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Abstract
In this paper, we discuss two kinds of Riemann type boundary value problems for the
operator˜Dλ, where λ is a complex number. Furthermore, we establish the Almansi
type expansion for the operator˜Dk

λ, where k ∈ N. As applications of the expansion,
we investigate the Riemann type boundary value problem and the generalized
Riquier problem for the operator˜Dk

λ.
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1 Introduction
The uniqueness and existence theorems for the solutions of boundary value problems for
systems of partial differential equations are sufficiently well known. Such problems have
remarkable applications in mathematical physics, the mechanics of deformable bodies,
electromagnetism, relativistic quantum mechanics, and some of their natural generaliza-
tions. Almost all such problems can be set in the context of Clifford analysis (see [, ]).
Clifford analysis is centered around the concept of monogenic functions, i.e. null solu-
tions of a first order vector valued rotation invariant differential operator called the Dirac
operator which factorizes the Laplace operator (see [, ]). As to the mathematical study
of boundary value problems in Clifford analysis, there are several different approaches
known in the literature. Without claiming completeness, we mention some of them. First
of all, we have the approach originating with Bernstein, whose approach is to translate
boundary value problems to the corresponding singular integral equations, then use the
properties of the Fredholm operator to discuss the solvability of singular integral equations
(see []). Another important approach is based on complex analysis. In this case, first we
use analytic function theory to solve these kinds of boundary value problems, then we use
the results of boundary value problems to solve singular integral equations (see [, ]).
The advantage of this method is that the explicit representation of solutions can be ob-
tained, but in the higher dimensional space there still exist many obstacles to generalize
this method. In this paper, we continue to use the method in [, ] to solve boundary value
problems for the modified Dirac operators.

The paper is organized as follows. In Section , we review some results on the theory
of Clifford analysis. In Section , applying the Plemelj formula for the modified Dirac op-
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erator [], we consider Riemann type boundary value problems for the operator ˜Dλ. In
Section , using the Euler operator in Clifford analysis, we obtain the Almansi type ex-
pansion for the operator ˜Dk

λ. In Section , as applications of the expansion, we investigate
the Riemann type boundary value problem and the generalized Riquier problem for the
operator ˜Dk

λ.

2 Preliminaries
2.1 Clifford analysis
Let R,m be the real associative Clifford algebra generated by {e, e, . . . , em}, where the basic
vectors e, e, . . . , em satisfy the relations eiej + ejei = –δi,j, i, j = , . . . , m. Let εi = –eei, i =
, . . . , m, then the universal Clifford algebra R,m– for Rm– is generated by {ε, ε, . . . , εm},
where the vectors ε, ε, . . . , εm satisfy the following relations:

{

εεi = εiε, i = , . . . , m,
εiεj + εjεi = –δi,j, i, j = , . . . , m.

Each of the elements in R,m– may be written as a =
∑

A aAεA, where aA are real numbers
and εA = εαεα · · · εαh with A = {α, . . . ,αh} ⊂ {, . . . , m}. We define the norm of a as |a| =
(
∑

A |aA|) 
 . If there exists b ∈ R,m– such that ab = ba = ε, then b is called the inverse

of a, which is denoted as a–.
A typical element of Rm is denoted by x = xε + xε + · · · + xmεm with xi ∈ R. We define

x = xε – xε – · · · – xmεm, then xx = xx = |x|. Obviously, for x �= , we have x– = x
|x| .

One of the main aims of Clifford analysis is to construct a first order operator, the
so-called Dirac operator, factorizing the Laplace operator and to study the function-
theoretical properties of the null solutions of this operator. When working over Rm, this
Dirac operator is defined by

D =
m

∑

i=

ei∂xi . ()

Then the modified Dirac operator is defined as

˜D =
m

∑

i=

εi∂xi . ()

When studying the modified Dirac operator in this setting, we consider functions f
which are e.g. elements of spaces such as Ck(�)⊗ R,m– with � some open domain in Rm.
This means that f can be written as

f =
∑

A

fA(x)εA ()

with fA(x) ∈ Ck(�). Denote by |f | = (
∑

A |fA(x)|) 
 the norm of f ∈ Ck(�) ⊗ R,m–.

3 Boundary value problems for the operator ˜Dλ

3.1 Riemann type problem for the operator ˜Dλ

Let

E(x) =


ωm

x
|x| , ()



Yuan Boundary Value Problems  (2015) 2015:158 Page 3 of 11

where ωm = π
m



( m
 ) is the surface area of the unit sphere in Rm. Then E(x) satisfies the equa-

tion ˜Df = .
Let f be a Hölder continuous function on ∂� and take its Cauchy transform

f (x) =


Am

∫

∂�

E(y – x) dσyf (y), x ∈ Rm \ ∂�. ()

Then f (x) satisfies the equation ˜Df =  in Rm \ ∂� as was proved in [].
In [], the following Plemelj formulas hold for s ∈ ∂�:

F+(s) = lim
x∈�,x→s

f (x) =



f (s) +


Am

∫

∂�

E(y – s) dσyf (y) ()

and

F–(s) = lim
x∈Rm\�,x→s

f (x) = –



f (s) +


Am

∫

∂�

E(y – s) dσyf (y), ()

where � = � ∪ ∂�.
In order to obtain the main result in this section, we need the following lemma.

Lemma . Let x be a nonzero finite real number and λ ∈ C. Then

ker˜Dλ = eλx ker˜D, ()

where ker˜Dλ = {f |f ∈ C(�) ⊗ R,m–, (˜D – λ)f = }, and ker˜D = ker˜Dλ for λ = .

Proof Letting f ∈ ker˜D, we have

˜Dλ

(

eλx f
)

= (˜D – λ)eλx f

= λeλx f + eλx
˜Df – λeλx f

= ,

which implies that eλx ker˜D ⊂ ker˜Dλ.
On the contrary, for f ∈ ˜Dλ, we can see that

˜D
(

e–λx f
)

= e–λx (˜D – λ)f = ,

which means that ker˜Dλ ⊂ eλx ker˜D. �

Therefore, we obtain the conclusion.

Theorem . Let f be a Hölder continuous function on ∂� and let G ∈ Z(R,m–) be in-
vertible with inverse G–. Then the Riemann type problem

⎧

⎪

⎨

⎪

⎩

˜Dλ�(x) = , x ∈ Rm \ ∂�,
�+(t) = G�–(t) + f (t), t ∈ ∂�,
�–(∞) = ,

(I)
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has a solution � given by

�(x) =
X(x)
Am

∫

∂�

eλx E(y – x) dσyG–f (y), ()

where

X(x) =

{

G, x ∈ �,
, x ∈ Rm \ �.

()

Note that the center Z(R,m–) of R,m– is the set of elements in R,m– which commute
with all elements of R,m– (see e.g. [])

Proof First, it follows by Lemma . that the function �(x) determined by () satisfies the
equation

˜Dλ�(x) = .

Secondly, let G ∈ Z(R,m–) be invertible with inverse G–. It follows by () and () that

�+(s) – G�–(s)

=
(

X+(s)


G–f (s) +


Am

∫

∂�

eλx E(y – s) dσyG–f (y)
)

– G
(

–
X–(s)


G–f (s) +


Am

∫

∂�

eλx E(y – s) dσyG–f (y)
)

= f (s),

where s ∈ ∂�.
Finally, it is obvious that the function �(x) vanishes at infinity.
Thus, we obtain the conclusion. �

3.2 Riemann type boundary value problem (II)
In this section, using the Plemelj formulas, we consider the following Riemann type
boundary value problem (II).

Suppose that f is a Hölder continuous function on ∂�. Find a function  ∈ C(�) ⊗
R,m– that satisfies

⎧

⎪

⎨

⎪

⎩

˜Dλ(x) = , x ∈ Rm \ ∂�,
+(t)a – –(t)b = f (t), t ∈ ∂�,
lim|x|→+∞ |(x)|

|x|l < +∞,
(II)

where

+(t) = lim
x→t

(x), x ∈ �; –(t) = lim
x→t

(x), x ∈ Rm\�.

a, b are given R,m– valued constants whose inverses are a–, b–.
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Lemma . Let Zk = xkε –xεk , where  ≤ k ≤ m. Then we have the polynomials of order p

Vk···kp =

p!

∑

π (k···kp)

Zk · · ·Zkp ∈ ker˜D,

where the sum runs over all distinguishable permutations of all of (k, . . . , kp).

The proof of Lemma . is similar to Proposition .. in [].

Theorem . The boundary value problem (II) has a solution.

Proof We will prove the function

(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(
∫

∂�
eλx E(y – x) dσyf (y))a–

+
∑l

p=
∑

π (k···kp) Vk···kp eλx a–, x ∈ �, l ∈ N,
(
∫

∂�
eλx E(y – x) dσyf (y))b–

+
∑l

p=
∑

π (k···kp) Vk···kp eλx b–, x ∈ Rm\�, l ∈ N,

is a solution of the boundary value problem (II).
Denote

�(x) =

{

(x)a, x ∈ �,
(x)b, x ∈ Rm\�.

Then
{

�+(t) = +(t)a, t ∈ ∂�,
�–(t) = –(t)b, t ∈ ∂�,

where a, b have the inverses a–, b–, respectively. The boundary value problem (II) is
equivalent to

�+(t) – �–(t) = f (t), t ∈ ∂�.

Note that

(

T[f ]
)

(x) =
∫

∂�

eλx E(y – x) dσyf (y)

for x ∈ Rm\∂� is meaningful and satisfies the boundary properties

(

T[f ]
)+(t) –

(

T[f ]
)–(t) = f (t), t ∈ ∂�.

Thus

�+(t) –
(

T[f ]
)+(t) = �–(t) –

(

T[f ]
)–(t), t ∈ ∂�,

which means that �(x) – (T[f ])(x) = g(x) ∈ ker˜Dλ in Rm by the Painlevé theorem. By
Lemma ., we put g(x) =

∑l
p=

∑

π (k···kp) Vk···kp eλx . Thus we have the conclusion. �
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4 Almansi type expansion for the operator ˜Dk
λ

In , the Almansi expansion for polyharmonic functions was established, which was
equivalent to the Fischer decomposition for polynomials (see []). One can find impor-
tant applications and generalizations of this result in the case of several complex variables
in the monograph of Aronszajn et al. [], e.g. concerning functions holomorphic in the
neighborhood of the origin in Cn. Also for the case of a Clifford analysis, one can refer to
[, ]. But all these cases are limited to star-like domains. In this section, we consider the
difficult case that � is some open domain in Rm not limited to star-like domains.

Definition . We define the generalized Euler operator by

Es = sI + E = sI +
m

∑

i=

xi∂xi ,

where s is a complex constant, I is the identity operator, and E is the Euler operator.

Lemma . Let � be as stated before. For f (x) ∈ C(�) ⊗ R,m–,

˜DEsf (x) = Es+˜Df (x), ()

where s ∈ C.

Proof For s = , from Definition . it follows that, for f (x) ∈ C(�) ⊗ R,m–,

˜DEf (x) =
m

∑

i=

εi∂xi

( m
∑

j=

xj∂xj f (x)

)

=
m

∑

i=

εi∂xi f (x) +
m

∑

i,j=

εi∂xj
∂f

∂xj ∂xi
= ˜Df (x) + E˜Df (x).

This implies that ˜DE = E˜D. For s �= ,

˜DEs = ˜D(s + E) = s˜D + E˜D = Es+˜D.

This completes the lemma. �

Note that the proof of Lemma . is inspired by Ren in [].

Lemma . If f ∈ ker(˜Dλ), then

Ck˜Dk
λEk

λf = f , ()

where Ck = 
k!λk and k ∈ N.

Proof Note that f ∈ ker˜Dλ. For k = , Lemma . implies that

˜DλEλf = ˜DλEλf

= ˜DEλf – λEλf

= Eλ+˜Df – λEλf
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= Eλ+˜Df – λEλ+f + λf

= Eλ+(˜D – λ)f + λf

= λf .

Suppose that, for k = l,

Cl˜Dl
λEl

λf = f ,

where Cl = 
l!λl . For k = l + ,

˜Dl+
λ El

λf = ˜Dλ
˜Dl

λEl
λf =


Cl

˜Dλf = .

We calculate

˜Dl+
λ El+

λ f = ˜Dl
λ
˜DλEλEl

λf

= ˜Dl
λ(Eλ+˜Dλ + λ)El

λf

= ˜Dl
λEλ+˜DλEl

λf + λDl
λEl

λf

= ˜Dl–
λ

˜DλEλ+˜DλEl
λf +

λ

Cl
f

= ˜Dl–
λ Eλ+˜D

λEl
λf +

λ

Cl
f

= · · ·
= Eλ+l+˜Dl+

λ El
λf +

(l + )λ
Cl

f

=


Cl+
f ,

which implies the conclusion. �

Denote ker˜Dk
λ = {f |f ∈ Ck(�) ⊗ R,m–, (˜D – λ)kf = , k ∈ N}.

Theorem . If f (x) ∈ ker˜Dk
λ, then there exist unique functions f, . . . , fk– ∈ ker˜Dλ such

that

f (x) = f(x) + Eλf(x) + E
λf(x) + · · · + Ek–

λ fk–(x), ()

where f, . . . , fk– are given as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f(x) = (I – CEλ
˜Dλ)(I – CE

λ
˜D

λ) · · · (I – Ck–Ek–
λ

˜Dk–
λ )f (x),

f(x) = C˜Dλ(I – CE
λ
˜D

λ) · · · (I – Ck–Ek–
λ

˜Dk–
λ )f (x),

...
fk–(x) = Ck–˜Dk–

λ (I – Ck–Ek–
λ

˜Dk–
λ )f (x),

fk–(x) = Ck–˜Dk–
λ f (x),

()

and Ck = 
k!λk .
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Conversely, if functions f, . . . , fk– ∈ ker˜Dλ, then the function f (x) given by () satisfies
the equation ˜Dk

λf = .

Proof If we let the operator ˜Dk–
λ act on (), then by Lemma ., we have

˜Dk–
λ f (x)

= ˜Dk–
λ

(

f(x) +
k–
∑

i=

Ei
λfi(x)

)

= ˜Dk–
λ Ek–

λ fk–(x)

=


Ck–
fk–(x).

Thus,

fk–(x) = Ck–˜Dk–
λ f (x).

Similarly, if we let the operator ˜Dk–
λ act on f (x) – Ek–

λ fk–(x), we have

˜Dk–
λ

[

f (x) – Ek–
λ fk–(x)

]

= ˜Dk–
λ

(

f(x) +
k–
∑

i=

Ei
λfi(x)

)

= ˜Dk–
λ

(

Ek–
λ fk–(x)

)

=


Ck–
fk–(x).

Therefore, we have

fk–(x) = Ck–˜Dk–
λ

(

I – Ck–Ek–
λ

˜Dk–
λ

)

f (x).

By induction, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fk–(x) = Ck–˜Dk–
λ f (x),

fk–(x) = Ck–˜Dk–
λ (I – Ck–Ek–

λ
˜Dk–

λ )f (x),
...
f(x) = C˜Dλ(I – CE

λ
˜D

λ) · · · (I – Ck–Ek–
λ

˜Dk–
λ )f (x),

f(x) = (I – CEλ
˜Dλ)(I – CE

λ
˜D

λ) · · · (I – Ck–Ek–
λ

˜Dk–
λ )f (x).

()

Conversely, suppose that the functions f, . . . , fk– ∈ ker˜Dλ. Applying Lemma ., we obtain

˜Dk
λf (x) = ˜Dk

λ

[

f(x) +
k–
∑

i=

Ei
λfi(x)

]

= ,

which completes the proof. �
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5 Boundary value problems for the operator ˜Dk
λ

5.1 Riemann type boundary value problem (III)
Now we consider the following Riemann type boundary value problem (III).

Suppose that gl(t), l = , . . . , k –, are Hölder continuous functions on ∂�. Find a function
 ∈ Ck(�) ⊗ R,m– that satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˜Dk
λ(x) = , x ∈ Rm \ ∂�,

+(t)a – –(t)b = g(t),
[˜Dλ]+(t)a – [˜Dλ]–(t)b = g(t),
...
[˜Dk–

λ ]+(t)a – [˜Dk–
λ ]–(t)b = gk–(t), t ∈ ∂�,

lim|x|→+∞ |(x)|
|x|l < +∞,

(III)

where

+(t) = lim
x→t

x, x ∈ �, –(t) = lim
x→t

x, x ∈ Rm\�,

and a, b are given R,m valued constants whose inverses are a–, b–.

Theorem . The boundary value problem (III) has a solution.

Proof We will prove that the function

�(x) = F(x) + EλF(x) + · · · + Ek–
λ Fk–(x), ()

where

Fi(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(
∫

∂�
eλx E(y – x) dσygi(y))[a]–

+
∑l

p=
∑

π (k···kp) Vk···kp eλx [a]–, x ∈ �, l ∈ N,
(
∫

∂�
eλx E(y – x) dσygi(y))[b]–

+
∑l

p=
∑

π (k···kp) Vk···kp eλx [b]–, x ∈ Rm \ �, l ∈ N,

()

for  ≤ i ≤ k – , and

Fi(t) = Ci

[

gi(t) – ˜Di
λ

k–i–
∑

l=i+

El
λFl(t)

]

, t ∈ ∂�, ()

is a solution of the boundary value problem (III).
From Theorem ., we can see that Fi(x) ∈ ker˜Dλ. It follows by Theorem . that �(x) ∈

ker˜Dk
λ.

Then, applying Lemma . and (), we can see that

[

˜Di
λF

]+(t)a –
[

˜Di
λF

]–(t)b =


Ci
Fi(t) + ˜Di

λ

k–i–
∑

l=i+

El
λFl(t) = gi(t),

which completes the proof. �
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5.2 Generalized Riquier problem for the operator ˜Dk
λ

In , Nicolescu established Riquier problem for polyharmonic equations (see []). In
, applying the -normalized system of functions with respect to the Laplace operator,
Karachik obtained a solution of the Riquier problem in harmonic analysis (see []). In
this section, we will study the generalized Riquier problem for the operator ˜Dk

λ by the
expansion (), as follows:

Find a function � such that ˜Di
λ� ∈ C(�) ⊗ R,m–, for i = , . . . , k – , and

{

˜Dk
λ� = , x ∈ �,

˜Di
λ�|∂� = gi(t), t ∈ ∂�.

(IV)

Theorem . Suppose that the functions fi(x) ∈ C(�) ⊗ R,m–, i = , . . . , k – . Then prob-
lem (IV) has a solution given by

�(x) = f(x) +
k–
∑

i=

Ei
λfi(x), ()

where the functions fi(x) satisfy

{

˜Dλfi(x) = , x ∈ �,
fi(x)|∂� = Ci[gi(t) – ˜Di

λ

∑k–i–
j=i+ Ej

λfj(x)|∂�], t ∈ ∂�.
()

Proof First, by Theorem ., we can see that

˜Dk
λ�(x) = .

Then, for  ≤ i ≤ k – , Lemma . implies that

˜Di
λ�(x) = ˜Di

λ

(

f(x) +
k–
∑

j=

Ej
λfj(x)

)

=


Ci
fi(x) + ˜Di

λ

k––i
∑

j=i+

Ej
λfj(x).

Letting x → t, the formulas in () give ˜Di
λ�|∂� = gi(t), i = , . . . , k – , which implies the

conclusion. �
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