
(
Tn

h , vh
)

+
(
f n, vh

)
–

(
Rn+

h – Ṙn
h

τ
, vh

)

– ν
(∇Rn+

h ,∇vh
)
. ()

Defining ηn = un – Rn
h , we can get

(
ξ̂n+

h – ξn
h

τ
, vh

)

+ ν
(∇ ξ̂n+

h ,∇vh
)

= –
(

un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+, vh

)

+
(

ηn+ – η̇n

τ
, vh

)

+
(

u̇n – ūn

τ
, vh

)

+
(∇pn+, vh

)
+

(
ξ̇n

h – ξn
h

τ
, vh

)

+ ν
(∇(

un+ – Rn+
h

)
,∇vh

)
+ kνg

(
Tn+ – Tn

h , vh
)

()

= –
(

un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+, vh

)

+
(

u̇n – ūn

τ
, vh

)

+ d
(
Qn+

h – pn+, vh
)

+
(

ηn+ – η̇n

τ
, vh

)

+
(

ξ̇n
h – ξn

h
τ

, vh

)

+ ν
(∇(

un+ – Rn+
h

)
,∇vh

)
+ kνg

(
Tn+ – Tn

h , vh
)

= –
(

un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+, vh

)

+
(

ηn+ – η̇n

τ
, vh

)

+
(

u̇n – ūn

τ
, vh

)

+
(

ξ̇n
h – ξn

h
τ

, vh

)

+ kνg
(
Tn+ – Tn

h , vh
)
. ()

Let vh = τ ξ̂n+
h in (), we can get

∥
∥ξ̂n+

h
∥
∥

 –
∥
∥ξn

h
∥
∥

 +
∥
∥ξ̂n+

h – ξn
h
∥
∥

 + ντ
∥
∥∇ ξ̂n+

h
∥
∥



= –τ

(
un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+, ξ̂n+

h

)

+ 
(
ηn+ – η̇n, ξ̂n+

h
)

+ 
(
u̇n – ūn, ξ̂n+

h
)

+ 
(
ξ̇n

h – ξn
h , ξ̂n+

h
)

+ kντg
(
Tn+ – Tn

h , ξ̂n+
h

)

≡
∑

i=

Ai, ()
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where

A = –τ

(
un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+ – f n+, ξ̂n+

h

)

,

A = 
(
u̇n – ūn, ξ̂n+

h
)
,

A = 
(
ηn+ – η̇n, ξ̂n+

h
)
,

A = 
(
u̇n – ūn, ξ̂n+

h
)

+ 
(
ξ̇n

h – ξn
h , ξ̂n+

h
)
,

A = kνgτ
(
Tn+ – Tn

h , ξ̂n+
h

)
.

Now, we estimate each term Ai, respectively. By Hölder inequality, we get

A ≤ Cτ
∥
∥ēn+∥∥

 +
ντ


∥
∥∇ ξ̂n+

h
∥
∥

. ()

By the definition of ẋ and x̄, we can get

ẋ(x, tn) – x̄(x, tn) =
(
un

h – un)τ .

Using Taylor’s formula, we obtain

∣
∣u̇n – ūn∣∣ =

∣
∣un(ẋ) – un(x̄)

∣
∣

≤ τ
∥
∥∇un∥∥∞

∣
∣un

h – un∣∣

≤ τ
∥
∥∇un∥∥∞

(∣
∣un

h – Rn
h
∣
∣ +

∣
∣Rn

h – un∣∣
)
.

Therefore, we have

∥
∥u̇n – ūn∥∥

 ≤ τ
∥
∥∇un∥∥∞

(∥
∥un – Rn

h
∥
∥

 +
∥
∥Rn

h – un
h
∥
∥



)

≤ Cτ
(
hk+ +

∥
∥ξn

h
∥
∥



)
.

Then we deduce

A ≤ C
∥
∥u̇n – ūn∥∥



∥
∥∇ ξ̂n+

h
∥
∥



≤ Cτ
(
h(k+) +

∥
∥ξn

h
∥
∥



)
+

ντ


∥
∥∇ ξ̂n+

h
∥
∥

. ()

Now, we estimate the boundedness of A. We have

∥
∥ηn+ – ηn∥∥

 =
(∫

�

(
ηn+ – ηn) dx

) 


=
(∫

�

∣
∣
∣
∣

∫ tn+

tn

∂η

∂t
(x, θ ) dθ

∣
∣
∣
∣



dx
) 



≤ √
τ

(∫

�

∫ tn+

tn

∣
∣
∣
∣
∂η

∂t

∣
∣
∣
∣



(x, θ ) dθ dx
) 



≤ √
τ

∥
∥
∥
∥
∂η

∂t

∥
∥
∥
∥

L([tn ,tn+]:L(�))
. ()
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By the definition of X̂ n+
x (tn), we can get

J
(
X̂ n+

x (tn)
)

=

(
 – ∂xun–

h τ –∂yun–
h τ

–∂xun–
h τ  – ∂yun–

h τ

)

.

Hence,

det J
(
X̂ n+

x (tn)
)

=  + O(τ ).

Then we get

∥
∥ηn – η̇n∥∥

– = sup
v∈V

(‖∇v‖–


(
ηn – η̂n, v

))

= sup
v∈V

[

‖∇v‖–


(∫

�

ηn(x)v(x) dx –
∫

�

ηn(z)v
(
X̂ n

x (tn)–)( + O
(�t))dz

)]

≤ sup
v∈V

(

‖∇v‖–


∫

�

ηn–(x)
(
v(x) – v

(
X̂ n

x (tn)–))dx
)

+ sup
v∈V

(

Cτ ‖∇v‖–


∫

�

ηn–(z)v
(
X̂ n

x (tn)–)dz
)

.

Let G(x) = x – X̂ n+
x (tn)–, then |G(x)| ≤ Cτ , and

∥
∥v(x) – v

(
X̂ n+

x (tn)–)∥∥
 ≤

∫

�

(∫ tn+

tn

d
dt

v
(
X̂ n+

x (t)–)dt
)

dx

≤ Cτ ‖∇v‖
.

Similarly, we have

∥
∥v

(
X̂ n+

x (tn)–)∥∥ ≤ ‖v‖
( + Cτ ).

Then we deduce

∥
∥ηn – η̇n∥∥

– ≤ Cτ
∥
∥ηn∥∥

. ()

By () and (), we have

∥
∥ηn+ – η̇n∥∥

– ≤ Cτhk+∥∥un
h
∥
∥∞ + Chk+√τ . ()

Therefore, we get

A ≤ ∥
∥ηn+ – η̇n∥∥

–

∥
∥∇ ξ̂n+

h
∥
∥



≤ Cτ h(k+) + Cτh(k+) +
ντ


∥
∥∇ ξ̂n+

h
∥
∥

. ()

Similarly, we obtain

A ≤ Cτ
∥
∥ξn

h
∥
∥

 +
ντ


∥
∥∇ ξ̂n+

h
∥
∥

.
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For the term A, by Taylor’s formula, we can get ‖Tn+ – Tn‖ ≤ Cτ , then

A = kνgτ
(
Tn+ – Tn

h , ξ̂n+
h

)

= kνgτ
(
Tn+ – Tn, ξ̂n+

h
)

+ kνgτ
(
Tn – Tn

h , ξ̂n+
h

)

≤ Ckντ  + Ckντ
∥
∥Tn – Tn

h
∥
∥

 +
ντ


∥
∥∇ξn+

h
∥
∥

. ()

Combining (), (), (), and (), we arrive at

∥
∥ξ̂n+

h
∥
∥

 –
∥
∥ξn

h
∥
∥

 +
∥
∥ξ̂n+

h – ξn
h
∥
∥

 +


ντ

∥
∥∇ ξ̂n+

h
∥
∥

 + ντ
(∥
∥sn+

h
∥
∥

 –
∥
∥sn

h
∥
∥



)

≤ Cτ
(
τ  + h(k+)) + Cτ

∥
∥ξn

h
∥
∥

 + Ckντ
∥
∥Tn – Tn

h
∥
∥

. ()

Subtracting τ–(rhTn+ – rhṪn,ψh) +λν(∇rhTn+,∇ψh) from both sides of (), we can get

(
(Tn+

h – rhTn+) – (Ṫn
h – rhṪn)

τ
,ψh

)

+ λν
(∇(

Tn+
h – rhTn+),∇ψh

)

= –
(

rhTn+ – rhṪn

τ
,ψh

)

– λν
(∇rhTn+,∇ψh

)
+

(
b(tn+),∇ψh

)

=
(

(Tn+ – rhTn+) – (Ṫn – rhṪn)
τ

,ψh

)

+ λν
(∇(

Tn+ – rhTn+),∇ψh
)

+
(
ζ (tn+),ψh

)
. ()

Letting ε̇n+
h = Ṫn+

h – rhṪn+, θn+ = Tn+ – rhTn+, θ̇n = Ṫn – rhṪn, and ψh = τεn+
h in (),

we can get


(
εn+

h – εn
h , εn+

h
)

+ λντ
(∇εn+

h ,∇εn+
h

)

= 
(
θn+ – θ̇n, εn+

h
)

+ 
(
ζ (tn+), εn+

h
)

+ 
(
εn

h – ε̇n
h , εn+

h
)
.

Similarly to (), we get

∥
∥εn

h – ε̇n
h
∥
∥

 ≤ Cτ
∥
∥εn

h
∥
∥

,
∥
∥θn+ – θ̇n∥∥

– ≤ Cτhk+∥∥un
h
∥
∥∞ + Chk+√τ .

Then we deduce

∥
∥εn+

h
∥
∥

 –
∥
∥εn

h
∥
∥

 +
∥
∥εn+

h – εn
h
∥
∥

 + λντ
∥
∥∇εn+

h
∥
∥



≤ Cτhr+ + Cτ  + λντ
∥
∥∇εn+

h
∥
∥

 + Cτ
∥
∥εn

h
∥
∥

.

Namely,

∥
∥εn+

h
∥
∥

 –
∥
∥εn

h
∥
∥

 +
∥
∥εn+

h – εn
h
∥
∥

 + λντ
∥
∥∇εn+

h
∥
∥



≤ Cτh(r+) + Cτ  + Cτ
∥
∥εn

h
∥
∥

. ()
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Adding () to (), we get

∥
∥ξn+

h
∥
∥

 –
∥
∥ξn

h
∥
∥

 +
∥
∥ξn+

h – ξn
h
∥
∥

 +


ντ

∥
∥∇ ξ̂n+

h
∥
∥



+
∥
∥εn+

h
∥
∥

 –
∥
∥εn

h
∥
∥

 +
∥
∥εn+

h – εn
h
∥
∥

 + λντ
∥
∥∇εn+

h
∥
∥



≤ Cτh(r+) + Cτ  + Cτ
∥
∥ξn

h
∥
∥

 + Cτ
∥
∥εn

h
∥
∥

.

Summing over n from  to N gives

∥
∥ξ̂N+

h
∥
∥

 +
N∑

n=

∥
∥ξ̂n+

h – ξn
h
∥
∥

 + 
N∑

n=

∥
∥∇ρn+

h
∥
∥



+


ντ

N∑

n=

∥
∥∇ ξ̂n+

h
∥
∥

 +
∥
∥εN+

h
∥
∥



+
N∑

n=

∥
∥εn+

h – εn
h
∥
∥

 + λντ

N∑

n=

∥
∥∇εn+

h
∥
∥



≤ C
(
τ  + h(k+)) + Cτ

N∑

n=

(∥
∥εn

h
∥
∥

 +
∥
∥ξn

h
∥
∥



)
.

By Gronwall lemma, we obtain

∥
∥ξ̂N+

h
∥
∥

 +
N∑

n=

∥
∥ξ̂n+

h – ξn
h
∥
∥

 +


ντ

N∑

n=

∥
∥∇ ξ̂n+

h
∥
∥

 +
∥
∥εN+

h
∥
∥



+
N∑

n=

∥
∥εn+

h – ξn
h
∥
∥

 + λντ

N∑

n=

∥
∥∇εn+

h
∥
∥

 ≤ C
(
τ  + h(k+)).

Using (), we get

(
ξn+

h – ξ̂n+
h

τ
, vh

)

– b
(
pn+

h , vh
)

= .

Let vh = τξn+
h , we can get

∥
∥ξn+

h
∥
∥

 –
∥
∥ξ̂n+

h
∥
∥

 +
∥
∥ξn+

h – ξ̂n+
h

∥
∥

 = .

Then we have

∥
∥ξN+

h
∥
∥

 +
N∑

n=

∥
∥ξ̂n+

h – ξn
h
∥
∥

 +


ντ

N∑

n=

∥
∥∇ ξ̂n+

h
∥
∥

 +
∥
∥εN+

h
∥
∥



+
N∑

n=

∥
∥εn+

h – ξn
h
∥
∥

 + λντ

N∑

n=

∥
∥∇εn+

h
∥
∥

 ≤ C
(
τ  + h(k+)).

Using the inequality (see [], Remark . and []),

‖∇Phu‖ ≤ C‖∇u‖
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we have

∥
∥ξN+

h
∥
∥

 +
N∑

n=

∥
∥ξ̂n+

h – ξn
h
∥
∥

 +


ντ

N∑

n=

∥
∥∇ξn+

h
∥
∥

 +
∥
∥εN+

h
∥
∥



+
N∑

n=

∥
∥εn+

h – ξn
h
∥
∥

 + λντ

N∑

n=

∥
∥∇εn+

h
∥
∥

 ≤ C
(
τ  + h(k+)). ()

Using the triangle inequality, we deduce

∥
∥un+

h
∥
∥

W ,∞ ≤ ∥
∥un+

h – Rn+
h

∥
∥

W ,∞ +
∥
∥Rn+

h
∥
∥

W ,∞ .

Via the inverse inequality, ‖vh‖W ,∞ ≤ Ch–‖∇vh‖ (see []), we can get

∥
∥un+

h
∥
∥

W ,∞ ≤ Ch–∥∥∇(
un+

h – Rn+
h

)∥
∥

 +
∥
∥Rn+

h
∥
∥∞.

We thus finish the proof. �

Theorem . (Error estimates for the velocity and temperature) If τ ≤ 
Ln

, u, p, ut , and
pt are sufficiently smooth, we have

τ

N∑

n=

∥
∥uN+ – uN+

h
∥
∥

 ≤ C
(
τ  + h(k+)), ()



ντ

N∑

n=

∥
∥∇(

un+ – un+
h

)∥
∥

 ≤ C
(
τ  + hk), ()

τ

N∑

n=

∥
∥TN+ – TN+

h
∥
∥

 ≤ C
(
τ  + h(k+)), ()



ντ

N∑

n=

∥
∥∇(

Tn+ – Tn+
h

)∥
∥

 ≤ C
(
τ  + hk). ()

Proof Using triangle inequality, (), and Lemma ., we can get this theorem. �

4.2 Error estimates for the pressure
The following theorem on the pressure is a consequence of the previous theorem on the
velocity.

Theorem . (Error estimate for pressure) If τ ≤ 
Ln

, u, p, ut , and pt are sufficiently
smooth, we have for all  ≤ n ≤ N ,

∥
∥pn+ – pn+

h
∥
∥

 ≤ C
(
τ + hk).

Proof By (), we deduce

(
pn+ – pn+

h ,∇vh
)

=
(

un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+, vh

)

–
(

ξn+
h – ξn

h
τ

, vh

)
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– ν
(∇ ξ̂n+

h ,∇vh
)

+
(

ηn+ – η̇n

τ
, vh

)

+
(

u̇n – ūn

τ
, vh

)

+
(

ξ̇n
h – ξn

h
τ

, vh

)

+ ν
(∇(

un+ – Rn+
h

)
,∇vh

)
+ kνg

(
Tn+ – Tn

h , vh
)
.

By the LBB condition and Cauchy-Schwarz inequality, we get

∥
∥pn+ – pn+

h
∥
∥



≤
∥
∥
∥
∥

un+ – ūn

τ
– ν�un+ + ∇pn+ – kνgTn+ – f n+

∥
∥
∥
∥



+ Cτ–∥∥ξn+
h – ξn

h
∥
∥

 + ν
∥
∥ξ̂n+

h
∥
∥

 + C
∥
∥
∥
∥

u̇n – ūn

τ

∥
∥
∥
∥



+ C
∥
∥
∥
∥
ηn+ – η̇n

τ

∥
∥
∥
∥


+ C

∥
∥
∥
∥
ξ̇n

h – ξn
h

τ

∥
∥
∥
∥


– ν

∥
∥∇(

un+ – Rn+
h

)∥
∥



+ kνg
∥
∥Tn+ – Tn

h
∥
∥

.

Using (), (), (), and (), we arrive at

∥
∥pn+ – pn+

h
∥
∥

 ≤ C
(
τ + hk).

Thus, we finish the proof. �

5 Numerical experiments
In order to show the effect of our method, we give some numerical results in this section.

5.1 Bénard convection problem
The first experiments is Bénard convection problem in the domain � = [, ] × [, ] with
the forcing f =  and b = . Figure  displays the initial and boundary conditions for ve-
locity u and temperature T . It means that the boundary conditions for the velocity are the
no-slip boundary condition u =  on ∂�, thermal insulation ∂υT =  on the lateral bound-
aries, and a fixed temperature difference between top and bottom boundaries. Here, we
choose h = /, τ = ., and the finite element space is a Taylor-Hood finite element
space. Here, we use the software package FreeFEM++ [] for our program.

First, we set κ = , λ = ., ν = .. Figure  gives the numerical temperature at t =
., ., ., and .. Figure  gives the numerical pressure at t = ., ., ., and ..
Figure  gives the numerical streamline at t = ., ., ., and ..

Figure 1 Physics model of Bénard convection problem.
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Figure 2 Numerical temperatures of Bénard convection problem with κ = 1 × 104 at different times.

Figure 3 Numerical pressures of Bénard convection problem with κ = 1 × 104 at different times.
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Figure 4 Numerical streamlines of Bénard convection problem with κ = 1 × 104 at different times.

Then we set κ = , λ = ., ν = .. Figure  gives the numerical temperature at
t = ., ., ., and .. Figure  gives the numerical pressure at t = ., ., ., and .
Figure  gives the numerical streamline at t = ., ., ., and . From the numerical re-
sults, we can see that MCPFEM can simulate the fluid field, temperature field and pressure
field very well, and it works well for a high Grashoff number κ .

5.2 Thermal driven cavity flow problem
Here, we consider the thermal driven flow in an enclosed square � = [, ] with the forc-
ing f =  and b = , and the initial and boundary conditions are given by Figure . It means
that the boundary conditions for velocity is no-slip boundary condition u =  on ∂�, and
thermal insulation ∂υT =  on the top and bottom boundaries, and a fixed temperature
difference between left and right boundaries. Here, we choose h = /, τ = –, and the
finite element space is a Taylor-Hood finite element space.

We choose λ = , ν = , κ =  and  respectively. Figures  and  give the numer-
ical results for κ =  and , respectively. From the numerical results, we can see that
MCPFEM can simulate the fluid field, temperature field, and pressure field very well. The
numerical experiments confirm our theoretical analysis and demonstrate the efficiency of
our method.



Si and Wang Boundary Value Problems  (2015) 2015:151 Page 18 of 23

Figure 5 Numerical temperatures of Bénard convection problem with κ = 1 × 105 at different times.

Figure 6 Numerical pressures of Bénard convection problem with κ = 1 × 105 at different times.
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Figure 7 Numerical streamline of Bénard convection problem with κ = 1 × 105 at different times.

Figure 8 Physics model of thermal driven cavity
flow.
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Figure 9 Numerical results of thermal driven cavity flow with κ = 1 × 105 at different time, left panels
the numerical streamlines, middle panels the numerical pressures, and right panels the numerical
temperatures.
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Figure 10 Numerical results of thermal driven cavity flow with κ = 1 × 106 at different times, left
panels the numerical streamlines, middle panels the numerical pressures, and right panels the
numerical temperatures.
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