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Abstract
We study the vertex conditions of local Sturm-Liouville operators on metric graphs.
Our aim is to give a new description of vertex conditions defining the self-adjoint
Sturm-Liouville operators and to clarify the natural geometric structure on the space
of complex vertex conditions. Based on this description, we give the self-adjointness
results for local Sturm-Liouville operators on finite graphs and the
Povzner-Wienholtz-type self-adjointness results for local Sturm-Liouville operators on
infinite graphs.
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1 Introduction
A graph � we consider in this paper is an ordered pair of disjoint sets (V , E), where V is a
countable vertex set and E is a countable edge set. Moreover, the graph is connected and
each edge en has a positive length |en|.

A Sturm-Liouville operator on the graph � is actually a system of Sturm-Liouville op-
erators on intervals complemented by appropriate matching conditions at inner vertices
and some boundary conditions at the boundary vertices. The matching conditions and the
boundary conditions are collectively called vertex conditions. The Sturm-Liouville oper-
ators on L

w(�,C) are generated by the expression

Lf (x) :=


w(x)
(
–
(
p(x)f ′(x)

)′ + q(x)f (x)
)
, x ∈ �, (.)

where /p, q, w ∈ L
loc(�,R) and w >  a.e. on �.

If V and E are finite sets, then the description of the self-adjoint vertex conditions can be
treated as the description of the boundary conditions in self-adjoint multi-interval Sturm-
Liouville problems. (The results about multi-interval Sturm-Liouville problems can be
found in [].) For example, in [], Harmer described the self-adjoint boundary conditions
for the Schrödinger operators on the finite graphs in terms of a unitary matrix. When the
graph has infinitely many vertices, the general treatments for Sturm-Liouville operators
on intervals and Sturm-Liouville operators on finite graphs are deficient.

For regular Sturm-Liouville operators defined on (a, b), in [], Kong et al. clarified the
natural geometric structure on the space of complex boundary conditions, which provides
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the basis for studying the dependence of Sturm-Liouville eigenvalues on boundary condi-
tions. But for Sturm-Liouville operators on graphs, the geometric structure on the space
of complex vertex conditions is not clear. Carlson provided a description of the domains
of local essential self-adjoint differential operators on weighted directed graphs with the
coefficients of the operators smooth enough []. And there are several other descriptions
of the vertex conditions that one can add to the Schrödinger expression in order to create
a self-adjoint operator on graph � (see, e.g., [–] for details). Based on the methods in
[] and [], we give a new description of all vertex conditions defining the domains of lo-
cal (essentially) self-adjoint Sturm-Liouville operators on weighted directed graphs. The
new description allows us to clarify a natural geometric structure on the space of vertex
conditions.

The paper is organized as follows. Some results of the differential operators on graphs
are introduced in Section . In Section  we give some properties of self-adjoint vertex con-
ditions for local Sturm-Liouville operators on the graph �. Based on these properties we
get the necessary conditions for local Sturm-Liouville operators to be self-adjoint. More-
over, we prove that each self-adjoint complex vertex condition at vertex v has a normal-
ized form and all the normalized forms are contained in a finite set with cardinal number
δ(v), where δ(v) denotes the degree of the vertex v. In the fourth section we give the suffi-
cient conditions for local Sturm-Liouville operators to be self-adjoint, which are Povzner-
Wienholtz-type self-adjointness results for Sturm-Liouville operators on graph. In the fi-
nal section, we give an example to show how to obtain the proper self-adjoint restriction
of a given Sturm-Liouville operator by using the results obtained in Section .

2 Notation and prerequisite results
Assume that the graph � is connected and each vertex in � appears in only finitely many
edges. A metric graph � may be constructed from the graph data as follows. For each
directed edge en, let (an, bn) be a real interval of length |en| with an < bn, then we could
see en as (an, bn). Define the distance between two points in the graph as the length of
the shortest path connecting them. For a function f ∈ L

w(�,C), fn denotes the restriction
f � en. Let L

w(�,C) denote the Hilbert space ⊕nL
wn ((an, bn),C) with the inner product

(f , g)w =
∫

�

f ḡw =
∑

n

∫ bn

an

fnḡnwn dx.

In this paper, we restrict our considerations to local Sturm-Liouville operators, so that
we could describe the adjoint and self-adjoint extensions of Sturm-Liouville operators on
the graph � in terms of appropriate conditions on each single vertex of the graph. The
definition of local operator is given by Carlson in []. Let φ : � → C denote a C∞ function
which has compact support in � and is constant in an open neighborhood of each vertex.
An operator L is a local operator if for every φ, φf is in the domain of L whenever f is.

Fix the vertex v, and let δ(v) be its degree. Identify interval endpoints as αm if the cor-
responding edge endpoints are the same vertex v, in which case we will write αm ∼ v,
m = , . . . , δ(v). Since /p, q, w ∈ L

loc(�,R), for any solution f of Lf = λf , f and pf ′ are locally
absolutely continuous in each edge en in �. Hence, for every vertex v, f (αm) and (pf ′)(αm),
αm ∼ v, can be defined via appropriate limits. We define the maximal operator Lmax as
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follows:

Lmaxf = Lf =

w

(
–
(
pf ′)′ + qf

)
,

Dom(Lmax) =
{

f ∈ L
w(�,C) : f , pf ′ ∈ ACloc

(
(an, bn),C

)

for each n, n ∈N, Lf ∈ L
w(�,C)

}
.

For f ∈ Dom(Lmax), let f̂v ∈ C
δ(v) be the vector with the (k + j – )th component defined

by

f̂ (k+j–)
v = f [j](αk), j = , , k = , . . . , δ(v),

where f [](x) = f (x) and f [](x) = (pf ′)(x). The vector f̂v ∈Cδ(v) is called the boundary value
of f at v, αm ∼ v.

It is easy to verify that the expression L is symmetric. Suppose f , g ∈ Dom(Lmax), with
the support of g in an open ball containing at most one vertex v. Then integration by parts
leads to

(Lf , g)w – (f , Lg)w = [f , g]v,

where [f , g]v is a nondegenerate form in the boundary values of f and g at v, i.e., there is
an invertible δ(v) × δ(v) matrix Sv such that

[f , g]v = ĝ∗
v Svf̂v.

A maximal independent set of vertex conditions at v may be written as Bvf̂v = , where Bv

is a K(v) × δ(v) matrix with linearly independent rows.
Denote the local Sturm-Liouville operator L as follows:

Lf = Lf for f ∈ Dom(L), (.)

with domain Dom(L) ⊂ Dom(Lmax), and functions in Dom(L) satisfy the vertex conditions
Bvf̂v =  at each v ∈ V . By working on one edge ei, using the classical theory in [], pp.-
, and the results given in [], we can get the following lemmas.

Lemma  Suppose that the operator L defined by (.) is self-adjoint and local. The vertex
conditions at v annihilating the domain of L are written as

Bvf̂v = ,

where Bv is a K(v) × δ(v) matrix with linearly independent rows. Then each Bv is a δ(v) ×
δ(v) matrix, and

Bv
[
S∗

v
]–(B∗

v
)

= .
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Lemma  Suppose that infen∈E |en| > , w ≡ , p ∈ ACloc(�,R), |p| ≥ C > , p′ and q are
uniformly bounded. The δ(v)×δ(v) matrix Bv is given with linearly independent rows and
satisfies

Bv
[
S∗

v
]–(B∗

v
)

= 

at each v ∈ V . If the operator L induced by L has the domain

Dom(L) =
{

f ∈ Dom(Lmax) : f has compact support on �, Bvf̂v = , v ∈ V
}

,

then L is essentially self-adjoint. Conversely, every local self-adjoint operator L formally
given by L is the closure of one operator L.

3 Spaces of vertex conditions
A single vertex condition at v can be written as

∑
bj,kf [j](αk) = . A maximal independent

set of single vertex conditions at v can be written as Bvf̂v = , where Bv is a K(v) × δ(v)
matrix with linearly independent rows. In the following, we will call such an independent
set of single vertex conditions at v a vertex condition at v. We introduce the notation

Fv(xi) =
(

f (xi)
f [](xi)

)
, xi ∈ ei, v is an endpoint of ei,

and write the matrix Bv into the block matrix (B | · · · | Bδ(v)), in which Bi are K(v) × 
matrices, i = , . . . , δ(v). Then the vertex conditions at v, Bvf̂v =  may be rewritten as

(
B | · · · | Bδ(V )

)

⎛

⎜
⎝

Fv(α)
. . .

Fv(αδ(v))

⎞

⎟
⎠ = , (.)

and will be denoted by (B | · · · | Bδ(v)). The systems

(
B | · · · | Bδ(v)

)
⎛

⎜
⎝

Fv(α)
. . .

Fv(αδ(v))

⎞

⎟
⎠ = ,

(
A | · · · | Aδ(v)

)
⎛

⎜
⎝

Fv(α)
. . .

Fv(αδ(v))

⎞

⎟
⎠ = 

represent the same complex vertex conditions at vertex v if and only if there is a matrix
T ∈ GL(K(v),C) such that

(
B | · · · | Bδ(v)

)
=

(
TA | · · · | TAδ(v)

)
,

where GL(δ(v),C) is the set of K(v) × K(v) invertible matrices over C. Denote the space
BC

v of complex vertex conditions at vertex v as the quotient space

M∗
δ(v)×δ(v)(C)�GL

(
δ(v),C

)
,

where Mδ(v)×δ(v)(C) stands for the set of δ(v) × δ(v) matrices over C, and M∗
δ(v)×δ(v)(C)

stands for the set of matrices in Mδ(v)×δ(v)(C) with rank δ(v). We give the space
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Mδ(v)×δ(v)(C) the usual topology on C
δ(v)×δ(v), then M∗

δ(v)×δ(v)(C) is an open subset of
Mδ(v)×δ(v)(C). In this way, the quotient space BC

v inherits the quotient topology.
The complex vertex condition Bvf̂v =  in BC

v could be represented by the δ(v) × δ(v)
matrix Bv with rank δ(v). Up to the elementary row transformations, the δ(v)-dimensional
column vectors

⎛

⎜⎜
⎜⎜
⎝



...


⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎜⎜
⎝



...


⎞

⎟⎟
⎟⎟
⎠

, . . . ,

⎛

⎜⎜
⎜⎜
⎝



...


⎞

⎟⎟
⎟⎟
⎠

are δ(v) columns in Bv. Then the spaceBC
v can be divided into

(δ(v)
δ(v)

)
canonical atlas of local

coordinate systems on the Grassmann manifold of δ(v)-dimensional complex subspaces
in C

δ(v) through the origin [], where
(δ(v)

δ(v)
)

is the binomial coefficient

(
δ(v)
δ(v)

)
=

(δ(v))!
δ(v)!δ(v)!

.

Theorem  The space BC
v of complex vertex conditions at vertex v is a connected and

compact complex manifold of complex dimension δ(v). The space BC
v is a connected and

real manifold of dimension δ(v) over the number field R.

Proof The proof is similar to Theorem . in []. �

For each edge en, let (an, bn) be the corresponding real interval. Consider the operator
Lmax on (an, bn) with f , g ∈ Dom(Lmax), we have

∫ bn

an

(gLf – f Lg) = –
[
f [](bn)g(bn) – f (bn)g[](bn)

]
+

[
f [](an)g(an) – f (an)g[](an)

]
.

Then if f , g ∈ Dom(Lmax) and g vanishes outside of a small neighborhood of v, we have

∫

�

(gLf – f Lg) =
∑

m
(–)σm

[
f [](αm)g(αm) – f (αm)g[](αm)

]
, αm ∼ v, (.)

with

σm =

{
, αm = bm,
, αm = am.

For f , g ∈ Dom(Lmax), define [f , g]v as the right-hand side of equality (.).
Assume that ek = (ak , bk), k = , . . . , δ(v), are the edges in which v is one endpoint, i.e.,

v = ak or v = bk . For αm ∼ v, assume that α, . . . ,αs are bk in the corresponding edges ek =
(ak , bk) respectively, k = , . . . , s, and αs+, . . . ,αδ(v) are ak in the corresponding edges ek =
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(ak , bk) respectively, k = s + , . . . , δ(v). Through a direct calculation we can obtain that

Sv =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

E
. . .

E
︸ ︷︷ ︸

s
–E

. . .
–E

︸ ︷︷ ︸
δ(v)–s

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

δ(v)×δ(v)

, E =

(
 –
 

)

. (.)

Based on Lemma , we know that for the vertex condition (B | · · · | Bδ(v))f̂v =  of a self-
adjoint operatorL, the coefficient matrix is a δ(v)×δ(v) matrix and satisfies the condition
Bv[S∗

v ]–B∗
v = . Since Sv is the matrix given in (.), the condition Bv[S∗

v ]–B∗
v =  is equiv-

alent to

s∑

i=

BiEB∗
i =

δ(v)∑

j=s

BjEB∗
j . (.)

If Bv = (B | · · · | Bδ(v)) is a δ(v) × δ(v) matrix with linearly independent rows and satisfies
equality (.), the vertex condition Bvf̂v =  is called a self-adjoint vertex condition at v.

Obviously, the elementary row transformation on Bv does not change the vertex con-
ditions at v, while the column transformations on Bv change the vertex conditions. But
there is a class of column transformations that would not change the self-adjointness of
the vertex conditions.

Lemma  For the local operator L defined by (.) and

Bv =
(
B | · · · | Bs | Bs+ | · · · | Bδ(v)

)
,

Bvf̂v =  is a self-adjoint vertex condition at v if and only if for any matrix A in the set

{
A : A =

(
B(E)i | · · · | Bs(E)is | Bs+(E)is+ | · · · | Bδ(v)(E)iδ(v)

)
,

ik =  or ik = , k = , . . . , δ(v)
}

, (.)

Af̂v =  is a self-adjoint vertex condition at v.

Proof Since E∗
 = –E, (E) = –I, where I =

(  
 

)
, then we have

(BiE)E(BiE)∗ = (Bi)E(Bi)∗.

Therefore, the matrix operation-multiplication by E does not change the rank of Bi, and
for A in the set (.), Af̂v =  is a self-adjoint vertex condition at v whenever Bvf̂v =  is a
self-adjoint vertex condition. �
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Definition  The column transformations used in Lemma  are called the self-adjoint
column transformations.

Theorem  For the local operator L defined by (.), up to the elementary row transforma-
tions and the self-adjoint column transformations, the coefficient matrices of self-adjoint
vertex conditions at v are

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

 c  c · · ·  cδ(v)

 c  c · · ·  cδ(v)
...

...
...

...
. . .

...
...

 c(δ(v)–)  c(δ(v)–) · · ·  c(δ(v)–)δ(v)

 cδ(v)  cδ(v) · · ·  cδ(v)δ(v)

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

, (.)

where the complex matrix (cij)δ(v)×δ(v) consisting of the even numbered columns of matrix
(.) has the following properties:

() for i = j, cij ∈R,
() for i < j ≤ s or s < i < j, cij = cji,
() for i ≤ s < j, (cij)≤i≤s,s<j≤δ(v) = –(cji)∗≤i≤s,s<j≤δ(v).

Proof For (aij) = (A | · · · | As | As+ | · · · | Aδ(v)) is a coefficient matrix of self-adjoint vertex
conditions at v, there must be one of the elements ai and ai, i = , . . . , δ(v), that is not
zero. Through the elementary row transformations and the self-adjoint column transfor-
mations, the matrix (aij) becomes

⎛

⎜
⎜⎜
⎜⎜⎜
⎜
⎝

 a · · · a(δ(v)–) a(δ(v))

 a · · · a(δ(v)–) a(δ(v))
...

...
. . .

...
...

 a(δ(v)–) · · · a(δ(v)–)(δ(v)–) a(δ(v)–)(δ(v))

 aδ(v) · · · aδ(v)(δ(v)–) aδ(v)(δ(v))

⎞

⎟
⎟⎟
⎟⎟⎟
⎟
⎠

. (.)

For the convenience of writing, the elements changed are still written as aij,  ≤ i, j ≤ δ(v).
Since (aij) is a matrix with rank δ(v), up to the elementary row transformations, the δ(v) – 
column vectors

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝




...


⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝




...


⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, . . . ,

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝




...


⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(.)

are (δ(v) – ) columns in (.). Then (.) could be written as
⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

 a  a a · · · a(δ(v))

 a  a a · · · a(δ(v))
...

...
...

...
...

. . .
...

 a(δ(v)–)  a(δ(v)–) a(δ(v)–) · · · a(δ(v)–)(δ(v))

 aδ(v)  aδ(v) aδ(v) · · · aδ(v)(δ(v))

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

;
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otherwise, matrix (.) is in the following two cases. () The elements ai and ai are all zero
for all  ≤ i ≤ δ(v). () One of the elements a and a is not zero, the rest of the elements
in the third and fourth columns are zero. Then up to the elementary row transformations,
the first two vectors in (.) appear in one block Ai, i ≥ , of (.). In these two cases, (aij)
could not be the coefficient matrix of a self-adjoint vertex condition at v. Then (aij) could
be changed into

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

 c  c · · ·  cδ(v)

 c  c · · ·  cδ(v)
...

...
...

...
. . .

...
...

 c(δ(v)–)  c(δ(v)–) · · ·  c(δ(v)–)δ(v)

 cδ(v)  cδ(v) · · ·  cδ(v)δ(v)

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. (.)

The matrix (aij) is the coefficient matrix of a self-adjoint vertex condition at v, (.) is the
coefficient matrix of the same self-adjoint vertex condition at v, then (.) must satisfy
(.), i.e.,

s∑

i=

BiEB∗
i =

δ(v)∑

j=s

BjEB∗
j .

After a direct calculation, we get that the matrix (cij)δ(v)×δ(v) has the following properties:
() for i = j, cij = cji, i.e., cii ∈R;
() for i < j ≤ s or s < i < j, cij = cji, i.e.,

Re cij = Re cji, Im cij = – Im cji;

() for i ≤ s < j, the block matrix (cij)≤i≤s,s<j≤δ(v) is equal to the s × (δ(v) – s) matrix
–(cji)∗≤i≤s,s<j≤δ(v). In other words, the matrix (cij)δ(v)×δ(v) has the following form:

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

c c · · · cs

c c · · · ...
...

...
. . . cs

cs cs · · · css
︸ ︷︷ ︸

s

–(cji)∗, i ≤ s < j

(cji), i ≤ s < j

c(s+)(s+) c(s+)(s+) · · · cδ(v)(s+)

c(s+)(s+) c(s+)(s+) · · · cδ(v)(s+)
...

...
. . .

...
cδ(v)(s+) cδ(v)(s+) · · · cδ(v)δ(v)
︸ ︷︷ ︸

δ(v)–s

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

.

�

Write matrix (.) into the block matrix and denote it as (C | · · · | Cδ(v)), then the set

S =
{

A : A =
(
C(E)i | · · · | Cs(E)is | Cs+(E)is+ | · · · | Cδ(v)(E)iδ(v)

)
,

ik =  or ik = , k = , . . . , δ(v)
}

(.)
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is a set of matrices transformed from (C | · · · | Cδ(v)) through the self-adjoint column
transformations. For A ∈ S, we call the columns which are even columns in (C | · · · | Cδ(v))
the unnormalized columns in A. And we call the elements in the set (.) normalized
forms. If (C | · · · | Cδ(v)) is the coefficient matrix of a self-adjoint vertex condition at v,
then the δ(v) elements in the set S are also the coefficient matrices of self-adjoint vertex
conditions.

Theorem  If we only allow the elementary row transformations on the matrix Bv =
(B | · · · | Bδ(v)), where Bvf̂v =  is a self-adjoint vertex condition, then Bv can be normalized
to one of the δ(v) forms in (.), and the complex matrix consisting of the unnormalized
columns has the properties ()-() in Theorem .

Proof From Lemma  we can obtain that the vertex conditions in (.) satisfy (.) if and
only if (C | · · · | Cδ(v)) satisfies (.). According to the proof of Theorem , we could reach
the conclusion. �

Definition  The δ(v) elements in the set (.) with (C | · · · | Cδ(v)) that have the prop-
erties ()-() in Theorem  are called the normalized forms of the coefficient matrices of
self-adjoint vertex conditions at v.

The elementary row transformations on the coefficient matrices of self-adjoint vertex
conditions allow us to bring them into their corresponding normalized forms, and the
self-adjoint column transformations on these matrices give us simple one-to-one corre-
spondences between the coefficient matrices in different normalized forms.

Theorem  For the local operator L defined by (.), the space SC
v of self-adjoint complex

vertex conditions at vertex v is a connected, closed and analytic real submanifold of BC
v

and has dimension δ(v) over the number field R. Therefore, SC
v is also compact.

Proof For an arbitrary complex vertex condition (B | · · · | Bδ(v)) at vertex v, it is in one
equivalence class of quotient space M∗

δ(v)×δ(v)(C)�GL(δ(v),C). The set SC
v of self-adjoint

complex vertex conditions at vertex v is a subset of BC
v which can be divided into δ(v)

canonical atlas of local coordinate systems. The proof of the analyticity and the connec-
tivity of SC

v is similar to Theorem . in []. Thus SC
v is an analytic real submanifold of

BC
v and has dimension δ(v) over the number field R. The canonical atlas of local coordi-

nate systems of SC
v is internal connected and SC

v is connected.
Next we prove that the space SC

v is closed. Let {(B(n)
 | · · · | B(n)

δ(v))}+∞
n= be a sequence in SC

v
that converges to B̃ = (B′

 | · · · | B′
δ(v)) ∈BC

v . Without loss of generality, we can assume that
B̃ has the normalized form (.), i.e.,

B̃ =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

 c′
 · · ·  c′

δ(v)
 c′

 · · ·  c′
δ(v)

...
...

. . .
...

...
 c′

(δ(v)–) · · ·  c′
(δ(v)–)δ(v)

 c′
δ(v) · · ·  c′

δ(v)δ(v)

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Denote the matrix constructed by the even numbered columns of B̃ as D. Then we will
show that D has the properties ()-() in Theorem .
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For sufficiently large n, B(n)
v = (B(n)

 | · · · | B(n)
δ(v)) ∈Os

, and hence

B(n)
v =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

 c(n)
 · · ·  c(n)

δ(v)
 c(n)

 · · ·  c(n)
δ(v)

...
...

. . .
...

...
 c(n)

(δ(v)–) · · ·  c(n)
(δ(v)–)δ(v)

 c(n)
δ(v) · · ·  c(n)

δ(v)δ(v)

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

.

Denote the matrix constructed by the even numbered columns of B(n)
v as D(n). The matrix

D(n) has the properties ()-() in Theorem , and

D(n) → D, as n → +∞,

under the norm ‖ · ‖ on Mδ(v)×δ(v)(C). Therefore,

(
B′

 | · · · | B′
δ(v)

) ∈S
C

v . �

Example  When δ(v) = , s = , the canonical atlas of local coordinate systems of BC
v is

as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O =

{(
 a  b

 a  b

)

; a, a, b, b ∈C

}

,

O =

{(
a –  b

a   b

)

; a, a, b, b ∈C

}

,

O =

{(
 a b 
 a b –

)

; a, a, b, b ∈C

}

,

O =

{(
a – b 
a  b –

)

; a, a, b, b ∈ C

}

,

O =

{(
  b b

  b b

)

; b, b, b, b ∈C

}

,

O =

{(
a a – 
a a  –

)

; a, a, a, a ∈ C

}

.

The canonical atlas of local coordinate systems of SC
v is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Os
 =

{(
 a  –a

 a  a

)

; a, a ∈R, a ∈ C

}

,

Os
 =

{(
a –  –a

a   a

)

; a, a ∈R, a ∈C

}

,

Os
 =

{(
 a –a 
 a a –

)

; a, a ∈R, a ∈C

}

,

Os
 =

{(
a – –a 
a  a –

)

; a, a ∈ R, a ∈C

}

.
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4 The self-adjoint Sturm-Liouville operators
Assume that the graph � has a finite vertex set V = {v, . . . , vn} and a finite edge set E. The
vertex conditions at vi are written as Bvi f̂vi = . Then, for the local operator L defined by
(.), the vertex conditions on � are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bv f̂v = , at v,
Bv f̂v = , at v,
· · · ,
Bvn f̂vn = , at vn.

(.)

Denote B� as B� = (Bv , . . . , Bvn ), where Bvi is a δ(vi) × δ(vi) matrix with linearly indepen-
dent rows. In the following, B� represents (.), i.e., the vertex conditions on �. Define
BC

� as

B
C

� =
n⊗

i=

B
C

vi
.

Then the complex self-adjoint vertex conditions space of the local operatorL on the graph
� is denoted as SC

� ,

S
C

� =
n⊗

i=

S
C

vi
.

Corollary  The space BC

� has dimension
∑n

i= δ(vi) over the number field C, and has
dimension

∑n
i= δ(vi) over the number field R. The space SC

� is a connected, closed and
analytic real submanifold of BC

� with dimension
∑n

i= δ(vi) over the number field R.

For x, y ∈ �, denote the distance between x and y as d(x, y).

Lemma  Suppose that the graph � has finitely many edges and

sup
x,y∈�

d(x, y) < ∞,

the operator L defined by (.) with domain

{
f ∈ Dom(Lmax) : Bvf̂v = , Bv ∈S

C

v , for all v ∈ V
}

is self-adjoint.

Proof The proof is based on Theorem . in []. �

Theorem  Suppose that the graph � has infinitely many edges and vertices,
supx,y∈� d(x, y) = ∞, and there is no finite accumulation point in V .

If the operator L defined by (.) satisfies the following two conditions:
() p > , p ∈ ACloc(�,R),
() 

w , (p′)

w ∈ Lloc(�,R), p
w is essentially bounded on �,
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and L is lower bounded with domain

Dom(L) =
{

f ∈ Dom(Lmax) : f has compact support on �, Bvf̂v = , Bv ∈S
C

v , v ∈ V
}

,

then L is essentially self-adjoint. Conversely, every local self-adjoint operator L formally
given by L is the closure of one of the operators L.

Proof Using the theory in [] on one edge ei, we can get that the operator L is symmetric
and the domain of L∗ is contained in Dom(Lmax). By Theorem . and Corollary . in [],
we get that f ∈ Dom(L∗) satisfies the same conditions Bvf̂v =  at the vertices. Then

Dom
(
L∗) =

{
f ∈ Dom(Lmax) : Bvf̂v = , Bv ∈S

C

v , v ∈ V
}

.

Without loss of generality, we assume that L≥ I . Next we need to show that the equation

–
(
pf ′)′(t) + q(t)f (t) = , t ∈ �\V , f ∈ Dom

(
L∗) (.)

has only a trivial solution (derivative is understood in a distribution sense).
Fix a point o ∈ �, we define a sequence of functions {χn}, χn ∈ C∞

comp(�) such that

χn(t) :=

{
,  ≤ d(o, t) ≤ tn,
, d(o, t) ≥ tn + ,

and

∣∣χ ′
n
∣∣ ≤ , χ ′

n(v) =  for all v satisfies tn ≤ d(o, t) ≤ tn + ,

where the function space C∞
comp(�) contains the functions belonging to C∞(�) and having

compact support on �. Assume that f̃ �=  is a solution of equation (.). Since f̃ satisfies
the conditions

Bv
ˆ̃fv =  for all v ∈ V , (.)

then for each v and g := f̃ χn,

Bvĝv =  for all v ∈ V .

Since p ∈ ACloc(�), one verifies that


w

[
–
(
p(f̃ χn)′

)′ + q(f̃ χn)
]

= –

w

p′χ ′
nf̃ –


w

pχ ′′
n f̃ – 


w

pχ ′
nf̃ ′. (.)

Let �m be a subtree of � containing all x ∈ �, |x| ≤ m.

∫

�tn+–�tn


w

(
p′)(

χ ′
n
) f̃  dt ≤ ∥∥(

χ ′
n
) f̃ ∥∥

L∞(�tn+–�tn )

∫

�tn+–�tn


w

(
p′) dt

< ∞,
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∫

�tn+–�tn


w

p(χ ′′
n
) f̃  dt ≤

∥
∥∥
∥

p
w

∥
∥∥
∥



L∞(�tn+–�tn )

∥∥(
χ ′′

n
)∥∥

L∞(�tn+–�tn )

×
∫

�tn+–�tn

wf̃  dt < ∞,

∫

�tn+–�tn


w

p(χ ′
n
)(f̃ ′) dt ≤ ∥

∥(
χ ′′

n
)∥∥

L∞(�tn+–�tn )

× ∥
∥(

pf̃ ′)∥∥
L∞(�tn+–�tn )

∫

�tn+–�tn


w

dt < ∞,

and then the right-hand side of equality (.) belongs to L
w(�,C). Then we have f̃ χn ∈

Dom(L) and

(
L(f̃ χn), (f̃ χn)

)
w =

∫

�

[
–p′χ ′

nf̃ – pχ ′′
n f̃ – pχ ′

nf̃ ′]f̃ χn dt

=
∫

�tn+–�tn

(
χ ′

n
)pf̃  dt =

∫

�tn+–�tn

w
(
χ ′

n
) f̃  p

w
dt

≥ (
(f̃ χn), (f̃ χn)

)
w =

∫

�

f̃ (x)χ
n (x)w dt. (.)

On the other hand,

∫

�tn+–�tn

w
(
χ ′

n
) f̃  p

w
dt ≤ 

∥∥
∥∥

p
w

∥∥
∥∥

L∞(�)

∫

�tn+–�tn

f̃ w dt. (.)

Combining (.) with (.), we obtain

∫

�tn

f̃ (x)w dt ≤
∫

�

f̃ (x)χ
n (x)w dt ≤ 

∥∥
∥∥

p
w

∥∥
∥∥

L∞(�)

∫

�tn+–�tn

f̃ w dt.

Since f̃ ∈ L
w(�,C), f̃ = . This completes the proof. �

Let L be the operator defined by (.). Assume that the functions in Dom(L) are contin-
uous on �, i.e.,

f (α) = f (α) = · · · = f (αδ(v)), αi ∼ v, i = , , . . . , δ(V ),

at each vertex v ∈ V . We get the following result.

Corollary  Suppose that the local operator L defined by (.) is self-adjoint, with func-
tions in Dom(L) continuous on �. For a vertex v, let α, . . . ,αs ∼ v be bk in the corre-
sponding edges ek = (ak , bk), k = , . . . , s, and αs+, . . . ,αδ(v) be ak in the corresponding edges
ek = (ak , bk), k = s + , . . . , δ(v). Then the functions f in Dom(L) satisfy the condition

s∑

i=

(
pf ′)(αi) +

δ(v)∑

j=s+

(–)
(
pf ′)(αj) = rf (v), r ∈R,

at each vertex v.
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Proof All the functions f ∈ Dom(L) satisfy the continuity conditions, that means

f (αm) + (–)f (αδ(v)) = , m = , . . . , δ(v) – ,

at each vertex v ∈ �. For a fix vertex v, Bv is a δ(v)×δ(v) matrix with linearly independent
rows. Then

Bv =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

      · · · – 
      · · · – 
      · · · – 
...

...
...

...
...

...
. . .

...
...

 c′
  c′

  c′
 · · · c′

δ(v)– c′
δ(v)

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

δ(v)×δ(v)

and (c′
δ(v)–) + (c′

δ(v))
 �= . If c′

δ(v) �= , we can rewrite the vertex condition as Avf̂v = ,
where

Av =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

      · · ·  – 
      · · ·  – 
      · · ·  – 
...

...
...

...
...

...
. . .

...
...

...
 c  c  c · · · cδ(v)– cδ(v)– –

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

δ(v)×δ(v)

.

Therefore we can get that Av ∈ {(C | C | · · · | Cδ(v)E)}, where the matrices (C | C | · · · |
Cδ(v)E) are introduced in (.). Since Bv ∈SC

v , the complex matrix

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

  · · ·  –
  · · ·  –
  · · ·  –
...

...
. . .

...
...

c c · · · cδ(v)– cδ(v)–

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

δ(v)×δ(v)

has the properties ()-() in Theorem . Then we have

⎧
⎪⎨

⎪⎩

c = c = · · · = cs = ,
cs+ = cs+ = · · · = cδ(v)– = –,
cδ(V )– ∈R,

i.e.,

s∑

i=

(
pf ′)(αi) +

δ(v)∑

j=s+

(–)
(
pf ′)(αj) = rf (v), r ∈R.
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If c′
δ(v) =  and c′

δ(v)– �= , through the elementary row transformations, the condition
Bvf̂v =  is equal to the condition Avf̂v = , where

Av =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

 c  c · · ·  cδ(v)–  
 c  c · · ·  cδ(v)–  
 c  c · · ·  cδ(v)–  
...

...
...

...
. . .

...
...

...
...

 c  c · · ·  cδ(v)–  
 c  c · · ·  cδ(v)–  

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

.

Then we have Av ∈ {(C | C | · · · | Cδ(v))}, the matrix (C | C | · · · | Cδ(v)) is introduced in
(.). Since Bv ∈SC

v , the complex matrix

⎛

⎜
⎜⎜
⎜
⎝

c · · · cδ(v)– 
c · · · cδ(v)– 
...

. . .
...

...
c · · · cδ(v)– 

⎞

⎟
⎟⎟
⎟
⎠

δ(v)×δ(v)

has the properties ()-() in Theorem . Then we have

c = c = · · · = cδ(v)– = .

Therefore the vertex conditions Bvf̂v =  are the conditions

f (α) = f (α) = · · · = f (αδ(v)) = , αi ∼ v.

That is, corresponding to the conditions

{
f (α) = f (α) = · · · = f (αδ(v)),∑s

i=(–)(pf ′)(αi) +
∑δ(v)

j=s+(pf ′)(αj) = rf (v),

for r = ∞. �

Remark  For the complex self-adjoint conditions Bv including the continuity conditions,
the space consisting of Bv is a real submanifold of BC

v with dimension .
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